SUBJECT: RD00HVS1 RF characteristics data at f=450-470MHz, Vdd=7.2V

SUMMARY:
This application note shows the RF characteristics (Frequency Characteristics and Pin vs. Pout characteristics) data with RD00HVS1 using Broad-Band Fixture and a schematic for test fixture.

- Sample history:
 RD00HVS1: Lot number “552”

- Evaluate conditions:
 @f=450MHz : Vdd=7.2V, Pin=5mW, Idq=0.05A (Vgg adj.)
 @f=460MHz : Vdd=7.2V, Pin=5mW, Idq=0.05A (Vgg adj.)
 @f=470MHz : Vdd=7.2V, Pin=5mW, Idq=0.05A (Vgg adj.)

- Results:
 Page 2 shows the RF characteristics (Frequency characteristics) data.
 Page 3-5 shows the RF characteristics (Pin vs. Pout characteristics) data.
 Page 6 shows the Equivalent Circuit and schematic for test fixture.
RD00HVS1 RF characteristics data at f=450-470MHz, Vdd=7.2V
- AN-UHF-075-A-

RD00HVS1 Frequency Characteristics (@ f=450 - 470MHz)

RD00HVS1 Frequency Characteristics

Vdd=7.2V, Idq=50mA

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>Vgg (V)</th>
<th>Vdd (V)</th>
<th>Pin (dBm)</th>
<th>Pout (dBm)</th>
<th>Gp (dB)</th>
<th>ID(RF) (A)</th>
<th>ηd (%)</th>
<th>Return Loss (dB)</th>
<th>2fo (dBc)</th>
<th>3fo (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.02</td>
<td>21.1</td>
<td>0.13</td>
<td>14.1</td>
<td>0.071</td>
<td>-25.46</td>
<td>-31.8</td>
</tr>
<tr>
<td>405</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.00</td>
<td>21.8</td>
<td>0.15</td>
<td>14.8</td>
<td>0.073</td>
<td>-28.64</td>
<td>-32.0</td>
</tr>
<tr>
<td>410</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>4.98</td>
<td>22.4</td>
<td>0.18</td>
<td>15.5</td>
<td>0.075</td>
<td>-32.44</td>
<td>-32.1</td>
</tr>
<tr>
<td>415</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.00</td>
<td>23.1</td>
<td>0.21</td>
<td>16.1</td>
<td>0.079</td>
<td>-36.17</td>
<td>-32.8</td>
</tr>
<tr>
<td>420</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.02</td>
<td>23.9</td>
<td>0.24</td>
<td>16.8</td>
<td>0.083</td>
<td>-40.63</td>
<td>-32.9</td>
</tr>
<tr>
<td>425</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.02</td>
<td>24.6</td>
<td>0.29</td>
<td>17.6</td>
<td>0.087</td>
<td>-45.75</td>
<td>-33.2</td>
</tr>
<tr>
<td>430</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>4.98</td>
<td>25.3</td>
<td>0.34</td>
<td>18.3</td>
<td>0.093</td>
<td>-50.09</td>
<td>-33.7</td>
</tr>
<tr>
<td>435</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.97</td>
<td>25.8</td>
<td>0.38</td>
<td>18.8</td>
<td>0.097</td>
<td>-54.39</td>
<td>-34.4</td>
</tr>
<tr>
<td>440</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.99</td>
<td>26.1</td>
<td>0.41</td>
<td>19.1</td>
<td>0.099</td>
<td>-57.01</td>
<td>-35.3</td>
</tr>
<tr>
<td>445</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.96</td>
<td>26.2</td>
<td>0.42</td>
<td>19.3</td>
<td>0.099</td>
<td>-58.67</td>
<td>-36.3</td>
</tr>
<tr>
<td>450</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>5.00</td>
<td>26.3</td>
<td>0.42</td>
<td>19.3</td>
<td>0.099</td>
<td>-59.60</td>
<td>-37.4</td>
</tr>
<tr>
<td>455</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.96</td>
<td>26.3</td>
<td>0.43</td>
<td>19.3</td>
<td>0.098</td>
<td>-60.43</td>
<td>-37.9</td>
</tr>
<tr>
<td>460</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>5.01</td>
<td>26.3</td>
<td>0.43</td>
<td>19.3</td>
<td>0.097</td>
<td>-60.94</td>
<td>-38.4</td>
</tr>
<tr>
<td>465</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.96</td>
<td>26.2</td>
<td>0.42</td>
<td>19.3</td>
<td>0.094</td>
<td>-61.93</td>
<td>-37.9</td>
</tr>
<tr>
<td>470</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.97</td>
<td>26.1</td>
<td>0.41</td>
<td>19.1</td>
<td>0.091</td>
<td>-62.22</td>
<td>-37.1</td>
</tr>
<tr>
<td>475</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.96</td>
<td>25.9</td>
<td>0.39</td>
<td>18.9</td>
<td>0.087</td>
<td>-62.09</td>
<td>-36.4</td>
</tr>
<tr>
<td>480</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.99</td>
<td>25.6</td>
<td>0.36</td>
<td>18.6</td>
<td>0.084</td>
<td>-60.01</td>
<td>-36.1</td>
</tr>
<tr>
<td>485</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>4.98</td>
<td>25.2</td>
<td>0.33</td>
<td>18.2</td>
<td>0.081</td>
<td>-56.87</td>
<td>-35.9</td>
</tr>
<tr>
<td>490</td>
<td>2.60</td>
<td>7.20</td>
<td>7.0</td>
<td>5.02</td>
<td>24.7</td>
<td>0.30</td>
<td>17.7</td>
<td>0.078</td>
<td>-53.10</td>
<td>-35.8</td>
</tr>
<tr>
<td>495</td>
<td>2.60</td>
<td>7.21</td>
<td>7.0</td>
<td>5.03</td>
<td>24.2</td>
<td>0.26</td>
<td>17.2</td>
<td>0.075</td>
<td>-48.84</td>
<td>-36.0</td>
</tr>
<tr>
<td>500</td>
<td>2.60</td>
<td>7.21</td>
<td>6.9</td>
<td>4.95</td>
<td>23.6</td>
<td>0.23</td>
<td>16.6</td>
<td>0.073</td>
<td>-43.26</td>
<td>-36.2</td>
</tr>
</tbody>
</table>

Note: part of hatching show out of target

Vdd=7.2V, Vgg=2.65V, Idq=50mA

Application Note for Silicon RF Power Semiconductors

2/6
RD00HVS1 RF characteristics data at f=450-470MHz, Vdd=7.2V

- AN-UHF-075-A-

RD00HVS1 Pin vs. Pout characteristics (@f=450MHz)

<table>
<thead>
<tr>
<th>Pin (dBm)</th>
<th>Po (W)</th>
<th>Vdd (V)</th>
<th>Vgg (V)</th>
<th>Idd (A)</th>
<th>ηd (%)</th>
<th>Gain (dB)</th>
<th>R.L. (V)</th>
<th>Harmonics 2fo(dBc)</th>
<th>Harmonics 3fo(dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.02</td>
<td>0.1</td>
<td>13.73</td>
<td>0.02</td>
<td>7.22</td>
<td>2.651</td>
<td>0.052</td>
<td>6.31</td>
<td>23.76</td>
<td>-1.20</td>
</tr>
<tr>
<td>-7.98</td>
<td>0.2</td>
<td>15.70</td>
<td>0.04</td>
<td>7.22</td>
<td>2.650</td>
<td>0.053</td>
<td>9.73</td>
<td>23.67</td>
<td>-1.22</td>
</tr>
<tr>
<td>-6.04</td>
<td>0.2</td>
<td>17.54</td>
<td>0.06</td>
<td>7.22</td>
<td>2.651</td>
<td>0.055</td>
<td>14.35</td>
<td>23.58</td>
<td>-1.23</td>
</tr>
<tr>
<td>-4.02</td>
<td>0.4</td>
<td>19.39</td>
<td>0.09</td>
<td>7.22</td>
<td>2.651</td>
<td>0.058</td>
<td>20.82</td>
<td>23.41</td>
<td>-1.25</td>
</tr>
<tr>
<td>-1.98</td>
<td>0.6</td>
<td>21.18</td>
<td>0.13</td>
<td>7.21</td>
<td>2.651</td>
<td>0.063</td>
<td>28.93</td>
<td>23.16</td>
<td>-1.29</td>
</tr>
<tr>
<td>0.02</td>
<td>1.0</td>
<td>22.87</td>
<td>0.19</td>
<td>7.21</td>
<td>2.650</td>
<td>0.070</td>
<td>38.40</td>
<td>22.85</td>
<td>-1.37</td>
</tr>
<tr>
<td>2.00</td>
<td>1.6</td>
<td>24.49</td>
<td>0.26</td>
<td>7.21</td>
<td>2.651</td>
<td>0.080</td>
<td>48.80</td>
<td>22.48</td>
<td>-1.50</td>
</tr>
<tr>
<td>4.01</td>
<td>2.5</td>
<td>25.77</td>
<td>0.36</td>
<td>7.21</td>
<td>2.652</td>
<td>0.091</td>
<td>57.62</td>
<td>21.76</td>
<td>-1.68</td>
</tr>
<tr>
<td>6.03</td>
<td>4.0</td>
<td>26.35</td>
<td>0.43</td>
<td>7.21</td>
<td>2.651</td>
<td>0.099</td>
<td>60.55</td>
<td>20.32</td>
<td>-1.68</td>
</tr>
<tr>
<td>8.01</td>
<td>6.3</td>
<td>26.68</td>
<td>0.47</td>
<td>7.21</td>
<td>2.651</td>
<td>0.105</td>
<td>61.53</td>
<td>18.66</td>
<td>-1.50</td>
</tr>
<tr>
<td>10.04</td>
<td>10.1</td>
<td>26.93</td>
<td>0.49</td>
<td>7.21</td>
<td>2.651</td>
<td>0.110</td>
<td>62.23</td>
<td>16.89</td>
<td>-1.29</td>
</tr>
<tr>
<td>12.00</td>
<td>15.9</td>
<td>27.15</td>
<td>0.52</td>
<td>7.21</td>
<td>2.652</td>
<td>0.116</td>
<td>62.05</td>
<td>15.14</td>
<td>-1.08</td>
</tr>
<tr>
<td>14.01</td>
<td>25.2</td>
<td>27.37</td>
<td>0.55</td>
<td>7.21</td>
<td>2.652</td>
<td>0.122</td>
<td>62.10</td>
<td>13.36</td>
<td>-0.86</td>
</tr>
</tbody>
</table>

PoPin = 7.20 (V)
Igg = 2.650 (V)
f = 450 (MHz)

Application Note for Silicon RF Power Semiconductors

3/6
RD00HVS1 RF characteristics data at f=450-470MHz, Vdd=7.2V

RD00HVS1 Pin vs. Pout characteristics (@ f=460MHz)

<table>
<thead>
<tr>
<th>Pin (dBm)</th>
<th>Po (mW)</th>
<th>Vdd (V)</th>
<th>Vgg (V)</th>
<th>Idd (A)</th>
<th>ηd (%)</th>
<th>Gain (dB)</th>
<th>R.L. (W)</th>
<th>Harmonics 2fo(dBc)</th>
<th>Harmonics 3fo(dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.03</td>
<td>0.1</td>
<td>14.03</td>
<td>0.03</td>
<td>7.22</td>
<td>2.649</td>
<td>0.052</td>
<td>6.76</td>
<td>-3.48</td>
<td>-41.35</td>
</tr>
<tr>
<td>-7.98</td>
<td>0.2</td>
<td>16.03</td>
<td>0.04</td>
<td>7.22</td>
<td>2.650</td>
<td>0.053</td>
<td>10.50</td>
<td>-3.52</td>
<td>-41.55</td>
</tr>
<tr>
<td>-5.98</td>
<td>0.3</td>
<td>17.95</td>
<td>0.06</td>
<td>7.22</td>
<td>2.650</td>
<td>0.055</td>
<td>15.75</td>
<td>-3.54</td>
<td>-40.52</td>
</tr>
<tr>
<td>-3.99</td>
<td>0.4</td>
<td>19.79</td>
<td>0.10</td>
<td>7.21</td>
<td>2.649</td>
<td>0.058</td>
<td>22.83</td>
<td>-3.57</td>
<td>-39.56</td>
</tr>
<tr>
<td>-2.02</td>
<td>0.6</td>
<td>21.54</td>
<td>0.14</td>
<td>7.21</td>
<td>2.649</td>
<td>0.063</td>
<td>31.44</td>
<td>-3.63</td>
<td>-37.87</td>
</tr>
<tr>
<td>0.00</td>
<td>1.0</td>
<td>23.26</td>
<td>0.21</td>
<td>7.21</td>
<td>2.650</td>
<td>0.071</td>
<td>41.47</td>
<td>-3.75</td>
<td>-36.13</td>
</tr>
<tr>
<td>2.00</td>
<td>1.6</td>
<td>24.82</td>
<td>0.30</td>
<td>7.21</td>
<td>2.649</td>
<td>0.080</td>
<td>52.70</td>
<td>-3.81</td>
<td>-35.31</td>
</tr>
<tr>
<td>4.05</td>
<td>2.5</td>
<td>26.85</td>
<td>0.39</td>
<td>7.21</td>
<td>2.649</td>
<td>0.090</td>
<td>59.42</td>
<td>-3.87</td>
<td>-35.96</td>
</tr>
<tr>
<td>5.97</td>
<td>4.0</td>
<td>26.84</td>
<td>0.43</td>
<td>7.21</td>
<td>2.649</td>
<td>0.096</td>
<td>62.23</td>
<td>-3.93</td>
<td>-35.64</td>
</tr>
<tr>
<td>8.00</td>
<td>6.3</td>
<td>26.87</td>
<td>0.46</td>
<td>7.21</td>
<td>2.649</td>
<td>0.101</td>
<td>63.85</td>
<td>-3.99</td>
<td>-35.82</td>
</tr>
<tr>
<td>10.00</td>
<td>10.0</td>
<td>26.94</td>
<td>0.49</td>
<td>7.21</td>
<td>2.649</td>
<td>0.107</td>
<td>64.21</td>
<td>-4.05</td>
<td>-40.56</td>
</tr>
<tr>
<td>12.05</td>
<td>15.9</td>
<td>27.21</td>
<td>0.53</td>
<td>7.21</td>
<td>2.649</td>
<td>0.113</td>
<td>64.70</td>
<td>-4.11</td>
<td>-40.72</td>
</tr>
<tr>
<td>14.03</td>
<td>25.3</td>
<td>27.49</td>
<td>0.56</td>
<td>7.21</td>
<td>2.649</td>
<td>0.120</td>
<td>65.01</td>
<td>-4.16</td>
<td>-41.81</td>
</tr>
</tbody>
</table>

Vdd= 7.20 (V) Vgg= 2.650 (V)
Iddq= 50 (mA) f= 460 (MHz)

Application Note for Silicon RF Power Semiconductors

4/6
RD00HVS1 Pin vs. Pout characteristics (@ f=470MHz)

<table>
<thead>
<tr>
<th>Pin (dBm)</th>
<th>Po (dBm)</th>
<th>Vdd (V)</th>
<th>Vgg (V)</th>
<th>Idd (mA)</th>
<th>ηd (%)</th>
<th>Gain (dB)</th>
<th>R.L. (dB)</th>
<th>2fo(dBc)</th>
<th>3fo(dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.01</td>
<td>0.1</td>
<td>14.12</td>
<td>0.03</td>
<td>7.22</td>
<td>2.649</td>
<td>0.052</td>
<td>6.89</td>
<td>24.12</td>
<td>-3.47</td>
</tr>
<tr>
<td>-7.98</td>
<td>0.2</td>
<td>16.06</td>
<td>0.04</td>
<td>7.22</td>
<td>2.649</td>
<td>0.053</td>
<td>10.57</td>
<td>24.04</td>
<td>-3.50</td>
</tr>
<tr>
<td>-5.97</td>
<td>0.3</td>
<td>17.98</td>
<td>0.06</td>
<td>7.22</td>
<td>2.650</td>
<td>0.055</td>
<td>15.86</td>
<td>23.95</td>
<td>-3.43</td>
</tr>
<tr>
<td>-3.98</td>
<td>0.4</td>
<td>19.81</td>
<td>0.10</td>
<td>7.22</td>
<td>2.649</td>
<td>0.058</td>
<td>22.91</td>
<td>23.79</td>
<td>-3.56</td>
</tr>
<tr>
<td>-1.98</td>
<td>0.6</td>
<td>21.58</td>
<td>0.14</td>
<td>7.21</td>
<td>2.649</td>
<td>0.063</td>
<td>31.75</td>
<td>23.57</td>
<td>-3.62</td>
</tr>
<tr>
<td>0.02</td>
<td>1.0</td>
<td>23.28</td>
<td>0.21</td>
<td>7.21</td>
<td>2.650</td>
<td>0.070</td>
<td>42.25</td>
<td>23.27</td>
<td>-3.75</td>
</tr>
<tr>
<td>2.01</td>
<td>1.6</td>
<td>24.84</td>
<td>0.30</td>
<td>7.21</td>
<td>2.649</td>
<td>0.081</td>
<td>52.23</td>
<td>22.82</td>
<td>-3.99</td>
</tr>
<tr>
<td>4.03</td>
<td>2.5</td>
<td>25.85</td>
<td>0.38</td>
<td>7.21</td>
<td>2.650</td>
<td>0.090</td>
<td>59.35</td>
<td>21.82</td>
<td>-4.11</td>
</tr>
<tr>
<td>6.04</td>
<td>4.0</td>
<td>26.34</td>
<td>0.43</td>
<td>7.21</td>
<td>2.649</td>
<td>0.096</td>
<td>62.33</td>
<td>20.30</td>
<td>-3.76</td>
</tr>
<tr>
<td>8.03</td>
<td>6.4</td>
<td>26.67</td>
<td>0.46</td>
<td>7.21</td>
<td>2.650</td>
<td>0.102</td>
<td>63.25</td>
<td>18.64</td>
<td>-3.15</td>
</tr>
<tr>
<td>9.98</td>
<td>10.0</td>
<td>26.94</td>
<td>0.49</td>
<td>7.21</td>
<td>2.650</td>
<td>0.107</td>
<td>64.10</td>
<td>16.96</td>
<td>-2.57</td>
</tr>
<tr>
<td>12.04</td>
<td>16.0</td>
<td>27.21</td>
<td>0.53</td>
<td>7.21</td>
<td>2.649</td>
<td>0.113</td>
<td>64.69</td>
<td>15.18</td>
<td>-2.05</td>
</tr>
<tr>
<td>14.04</td>
<td>25.3</td>
<td>27.49</td>
<td>0.56</td>
<td>7.21</td>
<td>2.650</td>
<td>0.120</td>
<td>64.93</td>
<td>13.45</td>
<td>-1.67</td>
</tr>
</tbody>
</table>

Vdd= 7.20 (V) Vgg= 2.650 (V)
Idq= 50 (mA) f= 470 (MHz)
RD00HVS1 RF characteristics data at f=450-470MHz, Vdd=7.2V

Application Note for Silicon RF Power Semiconductors

6/6