SUBJECT:
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V

SUMMARY:
This application note shows the RF wide-band characteristics data (Frequency characteristics, Pout vs. Pin characteristics, Pout vs. Vdd characteristics) at f=135 to 175MHz.

- Sample history:
 RD00HVS1: Lot number “551”
 RD02MUS1B: Lot number “105AB-G”

- Evaluate conditions:
 @f=135MHz to 175MHz, Vdd=7.2V/6.5V, Idq1=50mA (Vgg1 adj.), Idq2=200mA (Vgg2 adj.)
 Typical Vgg: Vgg1=Vgg2=3.5V

- Results:
 Page 2 shows the typical frequency characteristics data @ Vdd=7.2V.
 Page 3 shows the typical frequency characteristics data @ Vdd=6.5V.
 Page 4-6 shows the typical Pout vs. Pin characteristics data @ Vdd=7.2V.
 Page 7-9 shows the typical Pout vs. Pin characteristics data @ Vdd=6.5V.
 Page 10-12 shows the typical Pout vs. Vdd characteristics data.
 Page 13-14 shows the equivalent circuit.
Frequency characteristics

@Vdd=7.2V, Pin=5mW, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>34.0</td>
<td>2.54</td>
<td>27.0</td>
<td>-11.7</td>
<td>0.66</td>
<td>53.8</td>
<td>-13.0</td>
</tr>
<tr>
<td>135</td>
<td>34.4</td>
<td>2.75</td>
<td>27.4</td>
<td>-10.4</td>
<td>0.68</td>
<td>56.2</td>
<td>-14.9</td>
</tr>
<tr>
<td>140</td>
<td>34.5</td>
<td>2.79</td>
<td>27.5</td>
<td>-9.7</td>
<td>0.71</td>
<td>54.4</td>
<td>-18.0</td>
</tr>
<tr>
<td>145</td>
<td>34.6</td>
<td>2.86</td>
<td>27.6</td>
<td>-9.2</td>
<td>0.74</td>
<td>54.1</td>
<td>-20.1</td>
</tr>
<tr>
<td>150</td>
<td>34.6</td>
<td>2.86</td>
<td>27.6</td>
<td>-8.9</td>
<td>0.74</td>
<td>53.5</td>
<td>-21.8</td>
</tr>
<tr>
<td>155</td>
<td>34.4</td>
<td>2.77</td>
<td>27.5</td>
<td>-8.7</td>
<td>0.74</td>
<td>52.2</td>
<td>-23.5</td>
</tr>
<tr>
<td>160</td>
<td>34.2</td>
<td>2.64</td>
<td>27.2</td>
<td>-8.6</td>
<td>0.73</td>
<td>50.7</td>
<td>-24.8</td>
</tr>
<tr>
<td>165</td>
<td>33.9</td>
<td>2.47</td>
<td>26.9</td>
<td>-8.6</td>
<td>0.71</td>
<td>48.4</td>
<td>-26.2</td>
</tr>
<tr>
<td>170</td>
<td>33.6</td>
<td>2.32</td>
<td>26.6</td>
<td>-8.6</td>
<td>0.69</td>
<td>46.7</td>
<td>-28.0</td>
</tr>
<tr>
<td>175</td>
<td>33.6</td>
<td>2.29</td>
<td>26.6</td>
<td>-8.6</td>
<td>0.67</td>
<td>47.5</td>
<td>-28.0</td>
</tr>
<tr>
<td>180</td>
<td>33.4</td>
<td>2.20</td>
<td>26.5</td>
<td>-8.5</td>
<td>0.64</td>
<td>47.6</td>
<td>-27.7</td>
</tr>
</tbody>
</table>
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V

- AN-VHF-050-

Frequency characteristics
@Vdd=6.5V, Pin=5mW, Idq1=50mA(Vgg1 adj.), Idq=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>33.3</td>
<td>2.14</td>
<td>-11.6</td>
<td>0.61</td>
<td>54.2</td>
<td>-12.4</td>
<td>-26.4</td>
</tr>
<tr>
<td>135</td>
<td>33.6</td>
<td>2.31</td>
<td>-10.4</td>
<td>0.63</td>
<td>56.7</td>
<td>-14.4</td>
<td>-29.3</td>
</tr>
<tr>
<td>140</td>
<td>33.8</td>
<td>2.37</td>
<td>-9.6</td>
<td>0.66</td>
<td>55.1</td>
<td>-17.5</td>
<td>-32.6</td>
</tr>
<tr>
<td>145</td>
<td>33.9</td>
<td>2.47</td>
<td>-9.1</td>
<td>0.69</td>
<td>55.5</td>
<td>-19.4</td>
<td>-33.2</td>
</tr>
<tr>
<td>150</td>
<td>33.9</td>
<td>2.48</td>
<td>-8.9</td>
<td>0.70</td>
<td>54.9</td>
<td>-21.3</td>
<td>-34.7</td>
</tr>
<tr>
<td>155</td>
<td>33.8</td>
<td>2.41</td>
<td>-8.7</td>
<td>0.70</td>
<td>53.5</td>
<td>-23.1</td>
<td>-36.0</td>
</tr>
<tr>
<td>160</td>
<td>33.6</td>
<td>2.30</td>
<td>-8.6</td>
<td>0.69</td>
<td>51.7</td>
<td>-24.6</td>
<td>-37.5</td>
</tr>
<tr>
<td>165</td>
<td>33.3</td>
<td>2.15</td>
<td>-8.6</td>
<td>0.67</td>
<td>49.5</td>
<td>-26.2</td>
<td>-39.5</td>
</tr>
<tr>
<td>170</td>
<td>33.1</td>
<td>2.04</td>
<td>-8.6</td>
<td>0.66</td>
<td>47.8</td>
<td>-27.9</td>
<td>-40.2</td>
</tr>
<tr>
<td>175</td>
<td>33.1</td>
<td>2.04</td>
<td>-8.6</td>
<td>0.64</td>
<td>49.3</td>
<td>-27.6</td>
<td>-38.7</td>
</tr>
<tr>
<td>180</td>
<td>32.9</td>
<td>1.94</td>
<td>-8.5</td>
<td>0.62</td>
<td>48.7</td>
<td>-27.3</td>
<td>-38.5</td>
</tr>
</tbody>
</table>
Pout vs. Pin characteristics

@ f=135MHz, Vdd=7.2V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>32.5</td>
<td>1.76</td>
<td>31.5</td>
<td>-10.9</td>
<td>0.57</td>
<td>43.3</td>
<td>-17.7</td>
</tr>
<tr>
<td>2.0</td>
<td>15.8</td>
<td>32.9</td>
<td>1.97</td>
<td>-10.8</td>
<td>0.59</td>
<td>46.1</td>
<td>-17.1</td>
</tr>
<tr>
<td>3.0</td>
<td>19.9</td>
<td>33.3</td>
<td>2.15</td>
<td>-10.6</td>
<td>0.62</td>
<td>48.7</td>
<td>-16.4</td>
</tr>
<tr>
<td>4.0</td>
<td>25.1</td>
<td>33.7</td>
<td>2.34</td>
<td>-10.7</td>
<td>0.63</td>
<td>51.3</td>
<td>-15.8</td>
</tr>
<tr>
<td>5.0</td>
<td>31.5</td>
<td>34.0</td>
<td>2.50</td>
<td>-10.7</td>
<td>0.65</td>
<td>53.4</td>
<td>-15.3</td>
</tr>
<tr>
<td>6.0</td>
<td>39.4</td>
<td>34.2</td>
<td>2.63</td>
<td>-10.5</td>
<td>0.67</td>
<td>55.1</td>
<td>-14.9</td>
</tr>
<tr>
<td>7.0</td>
<td>49.9</td>
<td>34.4</td>
<td>2.75</td>
<td>-10.3</td>
<td>0.68</td>
<td>56.4</td>
<td>-14.6</td>
</tr>
<tr>
<td>8.0</td>
<td>63.2</td>
<td>34.6</td>
<td>2.85</td>
<td>-10.2</td>
<td>0.69</td>
<td>57.2</td>
<td>-14.4</td>
</tr>
<tr>
<td>9.0</td>
<td>79.0</td>
<td>34.7</td>
<td>2.93</td>
<td>-10.2</td>
<td>0.70</td>
<td>58.0</td>
<td>-14.3</td>
</tr>
<tr>
<td>10.0</td>
<td>99.2</td>
<td>34.8</td>
<td>3.00</td>
<td>-10.0</td>
<td>0.72</td>
<td>58.4</td>
<td>-14.1</td>
</tr>
</tbody>
</table>

Remarks: "-" is out of range.

Application Note for Silicon RF Power Semiconductors

4/14
Pout vs. Pin characteristics
@ f=155MHz, Vdd=7.2V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)
Pout vs. Pin characteristics
@ f=175MHz, Vdd=7.2V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0</td>
<td>0.03</td>
<td>16.0</td>
<td>0.04</td>
<td>31.0</td>
<td>-4.3</td>
<td>0.26</td>
<td>2.1</td>
</tr>
<tr>
<td>-14.0</td>
<td>0.04</td>
<td>16.9</td>
<td>0.05</td>
<td>30.9</td>
<td>-4.5</td>
<td>0.26</td>
<td>2.6</td>
</tr>
<tr>
<td>-13.0</td>
<td>0.05</td>
<td>17.9</td>
<td>0.06</td>
<td>30.9</td>
<td>-4.8</td>
<td>0.27</td>
<td>3.2</td>
</tr>
<tr>
<td>-12.0</td>
<td>0.06</td>
<td>18.9</td>
<td>0.08</td>
<td>30.9</td>
<td>-5.6</td>
<td>0.25</td>
<td>4.0</td>
</tr>
<tr>
<td>-11.0</td>
<td>0.08</td>
<td>19.8</td>
<td>0.10</td>
<td>30.8</td>
<td>-6.3</td>
<td>0.27</td>
<td>4.9</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.10</td>
<td>20.8</td>
<td>0.12</td>
<td>30.8</td>
<td>-7.0</td>
<td>0.28</td>
<td>6.0</td>
</tr>
<tr>
<td>-9.0</td>
<td>0.13</td>
<td>21.7</td>
<td>0.15</td>
<td>30.7</td>
<td>-7.9</td>
<td>0.28</td>
<td>7.3</td>
</tr>
<tr>
<td>-8.0</td>
<td>0.16</td>
<td>22.6</td>
<td>0.18</td>
<td>30.6</td>
<td>-8.2</td>
<td>0.29</td>
<td>8.8</td>
</tr>
<tr>
<td>-7.0</td>
<td>0.20</td>
<td>23.6</td>
<td>0.23</td>
<td>30.6</td>
<td>-8.8</td>
<td>0.30</td>
<td>10.6</td>
</tr>
<tr>
<td>-6.0</td>
<td>0.25</td>
<td>24.4</td>
<td>0.28</td>
<td>30.4</td>
<td>-9.2</td>
<td>0.31</td>
<td>12.5</td>
</tr>
<tr>
<td>-5.0</td>
<td>0.32</td>
<td>25.3</td>
<td>0.34</td>
<td>30.3</td>
<td>-9.5</td>
<td>0.32</td>
<td>14.6</td>
</tr>
<tr>
<td>-4.0</td>
<td>0.40</td>
<td>26.2</td>
<td>0.42</td>
<td>30.2</td>
<td>-9.7</td>
<td>0.34</td>
<td>17.0</td>
</tr>
<tr>
<td>-3.0</td>
<td>0.50</td>
<td>27.0</td>
<td>0.51</td>
<td>30.1</td>
<td>-10.0</td>
<td>0.36</td>
<td>19.6</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.63</td>
<td>27.9</td>
<td>0.61</td>
<td>29.9</td>
<td>-8.5</td>
<td>0.38</td>
<td>22.5</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.79</td>
<td>28.7</td>
<td>0.74</td>
<td>29.7</td>
<td>-8.2</td>
<td>0.41</td>
<td>25.4</td>
</tr>
<tr>
<td>0.0</td>
<td>1.00</td>
<td>29.5</td>
<td>0.90</td>
<td>29.5</td>
<td>-8.5</td>
<td>0.44</td>
<td>28.6</td>
</tr>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>30.3</td>
<td>1.06</td>
<td>29.3</td>
<td>-8.6</td>
<td>0.47</td>
<td>31.8</td>
</tr>
<tr>
<td>2.0</td>
<td>1.58</td>
<td>31.0</td>
<td>1.26</td>
<td>29.0</td>
<td>-8.5</td>
<td>0.50</td>
<td>35.0</td>
</tr>
<tr>
<td>3.0</td>
<td>1.99</td>
<td>31.7</td>
<td>1.47</td>
<td>28.7</td>
<td>-8.6</td>
<td>0.54</td>
<td>38.2</td>
</tr>
<tr>
<td>4.0</td>
<td>2.51</td>
<td>32.3</td>
<td>1.68</td>
<td>28.3</td>
<td>-8.6</td>
<td>0.57</td>
<td>41.0</td>
</tr>
<tr>
<td>5.0</td>
<td>3.16</td>
<td>32.8</td>
<td>1.89</td>
<td>27.8</td>
<td>-8.6</td>
<td>0.61</td>
<td>43.5</td>
</tr>
<tr>
<td>6.0</td>
<td>3.97</td>
<td>33.2</td>
<td>2.09</td>
<td>27.2</td>
<td>-8.6</td>
<td>0.64</td>
<td>45.7</td>
</tr>
<tr>
<td>7.0</td>
<td>5.00</td>
<td>33.6</td>
<td>2.28</td>
<td>26.6</td>
<td>-8.6</td>
<td>0.67</td>
<td>47.5</td>
</tr>
<tr>
<td>8.0</td>
<td>6.31</td>
<td>33.9</td>
<td>2.47</td>
<td>25.9</td>
<td>-8.6</td>
<td>0.70</td>
<td>49.3</td>
</tr>
<tr>
<td>9.0</td>
<td>7.97</td>
<td>34.2</td>
<td>2.65</td>
<td>25.2</td>
<td>-8.5</td>
<td>0.73</td>
<td>50.6</td>
</tr>
<tr>
<td>10.0</td>
<td>9.99</td>
<td>34.5</td>
<td>2.81</td>
<td>24.5</td>
<td>-8.5</td>
<td>0.76</td>
<td>51.7</td>
</tr>
</tbody>
</table>

Remarks: "-" is out of range.
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V

- AN-VHF-050-

Pout vs. Pin characteristics

@ f=135MHz, Vdd=6.5V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th>Pin (dBm)</th>
<th>Pout (W)</th>
<th>Gp (dB)</th>
<th>R.Loss (dB)</th>
<th>Lt (A)</th>
<th>ηt (%)</th>
<th>2fo (dBc)</th>
<th>3fo (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0</td>
<td>0.03</td>
<td>19.0</td>
<td>0.08</td>
<td>33.9</td>
<td>-4.7</td>
<td>0.27</td>
<td>-29.1</td>
</tr>
<tr>
<td>-14.0</td>
<td>0.04</td>
<td>19.9</td>
<td>0.10</td>
<td>33.9</td>
<td>-4.9</td>
<td>0.27</td>
<td>-28.2</td>
</tr>
<tr>
<td>-13.0</td>
<td>0.05</td>
<td>20.9</td>
<td>0.12</td>
<td>33.9</td>
<td>-5.7</td>
<td>0.28</td>
<td>-27.3</td>
</tr>
<tr>
<td>-12.0</td>
<td>0.06</td>
<td>21.8</td>
<td>0.15</td>
<td>33.8</td>
<td>-6.4</td>
<td>0.28</td>
<td>-26.2</td>
</tr>
<tr>
<td>-11.0</td>
<td>0.08</td>
<td>22.8</td>
<td>0.19</td>
<td>33.7</td>
<td>-7.3</td>
<td>0.29</td>
<td>-25.3</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.10</td>
<td>23.7</td>
<td>0.23</td>
<td>33.7</td>
<td>-8.0</td>
<td>0.30</td>
<td>-24.3</td>
</tr>
<tr>
<td>-9.0</td>
<td>0.13</td>
<td>24.6</td>
<td>0.29</td>
<td>33.6</td>
<td>-8.7</td>
<td>0.31</td>
<td>-23.4</td>
</tr>
<tr>
<td>-8.0</td>
<td>0.16</td>
<td>25.5</td>
<td>0.35</td>
<td>33.4</td>
<td>-9.3</td>
<td>0.32</td>
<td>-22.6</td>
</tr>
<tr>
<td>-7.0</td>
<td>0.20</td>
<td>26.3</td>
<td>0.43</td>
<td>33.3</td>
<td>-10.0</td>
<td>0.34</td>
<td>-21.8</td>
</tr>
<tr>
<td>-6.0</td>
<td>0.25</td>
<td>27.2</td>
<td>0.52</td>
<td>33.2</td>
<td>-10.6</td>
<td>0.36</td>
<td>-21.1</td>
</tr>
<tr>
<td>-5.0</td>
<td>0.32</td>
<td>28.0</td>
<td>0.63</td>
<td>33.0</td>
<td>-11.1</td>
<td>0.38</td>
<td>-20.4</td>
</tr>
<tr>
<td>-4.0</td>
<td>0.40</td>
<td>28.8</td>
<td>0.76</td>
<td>32.8</td>
<td>-11.6</td>
<td>0.41</td>
<td>-19.9</td>
</tr>
<tr>
<td>-3.0</td>
<td>0.50</td>
<td>29.6</td>
<td>0.90</td>
<td>32.6</td>
<td>-12.1</td>
<td>0.43</td>
<td>-19.5</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.63</td>
<td>30.3</td>
<td>1.07</td>
<td>32.3</td>
<td>-12.5</td>
<td>0.46</td>
<td>-19.1</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.79</td>
<td>30.9</td>
<td>1.23</td>
<td>31.9</td>
<td>-10.2</td>
<td>0.49</td>
<td>-18.6</td>
</tr>
<tr>
<td>0.0</td>
<td>1.00</td>
<td>31.5</td>
<td>1.40</td>
<td>31.5</td>
<td>-10.7</td>
<td>0.52</td>
<td>-18.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>31.9</td>
<td>1.56</td>
<td>30.9</td>
<td>-10.8</td>
<td>0.54</td>
<td>-17.4</td>
</tr>
<tr>
<td>2.0</td>
<td>1.59</td>
<td>32.4</td>
<td>1.72</td>
<td>30.3</td>
<td>-10.8</td>
<td>0.56</td>
<td>-16.6</td>
</tr>
<tr>
<td>3.0</td>
<td>1.98</td>
<td>32.7</td>
<td>1.86</td>
<td>29.7</td>
<td>-10.8</td>
<td>0.58</td>
<td>-16.0</td>
</tr>
<tr>
<td>4.0</td>
<td>2.52</td>
<td>33.0</td>
<td>2.01</td>
<td>29.0</td>
<td>-10.7</td>
<td>0.59</td>
<td>-15.4</td>
</tr>
<tr>
<td>5.0</td>
<td>3.16</td>
<td>33.3</td>
<td>2.12</td>
<td>28.3</td>
<td>-10.5</td>
<td>0.60</td>
<td>-15.0</td>
</tr>
<tr>
<td>6.0</td>
<td>3.96</td>
<td>33.5</td>
<td>2.22</td>
<td>27.5</td>
<td>-10.4</td>
<td>0.62</td>
<td>-14.7</td>
</tr>
<tr>
<td>7.0</td>
<td>5.02</td>
<td>33.6</td>
<td>2.30</td>
<td>26.6</td>
<td>-10.4</td>
<td>0.63</td>
<td>-14.5</td>
</tr>
<tr>
<td>8.0</td>
<td>6.27</td>
<td>33.7</td>
<td>2.37</td>
<td>25.8</td>
<td>-10.2</td>
<td>0.64</td>
<td>-14.3</td>
</tr>
<tr>
<td>9.0</td>
<td>7.95</td>
<td>33.9</td>
<td>2.43</td>
<td>24.8</td>
<td>-10.1</td>
<td>0.65</td>
<td>-14.1</td>
</tr>
<tr>
<td>10.0</td>
<td>9.94</td>
<td>33.9</td>
<td>2.48</td>
<td>24.0</td>
<td>-10.0</td>
<td>0.66</td>
<td>-14.1</td>
</tr>
</tbody>
</table>

Remarks: "-" is out of range.
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V - AN-VHF-050-

Pout vs. Pin characteristics
@ f=155MHz, Vdd=6.5V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0</td>
<td>0.03</td>
<td>17.2</td>
<td>0.05</td>
<td>32.2</td>
<td>-4.0</td>
<td>0.26</td>
<td>3.1</td>
</tr>
<tr>
<td>-14.0</td>
<td>0.04</td>
<td>18.1</td>
<td>0.06</td>
<td>32.1</td>
<td>-4.3</td>
<td>0.27</td>
<td>3.8</td>
</tr>
<tr>
<td>-13.0</td>
<td>0.05</td>
<td>19.1</td>
<td>0.08</td>
<td>32.1</td>
<td>-4.7</td>
<td>0.27</td>
<td>4.7</td>
</tr>
<tr>
<td>-12.0</td>
<td>0.06</td>
<td>20.1</td>
<td>0.10</td>
<td>32.1</td>
<td>-5.4</td>
<td>0.27</td>
<td>5.7</td>
</tr>
<tr>
<td>-11.0</td>
<td>0.08</td>
<td>21.0</td>
<td>0.13</td>
<td>32.0</td>
<td>-6.2</td>
<td>0.28</td>
<td>7.0</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.10</td>
<td>22.0</td>
<td>0.16</td>
<td>32.0</td>
<td>-6.8</td>
<td>0.29</td>
<td>8.5</td>
</tr>
<tr>
<td>-9.0</td>
<td>0.13</td>
<td>22.9</td>
<td>0.19</td>
<td>31.9</td>
<td>-7.4</td>
<td>0.29</td>
<td>10.2</td>
</tr>
<tr>
<td>-8.0</td>
<td>0.16</td>
<td>23.8</td>
<td>0.24</td>
<td>31.8</td>
<td>-8.1</td>
<td>0.30</td>
<td>12.1</td>
</tr>
<tr>
<td>-7.0</td>
<td>0.20</td>
<td>24.7</td>
<td>0.29</td>
<td>31.7</td>
<td>-8.6</td>
<td>0.32</td>
<td>14.3</td>
</tr>
<tr>
<td>-6.0</td>
<td>0.25</td>
<td>25.6</td>
<td>0.36</td>
<td>31.6</td>
<td>-9.0</td>
<td>0.33</td>
<td>16.8</td>
</tr>
<tr>
<td>-5.0</td>
<td>0.31</td>
<td>26.4</td>
<td>0.44</td>
<td>31.4</td>
<td>-9.5</td>
<td>0.35</td>
<td>19.4</td>
</tr>
<tr>
<td>-4.0</td>
<td>0.39</td>
<td>27.3</td>
<td>0.53</td>
<td>31.3</td>
<td>-9.8</td>
<td>0.37</td>
<td>22.1</td>
</tr>
<tr>
<td>-3.0</td>
<td>0.50</td>
<td>28.1</td>
<td>0.65</td>
<td>31.1</td>
<td>-8.6</td>
<td>0.39</td>
<td>25.3</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.63</td>
<td>28.9</td>
<td>0.78</td>
<td>31.0</td>
<td>-8.5</td>
<td>0.42</td>
<td>28.7</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.79</td>
<td>29.7</td>
<td>0.94</td>
<td>30.9</td>
<td>-8.8</td>
<td>0.45</td>
<td>32.1</td>
</tr>
<tr>
<td>0.0</td>
<td>0.99</td>
<td>30.5</td>
<td>1.12</td>
<td>30.5</td>
<td>-8.7</td>
<td>0.48</td>
<td>35.6</td>
</tr>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>31.2</td>
<td>1.31</td>
<td>30.2</td>
<td>-8.8</td>
<td>0.52</td>
<td>38.9</td>
</tr>
<tr>
<td>2.0</td>
<td>1.57</td>
<td>31.8</td>
<td>1.52</td>
<td>29.8</td>
<td>-8.8</td>
<td>0.55</td>
<td>42.5</td>
</tr>
<tr>
<td>3.0</td>
<td>1.99</td>
<td>32.4</td>
<td>1.73</td>
<td>29.4</td>
<td>-8.8</td>
<td>0.59</td>
<td>45.5</td>
</tr>
<tr>
<td>4.0</td>
<td>2.51</td>
<td>32.8</td>
<td>1.92</td>
<td>28.8</td>
<td>-8.9</td>
<td>0.62</td>
<td>48.2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.14</td>
<td>33.2</td>
<td>2.09</td>
<td>28.2</td>
<td>-8.7</td>
<td>0.64</td>
<td>50.2</td>
</tr>
<tr>
<td>6.0</td>
<td>3.97</td>
<td>33.5</td>
<td>2.25</td>
<td>27.5</td>
<td>-8.8</td>
<td>0.67</td>
<td>52.1</td>
</tr>
<tr>
<td>7.0</td>
<td>5.00</td>
<td>33.8</td>
<td>2.39</td>
<td>26.8</td>
<td>-8.7</td>
<td>0.69</td>
<td>53.3</td>
</tr>
<tr>
<td>8.0</td>
<td>6.30</td>
<td>34.0</td>
<td>2.51</td>
<td>26.0</td>
<td>-8.7</td>
<td>0.71</td>
<td>54.4</td>
</tr>
<tr>
<td>9.0</td>
<td>7.96</td>
<td>34.2</td>
<td>2.62</td>
<td>25.2</td>
<td>-8.7</td>
<td>0.73</td>
<td>55.2</td>
</tr>
<tr>
<td>10.0</td>
<td>9.99</td>
<td>34.3</td>
<td>2.71</td>
<td>24.3</td>
<td>-8.6</td>
<td>0.75</td>
<td>55.8</td>
</tr>
</tbody>
</table>

Remarks: **"-"** is out of range.

Application Note for Silicon RF Power Semiconductors
Pout vs. Pin characteristics

@ f=175MHz, Vdd=6.5V, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0</td>
<td>0.03</td>
<td>15.9</td>
<td>0.04</td>
<td>30.8</td>
<td>-3.9</td>
<td>0.26</td>
<td>-40.5</td>
</tr>
<tr>
<td>-14.0</td>
<td>0.04</td>
<td>16.8</td>
<td>0.05</td>
<td>30.8</td>
<td>-4.1</td>
<td>0.26</td>
<td>-39.9</td>
</tr>
<tr>
<td>-13.0</td>
<td>0.05</td>
<td>17.8</td>
<td>0.06</td>
<td>30.8</td>
<td>-4.6</td>
<td>0.26</td>
<td>-38.6</td>
</tr>
<tr>
<td>-12.0</td>
<td>0.06</td>
<td>18.8</td>
<td>0.08</td>
<td>30.8</td>
<td>-5.3</td>
<td>0.27</td>
<td>-37.9</td>
</tr>
<tr>
<td>-11.0</td>
<td>0.08</td>
<td>19.7</td>
<td>0.09</td>
<td>30.7</td>
<td>-5.9</td>
<td>0.27</td>
<td>-36.7</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.10</td>
<td>20.7</td>
<td>0.12</td>
<td>30.7</td>
<td>-6.8</td>
<td>0.28</td>
<td>-35.7</td>
</tr>
<tr>
<td>-9.0</td>
<td>0.13</td>
<td>21.6</td>
<td>0.15</td>
<td>30.6</td>
<td>-7.4</td>
<td>0.28</td>
<td>-34.7</td>
</tr>
<tr>
<td>-8.0</td>
<td>0.16</td>
<td>22.5</td>
<td>0.18</td>
<td>30.5</td>
<td>-8.0</td>
<td>0.29</td>
<td>-33.6</td>
</tr>
<tr>
<td>-7.0</td>
<td>0.20</td>
<td>23.4</td>
<td>0.22</td>
<td>30.4</td>
<td>-8.7</td>
<td>0.30</td>
<td>-32.6</td>
</tr>
<tr>
<td>-6.0</td>
<td>0.25</td>
<td>24.3</td>
<td>0.27</td>
<td>30.3</td>
<td>-9.2</td>
<td>0.31</td>
<td>-31.6</td>
</tr>
<tr>
<td>-5.0</td>
<td>0.32</td>
<td>25.2</td>
<td>0.33</td>
<td>30.2</td>
<td>-9.5</td>
<td>0.32</td>
<td>-30.7</td>
</tr>
<tr>
<td>-4.0</td>
<td>0.40</td>
<td>26.1</td>
<td>0.40</td>
<td>30.1</td>
<td>-9.8</td>
<td>0.34</td>
<td>-29.8</td>
</tr>
<tr>
<td>-3.0</td>
<td>0.50</td>
<td>26.9</td>
<td>0.49</td>
<td>29.9</td>
<td>-10.0</td>
<td>0.36</td>
<td>-29.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.63</td>
<td>27.7</td>
<td>0.59</td>
<td>29.7</td>
<td>-8.1</td>
<td>0.38</td>
<td>-28.3</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.79</td>
<td>28.6</td>
<td>0.72</td>
<td>29.6</td>
<td>-8.5</td>
<td>0.40</td>
<td>-27.8</td>
</tr>
<tr>
<td>0.0</td>
<td>1.00</td>
<td>29.3</td>
<td>0.85</td>
<td>29.3</td>
<td>-8.5</td>
<td>0.43</td>
<td>-27.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.26</td>
<td>30.1</td>
<td>1.01</td>
<td>29.1</td>
<td>-8.6</td>
<td>0.46</td>
<td>-27.2</td>
</tr>
<tr>
<td>2.0</td>
<td>1.58</td>
<td>30.7</td>
<td>1.18</td>
<td>28.8</td>
<td>-8.6</td>
<td>0.49</td>
<td>-27.1</td>
</tr>
<tr>
<td>3.0</td>
<td>2.00</td>
<td>31.4</td>
<td>1.36</td>
<td>28.4</td>
<td>-8.7</td>
<td>0.52</td>
<td>-27.1</td>
</tr>
<tr>
<td>4.0</td>
<td>2.51</td>
<td>31.9</td>
<td>1.54</td>
<td>27.9</td>
<td>-8.7</td>
<td>0.55</td>
<td>-27.1</td>
</tr>
<tr>
<td>5.0</td>
<td>3.17</td>
<td>32.3</td>
<td>1.70</td>
<td>27.3</td>
<td>-8.7</td>
<td>0.58</td>
<td>-27.3</td>
</tr>
<tr>
<td>6.0</td>
<td>3.79</td>
<td>32.7</td>
<td>1.86</td>
<td>26.7</td>
<td>-8.6</td>
<td>0.61</td>
<td>-27.4</td>
</tr>
<tr>
<td>7.0</td>
<td>5.00</td>
<td>33.0</td>
<td>2.01</td>
<td>26.0</td>
<td>-8.6</td>
<td>0.63</td>
<td>-27.5</td>
</tr>
<tr>
<td>8.0</td>
<td>6.31</td>
<td>33.3</td>
<td>2.15</td>
<td>25.3</td>
<td>-8.6</td>
<td>0.66</td>
<td>-27.7</td>
</tr>
<tr>
<td>9.0</td>
<td>7.93</td>
<td>33.6</td>
<td>2.27</td>
<td>24.6</td>
<td>-8.5</td>
<td>0.68</td>
<td>-27.8</td>
</tr>
<tr>
<td>10.0</td>
<td>10.00</td>
<td>33.8</td>
<td>2.39</td>
<td>23.8</td>
<td>-8.5</td>
<td>0.71</td>
<td>-27.9</td>
</tr>
</tbody>
</table>

Remarks: "-" is out of range.
Pout vs. Vdd characteristics

@ f=135MHz, Pin=5mW, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>23.4</td>
<td>0.2</td>
<td>16.43</td>
<td>-12.1</td>
<td>0.23</td>
<td>48.1</td>
<td>-14.1</td>
</tr>
<tr>
<td>2.5</td>
<td>25.5</td>
<td>0.4</td>
<td>18.49</td>
<td>-11.5</td>
<td>0.28</td>
<td>50.7</td>
<td>-13.9</td>
</tr>
<tr>
<td>3.0</td>
<td>27.1</td>
<td>0.5</td>
<td>20.12</td>
<td>-10.9</td>
<td>0.33</td>
<td>52.6</td>
<td>-13.9</td>
</tr>
<tr>
<td>3.5</td>
<td>28.5</td>
<td>0.7</td>
<td>21.47</td>
<td>-10.6</td>
<td>0.38</td>
<td>54.0</td>
<td>-13.9</td>
</tr>
<tr>
<td>4.0</td>
<td>29.7</td>
<td>0.9</td>
<td>22.66</td>
<td>-10.4</td>
<td>0.42</td>
<td>55.2</td>
<td>-14.0</td>
</tr>
<tr>
<td>4.5</td>
<td>30.7</td>
<td>1.2</td>
<td>23.67</td>
<td>-10.3</td>
<td>0.46</td>
<td>56.0</td>
<td>-14.0</td>
</tr>
<tr>
<td>5.0</td>
<td>31.5</td>
<td>1.4</td>
<td>24.53</td>
<td>-10.3</td>
<td>0.51</td>
<td>56.6</td>
<td>-14.1</td>
</tr>
<tr>
<td>5.5</td>
<td>32.3</td>
<td>1.7</td>
<td>25.35</td>
<td>-10.3</td>
<td>0.55</td>
<td>56.9</td>
<td>-14.2</td>
</tr>
<tr>
<td>6.0</td>
<td>33.0</td>
<td>2.0</td>
<td>26.04</td>
<td>-10.3</td>
<td>0.59</td>
<td>57.1</td>
<td>-14.2</td>
</tr>
<tr>
<td>6.5</td>
<td>33.7</td>
<td>2.3</td>
<td>26.65</td>
<td>-10.3</td>
<td>0.63</td>
<td>57.0</td>
<td>-14.4</td>
</tr>
<tr>
<td>7.0</td>
<td>34.2</td>
<td>2.7</td>
<td>27.24</td>
<td>-10.3</td>
<td>0.67</td>
<td>57.0</td>
<td>-14.5</td>
</tr>
<tr>
<td>7.5</td>
<td>34.7</td>
<td>3.0</td>
<td>27.73</td>
<td>-10.4</td>
<td>0.70</td>
<td>56.6</td>
<td>-14.6</td>
</tr>
<tr>
<td>8.0</td>
<td>35.2</td>
<td>3.3</td>
<td>28.20</td>
<td>-10.4</td>
<td>0.74</td>
<td>56.0</td>
<td>-14.8</td>
</tr>
<tr>
<td>8.5</td>
<td>35.6</td>
<td>3.6</td>
<td>28.61</td>
<td>-10.4</td>
<td>0.77</td>
<td>55.3</td>
<td>-15.0</td>
</tr>
<tr>
<td>9.0</td>
<td>36.0</td>
<td>3.9</td>
<td>28.97</td>
<td>-10.4</td>
<td>0.81</td>
<td>54.5</td>
<td>-15.2</td>
</tr>
<tr>
<td>9.5</td>
<td>36.3</td>
<td>4.2</td>
<td>29.29</td>
<td>-10.3</td>
<td>0.84</td>
<td>53.6</td>
<td>-15.4</td>
</tr>
<tr>
<td>10.0</td>
<td>36.6</td>
<td>4.6</td>
<td>29.57</td>
<td>-10.4</td>
<td>0.87</td>
<td>52.7</td>
<td>-15.7</td>
</tr>
</tbody>
</table>
Pout vs. Vdd characteristics

@ f=155MHz, Pin=5mW, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>24.0</td>
<td>0.3</td>
<td>17.03</td>
<td>-9.4</td>
<td>0.28</td>
<td>44.5</td>
<td>-25.6</td>
</tr>
<tr>
<td>2.5</td>
<td>26.1</td>
<td>0.4</td>
<td>19.07</td>
<td>-9.0</td>
<td>0.34</td>
<td>47.8</td>
<td>-24.9</td>
</tr>
<tr>
<td>3.0</td>
<td>27.6</td>
<td>0.6</td>
<td>20.66</td>
<td>-8.9</td>
<td>0.39</td>
<td>49.7</td>
<td>-24.4</td>
</tr>
<tr>
<td>3.5</td>
<td>29.0</td>
<td>0.8</td>
<td>21.98</td>
<td>-8.8</td>
<td>0.44</td>
<td>51.5</td>
<td>-24.0</td>
</tr>
<tr>
<td>4.0</td>
<td>30.1</td>
<td>1.0</td>
<td>23.10</td>
<td>-8.7</td>
<td>0.49</td>
<td>52.5</td>
<td>-23.7</td>
</tr>
<tr>
<td>4.5</td>
<td>31.1</td>
<td>1.3</td>
<td>24.07</td>
<td>-8.7</td>
<td>0.53</td>
<td>53.4</td>
<td>-23.5</td>
</tr>
<tr>
<td>5.0</td>
<td>31.9</td>
<td>1.5</td>
<td>24.92</td>
<td>-8.7</td>
<td>0.58</td>
<td>54.0</td>
<td>-23.3</td>
</tr>
<tr>
<td>5.5</td>
<td>32.7</td>
<td>1.8</td>
<td>25.65</td>
<td>-8.7</td>
<td>0.62</td>
<td>54.2</td>
<td>-23.2</td>
</tr>
<tr>
<td>6.0</td>
<td>33.3</td>
<td>2.1</td>
<td>26.28</td>
<td>-8.7</td>
<td>0.66</td>
<td>54.0</td>
<td>-23.1</td>
</tr>
<tr>
<td>6.5</td>
<td>33.8</td>
<td>2.4</td>
<td>26.84</td>
<td>-8.7</td>
<td>0.70</td>
<td>53.7</td>
<td>-23.1</td>
</tr>
<tr>
<td>7.0</td>
<td>34.3</td>
<td>2.7</td>
<td>27.34</td>
<td>-8.7</td>
<td>0.73</td>
<td>53.2</td>
<td>-23.1</td>
</tr>
<tr>
<td>7.5</td>
<td>34.7</td>
<td>3.0</td>
<td>27.74</td>
<td>-8.7</td>
<td>0.76</td>
<td>52.4</td>
<td>-23.1</td>
</tr>
<tr>
<td>8.0</td>
<td>35.1</td>
<td>3.2</td>
<td>28.11</td>
<td>-8.7</td>
<td>0.79</td>
<td>51.3</td>
<td>-23.1</td>
</tr>
<tr>
<td>8.5</td>
<td>35.4</td>
<td>3.5</td>
<td>28.41</td>
<td>-8.7</td>
<td>0.81</td>
<td>50.1</td>
<td>-23.2</td>
</tr>
<tr>
<td>9.0</td>
<td>35.7</td>
<td>3.7</td>
<td>28.65</td>
<td>-8.7</td>
<td>0.84</td>
<td>49.0</td>
<td>-23.3</td>
</tr>
<tr>
<td>9.5</td>
<td>35.9</td>
<td>3.9</td>
<td>28.88</td>
<td>-8.7</td>
<td>0.86</td>
<td>47.6</td>
<td>-23.4</td>
</tr>
<tr>
<td>10.0</td>
<td>36.0</td>
<td>4.0</td>
<td>29.07</td>
<td>-8.7</td>
<td>0.87</td>
<td>46.1</td>
<td>-23.5</td>
</tr>
</tbody>
</table>
Application Note for Silicon RF Power Semiconductors

Pout vs. Vdd characteristics
@ f=175MHz, Pin=5mW, Idq1=50mA(Vgg1 adj.), Idq2=200mA(Vgg2 adj.)
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V

- AN-VHF-050-

Equivalent Circuit

Application Note for Silicon RF Power Semiconductors
RD00HVS1 & RD02MUS1B 2-stage amplifier RF performance at f=135-175MHz, Vdd=7.2/6.5V - AN-VHF-050-

Equivalent Circuit (parts list)

<table>
<thead>
<tr>
<th>Parts Type</th>
<th>Symbol</th>
<th>Value</th>
<th>Type name</th>
<th>Vender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor</td>
<td>C1</td>
<td>100pF</td>
<td>GRM1882C1H101JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>5pF</td>
<td>GRM1882C1H5R0Q0201D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>9pF</td>
<td>GRM1882C1H470JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>47pF</td>
<td>GRM1882C1H120JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>160pF</td>
<td>GRM1882C1H180JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>33pF</td>
<td>GRM1882C1H101JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>22pF</td>
<td>GRM1882C1H390JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>47pF</td>
<td>GRM1882C1H300JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C9</td>
<td>30pF</td>
<td>GRM1882C1H150JA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>30pF</td>
<td>GRM1882C1H5R0Q201D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C11</td>
<td>100pF</td>
<td>GRM1882C1H990D201D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C12</td>
<td>1nF</td>
<td>GRM1888R11H102KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C13</td>
<td>1nF</td>
<td>GRM1888R11H102KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C14</td>
<td>22nF</td>
<td>GRM1888R11H223KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C15</td>
<td>22uF</td>
<td>UV21H220MDD</td>
<td>NICHICON CORPORATION</td>
</tr>
<tr>
<td></td>
<td>C16</td>
<td>1nF</td>
<td>GRM1888R11H102KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C17</td>
<td>1nF</td>
<td>GRM1888R11H102KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C18</td>
<td>22nF</td>
<td>GRM1888R11H223KA01D</td>
<td>Murata Manufacturing Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>C19</td>
<td>22uF</td>
<td>UV21H220MDD</td>
<td>NICHICON CORPORATION</td>
</tr>
<tr>
<td>Resistance</td>
<td>R1</td>
<td>390Ω</td>
<td>RPC10–391J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>1Ω</td>
<td>RPC05–1R0J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>100Ω</td>
<td>RPC05–101J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>30KΩ</td>
<td>RPC10–303J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>10KΩ</td>
<td>RPC05–103J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>0Ω</td>
<td>RPC05–0R0</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>100Ω</td>
<td>RPC05–101J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>39KΩ</td>
<td>RPC05–393J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>10KΩ</td>
<td>RPC05–103J</td>
<td>TAIYOSHA ELECTRIC CO.,Ltd.</td>
</tr>
<tr>
<td>Inductance</td>
<td>L1</td>
<td>68nH</td>
<td>LLQ1608-A68N</td>
<td>TOKO Co.,Ltd.</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>34.5nH Enamled wire 5Turns, Diameter:0.40mm, ϕ2.46mm(the out side diameter)</td>
<td>4005A</td>
<td>yc corporation</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>34.5nH Enamled wire 5Turns, Diameter:0.40mm, ϕ2.46mm(the out side diameter)</td>
<td>4005A</td>
<td>yc corporation</td>
</tr>
<tr>
<td></td>
<td>L4</td>
<td>34.5nH Enamled wire 5Turns, Diameter:0.40mm, ϕ2.46mm(the out side diameter)</td>
<td>4005A</td>
<td>yc corporation</td>
</tr>
<tr>
<td></td>
<td>L5</td>
<td>26.3nH Enamled wire 4Turns, Diameter:0.40mm, ϕ2.46mm(the out side diameter)</td>
<td>4004C</td>
<td>yc corporation</td>
</tr>
</tbody>
</table>