NEXIEZ-MRL

Designed to European standards
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Principle

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Minshashi Elevator’s elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety, while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Minshashi Elevator promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Devices that Use Less Energy

LED Lighting (Optional)

Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, a long service life eliminates the need for frequent lamp replacement.

<table>
<thead>
<tr>
<th>Incandescent lamp</th>
<th>LED</th>
<th>Advantages of LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service life (hr)</td>
<td>25000</td>
<td>Approximately 12.5 times longer</td>
</tr>
<tr>
<td>Power consumption (W)</td>
<td>2000</td>
<td>Approximately 75% reduction</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1: Alternative current, variable voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*2: Variable voltage, variable frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3: CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regenerative Converter (PCNV) (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.*

In addition, the regenerative converter has the effect of decreasing harmonic currents.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LEA-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

*The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.
Group Control Systems: ΣAI-22 and ΣAI-2200C

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

<table>
<thead>
<tr>
<th>ΣAI-2200C Performance</th>
<th>ΣAI-2200C (new)</th>
<th>ΣAI-2200C (conventional option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Waiting Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improved: Max. 40%</td>
<td></td>
</tr>
<tr>
<td>Long-Wait Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improved: Max. 80%</td>
<td></td>
</tr>
</tbody>
</table>

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Forecasting a Near-future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Allocating Passengers to Cars Depending on Destination Floors

Destination Oriented Allocation System (DOAS) (ΣAI-2200C) (Optional)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Table: Efficiency

<table>
<thead>
<tr>
<th>Ele. No.</th>
<th>Hall call</th>
<th>Traveling direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning up</td>
<td>5</td>
<td>Morning up peak</td>
</tr>
<tr>
<td>Lunchtime</td>
<td>10</td>
<td>Lunchtime</td>
</tr>
<tr>
<td>Evening down</td>
<td>15</td>
<td>Evening down peak</td>
</tr>
<tr>
<td>Morning up</td>
<td>20</td>
<td>Morning up peak</td>
</tr>
<tr>
<td>Lunchtime</td>
<td>25</td>
<td>Lunchtime</td>
</tr>
<tr>
<td>Evening down</td>
<td>30</td>
<td>Evening down peak</td>
</tr>
</tbody>
</table>

Improved: Max. 40%

Improved: Max. 80%

Daytime

Morning up peak

Lunchtime

Evening down peak

Standard arrangement (hall arrangement without hall lantern*)

Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

*Hall arrangement with hall lantern is available as an option.
Variable Traveling Speed Elevator System (VSE) (Optional)

With Mitsubishi Electric’s industry-first variable traveling speed elevator system, an elevator can travel faster than its rated speed according to the number of passengers, ultimately reducing waiting and traveling time.

Waiting Time Reduction

According to Mitsubishi Electric’s simulation, waiting time can be reduced up to approximately 15% when VSE is applied.

Traveling Time Reduction

Traveling time can be reduced by approximately 32% when the elevator travels from the bottom to the top floor directly under rapid mode in VSE.

(Conditions)

Travel: 36m, Floor height: 4.0m, 10 floors, Car load: 50%

Machine-room-less Elevators

As all equipment is installed within the hoistway, there are fewer restrictions on building design except for the actual space required for the hoistway. Architects and interior designers have more design freedom.

Maximum Speed and Car Load

[Diagram showing maximum speed and car load for different elevator speeds and passenger loads.]

- **Rated speed (1.0m/sec)**
 - 0% Car load
 - 50% Car load
 - 100% Car load

- **VSE (1.6m/sec)**
 - 0% Car load
 - 50% Car load
 - 100% Car load

Note: The Variable Traveling Speed Elevator System is applicable to elevators with a rated speed of 1.0m/sec.
Emergency Operations

To ensure passenger safety, our elevators are equipped with functions for emergencies like a power failure, fire or earthquake.

Power failure

Mitsubishi Emergency Landing Device (MELD) (Optional)
Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

Operation by Emergency Power Source–Automatic (OEPS) (Optional)
Upon power failure, predetermined car(s) use a building’s emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) resume normal operation.

Fire

Firefighters’ Emergency Operation (FE) (Optional)*
When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate firefighting and rescue operations.

Fire Emergency Return (FER) (Optional)*
When a key switch or a building’s fire alarm is activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.

Earthquake

Earthquake Emergency Return (EER-P/EER-S) (Optional)
When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.

For Safe Boarding

Door Safety Devices
Our reliable safety devices ensure that the doors are clear to open and close. Depending on the type of sensor, the detection area differs. Please refer to page 16 for details.

Hall Motion Sensor (HMS)
(Optional for CO doors only)

Multi-beam Door Sensor

Note:
* Please consult our local agents for the production terms, etc.
Standard Design

Car

Ceiling: S00

Car operating panel

For side wall

Yellow-orange lighting

For side wall

Yellow-orange lighting

Hall

Narrow Jamb: E-102

Hall Design Example

Jamb — Stainess-steel, hairline-finish
Doors — Stainless-steel, hairline-finish
Hall position indicator and button — PIV1-A1010N

Hall Design Example

Jamb — Stainless-steel, hairline-finish
Doors — Stainless-steel, hairline-finish
Hall position indicator and button — PIV1-A1020N

Crop button

Crop button

Notes:
1: Maximum number of floors: 30 floors
2: Some letters of the alphabets are not available. Please consult our local agents for details.

Actual colors may differ slightly from those shown.

Please refer to the design guide for details and other designs.

Features (1/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake Emergency Return</td>
<td>EER-P, EER-S</td>
<td>Upon detection of primary and secondary wave seismic sensors, all cars stop at the nearest floor, and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Emergency Car Lighting</td>
<td>ECL</td>
<td>Car lighting which automatically turns on in the event of an emergency, providing illumination within the car. (Choice of dry-cell battery or rechargeable battery.)</td>
</tr>
<tr>
<td>Fire Emergency Return</td>
<td>FER</td>
<td>Upon activation of a fire switch or a fire alarm, all cars immediately return to a specified evacuation floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighter’s Emergency Operation</td>
<td>FE</td>
<td>During after, when the fire operation switch is activated, the car calls at a specified car and all hall calls are canceled and the car immediately returns to a pre-determined floor. The car responds only to car calls or floor firefighting and rescue operation.</td>
</tr>
<tr>
<td>Elevator Mitsubishi Elevators & Escalators Monitoring and Control System</td>
<td>WP-W</td>
<td>Each elevator’s rotation and operation can be monitored and controlled using an advanced wired network technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analysis are also available.</td>
</tr>
<tr>
<td>Mitsubishi Emergency Landing Device</td>
<td>NLED</td>
<td>Upon power failure, a car equipped with this function automatically moves and stops at the nearest floor using a rechargeable battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor-to-floor distance is 11 meters.)</td>
</tr>
</tbody>
</table>

Door Operation Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Door-open Time Adjustment</td>
<td>DOT</td>
<td>The time doors are open-able automatically be adjusted depending on whether the stop is called from the hall or the car, to allow smooth boarding of passengers or loading of goods.</td>
</tr>
<tr>
<td>Automatic Door Speed Control</td>
<td>DSGC</td>
<td>Door load on each floor, which can depend on the type of hall doors, is maintained to adjust the door speed, thereby making the door speed consistent throughout all floors.</td>
</tr>
<tr>
<td>Door Load Detector</td>
<td>DLD</td>
<td>Where excessive door load has been detected while opening or closing, the doors are automatically reversed.</td>
</tr>
<tr>
<td>Door Nudging Feature</td>
<td>NDG</td>
<td>A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With the ANR-11 and ANR-NC features, a beep and voice guidance sound instead of the buzzer.</td>
</tr>
<tr>
<td>Door Sensor Self-diagnosis</td>
<td>DDSA</td>
<td>Failure of non-contact door sensors is checked automatically, and if a problem is diagnosed, the door-close timing is delayed and the closing speed is reduced to ensure passenger safety.</td>
</tr>
<tr>
<td>Electronic Doorman</td>
<td>EDM</td>
<td>Door open time is maintained using the Multi-beam Door Sensor feature that detects passenger’s boarding or exiting.</td>
</tr>
<tr>
<td>Extended Door-open Button</td>
<td>DKO-TB</td>
<td>When the button inside a car is pressed, the doors will remain open longer to allow loading and unloading of baggage, stretcher, etc.</td>
</tr>
<tr>
<td>Hall Motion Sensor</td>
<td>HMC</td>
<td>—</td>
</tr>
<tr>
<td>Multi-beam Door Sensor</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Reopen with Hall Button</td>
<td>ROHB</td>
<td>Closing doors can be reopened by pressing the button corresponding to the traveling direction of the car.</td>
</tr>
<tr>
<td>Repeated Door close</td>
<td>RDC</td>
<td>Prevents an obstacle preventing the doors from closing. The doors will repeatedly open and close until the obstacle is cleared from the doorway.</td>
</tr>
<tr>
<td>Safety Door Edge</td>
<td>SDE</td>
<td>The sensitive door edge detects passengers or objects during door closing.</td>
</tr>
</tbody>
</table>

Notes:
1: 1C to 2C — 2BC — 3C to 8C — 1615
2: 1C to 2C
3: 3C to 8C

*1: Please consult our local agents for the production terms, etc.
GROUP CONTROL FEATURES

- **Automatic Bypass (ABB)**
 - A fully loaded car bypasses hall calls in order to maintain maximum operational efficiency.

- **Automatic Car Fan Shut Off**
 - If a car cannot carry all waiting passengers because its fan is full, another car will automatically be assigned for the remaining passengers.

- **Backup Operation for Automatic Bypass (ABOP)**
 - An operation by car controllers which automatically maintains elevator operation in the event that a microprocessor or transmission line in the group controller has failed.

- **Car Call Cancelling (CC)**
 - If a car responds to a car call but then detects the system (again) remaining calls in the other direction as mistakes and clears them from the memory.

- **Car Fan Shut Off — Automatic**
 - If there are no calls for a specified period, the car ventilator will automatically turn off to conserve energy.

- **Continuity of Service (COS)**
 - A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open until the car has moved to the next floor.

- **False Call Cancelling — Automatic**
 - A click-type car button which emits electronic beep sounds when pressed to indicate that the car operating panel, allowing smooth boarding of passengers or loading of baggage.

- **Independent Service (IND)**
 - Exclusive operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and then automatically taken out of service.

- **Next Landing (NL)**
 - For energy conservation, power regenerated by a traction machine can be used by other cars.

- **Non-service to Specific Floors — Car Button Type (NS-CB)**
 - To enhance security, service to specific floors can be disabled using a car operating panel.

- **Non-service to Specific Floors — Lobby/Time Type (NS-LT)**
 - To enhance security, service to specific floors can be disabled using a manual timer switch.

- **Non-service Temporary Release for Car Call**
 - The timing of car allocation and the number of cars to be allocated to floors where meeting rooms or ballrooms exist and the traffic intensifies for short periods of time are controlled based on predicted data.

- **Out-of-service by Hall Key Switch (OSS)**
 - With a key switch on the MelEye, etc., a car can be called to a specified floor after responding to the closest hall call.

- **Overload Holding Stop (OLH)**
 - When a passenger enters a destination floor at a hall, the hall operating panel indicates whether the car is full or whether other cars are available to accommodate all passengers.

- **Regenerative Converter (PCR)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Return Operation (RET)**
 - Using a key switch, a car can be withdrawn from group control operation and called to a specified floor.

- **Safe Landing (SFL)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Secret Call Service (SCS)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Variable Traveling Group Elevator System (VTS)**
 - According to the number of passengers in the car, the car travels faster than the rated speed.

REFERENCE

- **Automatic Bypass (ABB)**
 - A fully loaded car bypasses hall calls in order to maintain maximum operational efficiency.

- **Automatic Car Fan Shut Off**
 - If a car cannot carry all waiting passengers because its fan is full, another car will automatically be assigned for the remaining passengers.

- **Backup Operation for Automatic Bypass (ABOP)**
 - An operation by car controllers which automatically maintains elevator operation in the event that a microprocessor or transmission line in the group controller has failed.

- **Car Call Cancelling (CC)**
 - If a car responds to a car call but then detects the system (again) remaining calls in the other direction as mistakes and clears them from the memory.

- **Car Fan Shut Off — Automatic**
 - If there are no calls for a specified period, the car ventilator will automatically turn off to conserve energy.

- **Continuity of Service (COS)**
 - A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open until the car has moved to the next floor.

- **False Call Cancelling — Automatic**
 - A click-type car button which emits electronic beep sounds when pressed to indicate that the car operating panel, allowing smooth boarding of passengers or loading of baggage.

- **Independent Service (IND)**
 - Exclusive operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and then automatically taken out of service.

- **Next Landing (NL)**
 - For energy conservation, power regenerated by a traction machine can be used by other cars.

- **Non-service to Specific Floors — Car Button Type (NS-CB)**
 - To enhance security, service to specific floors can be disabled using a car operating panel.

- **Non-service to Specific Floors — Lobby/Time Type (NS-LT)**
 - To enhance security, service to specific floors can be disabled using a manual timer switch.

- **Non-service Temporary Release for Car Call**
 - The timing of car allocation and the number of cars to be allocated to floors where meeting rooms or ballrooms exist and the traffic intensifies for short periods of time are controlled based on predicted data.

- **Out-of-service by Hall Key Switch (OSS)**
 - With a key switch on the MelEye, etc., a car can be called to a specified floor after responding to the closest hall call.

- **Overload Holding Stop (OLH)**
 - When a passenger enters a destination floor at a hall, the hall operating panel indicates whether the car is full or whether other cars are available to accommodate all passengers.

- **Regenerative Converter (PCR)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Return Operation (RET)**
 - Using a key switch, a car can be withdrawn from group control operation and called to a specified floor.

- **Safe Landing (SFL)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Secret Call Service (SCS)**
 - A buzzer sounds to alert the passengers that the car is overloaded.

- **Variable Traveling Group Elevator System (VTS)**
 - According to the number of passengers in the car, the car travels faster than the rated speed.
Basic Specifications

Hoistway Plan <1-Door 1-Gate>

![Hoistway Plan](image)

Elevation <1-Door 1-Gate>

![Elevation](image)

Specifications for Variable Traveling Speed Elevator System (Optional)

<1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m/min)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>450kg ~ 550</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
<tr>
<td>1.6</td>
<td>630kg ~ 1000</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
<tr>
<td>2.0</td>
<td>1275kg ~ 1600</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
</tbody>
</table>

![Dimensional information shown here conforms to EN81-20/50 2014.](image)

Vertical Dimensions

Vertical Dimensions <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m/min)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>450kg ~ 550</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
<tr>
<td>1.6</td>
<td>630kg ~ 1000</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
<tr>
<td>2.0</td>
<td>1275kg ~ 1600</td>
<td>TRS 90</td>
<td>1375</td>
<td>1500</td>
</tr>
</tbody>
</table>

Horizontal Dimensions <1-Door 1-Gate>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Traction Machine position</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>0.6</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>950x1100</td>
<td>2.0</td>
</tr>
<tr>
<td>P7</td>
<td>7</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1000x1200</td>
<td>2.5</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1100x1300</td>
<td>3.0</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1350x1400</td>
<td>3.5</td>
</tr>
<tr>
<td>P13</td>
<td>13</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1600x1400</td>
<td>4.0</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1100x2100</td>
<td>4.5</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1300x2300</td>
<td>5.0</td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>1600x2400</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Notes:
- The layout (position of traction machine, etc.) differs depending on capacity.
- Please consult our local agents for details.
Hoistway Plan <1-Door 2-Gate>

- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors. Please consult our local agents for other specifications.
- This table shows standard specifications with the fireproof landing door and without counterweight safety.

Elevation <1-Door 2-Gate>

Horizontal Dimensions <1-Door 2-Gate><Counterweight position: side>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Car internal dimensions (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AHx BH/car</td>
<td>AHx BH/car</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>1.0, 1.6, 1.75</td>
<td>900 : Standard</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 : Optional</td>
<td>1100 x 1400</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Important Information on Elevator Planning

- The following items are excluded from Mitsubishi Electric's elevator installation work. Their details or conditions are to be confirmed in the statement of EN81-20/50: 2014, local laws or Mitsubishi Electric elevator's requirements, are therefore the responsibility of the building owner or general contractor.

Work Not Included in Elevator Contract

- Architectural finishing of walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed hoistway.
- The provision of openings and supporting members as required for equipment installation.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.
- The provision of the main power and power for illumination in the hoistway by laying of the feeder wiring from the electrical switch boxes in electrical room into the hoistway.
- The provision of outlets and laying of the wiring in the hoistway, plus the power from the electrical switch box.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric's elevator controller, when supplied by the building owner or general contractor.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.

Elevator Site Requirements

- The temperature of the elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention against icing and condensation occurring due to a rapid drop in the temperature shall be provided in the elevator hoistway.
 c. The elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of ±5% to ±10%.

Ordering Information

- Please include the following information when ordering or requesting estimates.
 a. The desired number of units, speed and loading capacity.
 b. The number of stops or number of floors to be served.
 c. The total elevator travel and each floor-to-floor height.
 d. Operation system.
 e. Selected design and size of car.
 f. Entrance design.
 g. Signal equipment.
 h. A sketch of the part of the building where the elevators are to be installed.
 i. The voltage, number of phases, and frequency of the power source for the motor and lighting.

Note: The layout (position of traction machine, etc.) differs depending on capacity.
State-of-the-Art Factories…
For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety first, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works and 13 overseas manufacturing factories are utilized in a global network that provides sales, installation and maintenance in support of maintaining and improving product quality. As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Electric Corporation Inazawa Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Mitsubishi Electric Corporation
HEAD OFFICE: TOKYO BLDG., 2-7-9, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

Visit our website at:
http://www.MitsubishiElectric.com/elevator/

Safety Tips: Be sure to read the instruction manual fully before using this product.