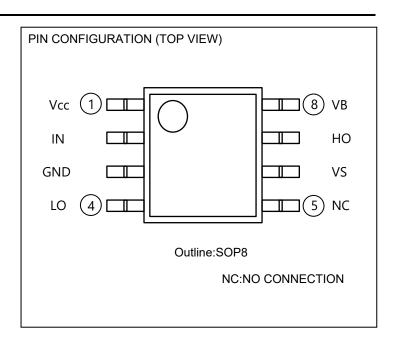


<HVIC>

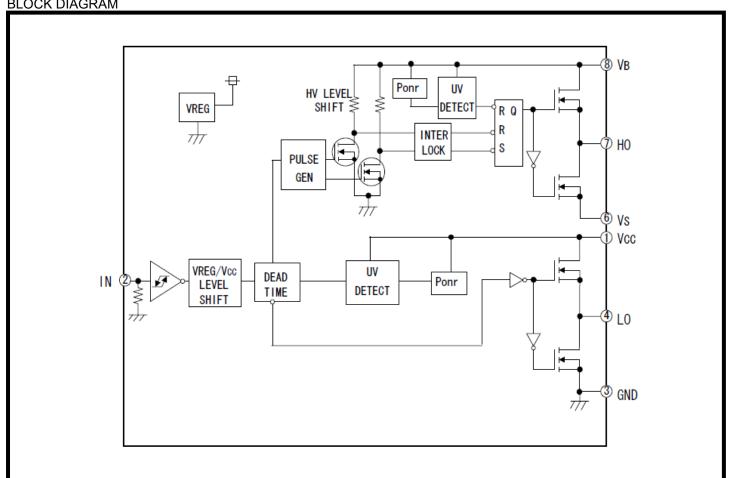
M81734FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION


M81734FP is high voltage Power MOSFET and IGBT gate driver for half bridge applications.

FEATURES


- •FLOATING SUPPLY VOLTAGE ······600V •OUTPUT CURRENT ·····±500mA
- •SINGLE INPUT TYPE
- •INTERNALLY SET DEADTIME
- •HALF BRIDGE DRIVER
- •UNDERVOLTAGE LOCKOUT
- SOP-8 PACKAGE

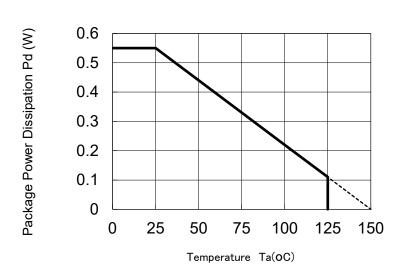
APPLICATIONS

MOSFET and IGBT module inverter driver for PDP, HID lamp, refrigerator, air-conditioner, washing machine, AC servomotor and general purpose.

BLOCK DIAGRAM

M81734FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

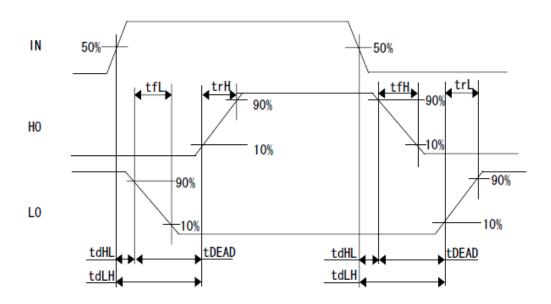

Symbol	Parameter	Test conditions	Ratings	Unit
V _B	High Side Floating Supply Absolute Voltage		-0.5 ~ 624	V
Vs	High Side Floating Supply Offset Voltage		V _B -24 ∼ V _B +0.5	V
V _{BS}	High Side Floating Supply Voltage	V _{BS} =V _B -V _S	-0.5 ~ 24	V
V _{HO}	High Side Output Voltage		V _S -0.5 ∼ V _B +0.5	V
Vcc	Low Side Fixed Supply Voltage		-0.5 ~ 24	V
V_{LO}	Low Side Output Voltage		-0.5 ~ Vcc+0.5	V
V_{IN}	Logic Input Voltage		-0.5 ~ Vcc+0.5	V
dVs/dt	Allowable Offset Voltage Transient		±50	V/ns
Pd	Package Power Dissipation	Ta= 25 °C ,On Board	0.55	W
Κθ	Linear Derating Factor	Ta> 25 °C ,On Board	4.4	mW/°C
Rth(j-c)	Junction-Case Thermal Resistance		50	°C/W
Tj	Junction Temperature		-20 ~ +150	°C
Topr	Operation Temperature		-20 ~ +125	°C
Tstg	Storage Temperature	On Board	-40 ~ +150	°C
TL	Solder Heatproof	RoHS Correspondence	255:10s,max 260	°C

RECOMMENDED OPERATING CONDITIONS

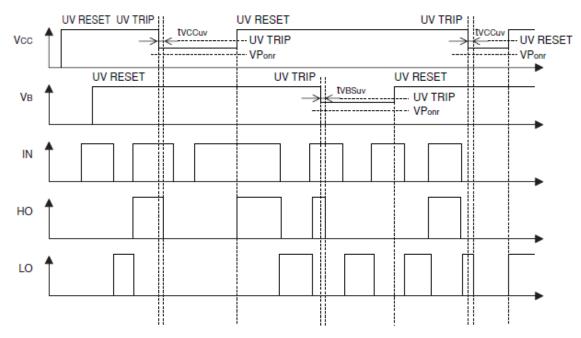
Symbol	Parameter	Test conditions		Unit		
Syllibol			Min.	Тур.	Max.	Offic
V_B	High Side Floating Supply Absolute Voltage		Vs+10	_	Vs+20	V
Vs	High Side Floating Supply Offset Voltage	V _B >10V	0	_	500	V
V_{BS}	High Side Floating Supply Voltage	V _{BS} =V _B -V _S	10	_	20	V
V _{HO}	High Side Output Voltage		Vs	_	V _B	V
V_{CC}	Low Side Fixed Supply Voltage		10	_	20	V
V_{LO}	Low Side Output Voltage		0		Vcc	V
Vin	Logic Input Voltage		0		Vcc	V

Note: For proper operation, the device should be used within the recommended conditions

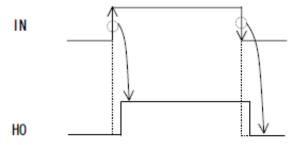
THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)



ELECTRICAL CHARACTERISTICS (Ta=25°C, VCC=VBS (=VB-VS)=15V, unless otherwise specified)


ELECTRICAL	CHARACTERISTICS (Ta=25 C, VCC=VBS)	(=vb-v5)=15v, unless other	wise sp	eciliea)			
Combal			Limits				
Symbol	Parameter	Test conditions	Min.	Typ.*	Max.	Unit	
I _{FS}	Floating Supply Leakage Current	V _B = V _S = 600V	_	_	1.0	uA	
I _{BS}	V _{BS} Standby Current	IN = 0V	_	0.2	0.5	mA	
Icc	V _{CC} Standby Current	IN = 0V	0.2	0.5	0.75	mA	
V _{OH}	High Level Output Voltage	I _O = 0mA, LO, HO	13.8	14.4		V	
V _{OL}	Low Level Output Voltage	I _O = 0mA, LO, HO	_	_	0.1	V	
V_{IH}	High Level Input Threshold Voltage		1.6	2.2	2.7	V	
V _{IL}	Low Level Input Threshold Voltage		8.0	1.55	2.1	V	
I _{IH}	High Level Input Bias Current	$V_{IN} = 3V$	_	15	45	uA	
I _{IL}	Low Level Input Bias Current	$V_{IN} = 0V$	_	_	1	uA	
V _{BSuvr}	V _{BS} Supply UV Reset Voltage		7.0	8.4	9.8	V	
V _{BSuvh}	V _{BS} Supply UV Hysteresis Voltage		0.3	0.5		V	
t _{VBSuv}	V _{BS} Supply UV Filter Time		_	7.5		us	
V _{CCuvr}	V _{CC} Supply UV Reset Voltage		7.0	8.4	9.8	V	
V _{CCuvh}	V _{CC} Supply UV Hysteresis Voltage	0.3	0.5		V		
t _{VCCuv}	V _{CC} Supply UV Filter Time		_	7.5	_	us	
I _{OH}	Output High Level Short Circuit Pulsed Current V _O = 0V, PW < 10us			-500		mA	
I _{OL}	Output Low Level Short Circuit Pulsed Current	V _O = 15V, PW < 10us	_	500		mA	
R _{OH}	Output High Level On Resistance $I_O = -200 \text{mA}, R_{OH} = (V_{OH} - V_O)/I_O$		_	30	_	W	
R _{OL}	Output Low Level On Resistance $I_0 = 200 \text{mA}, R_{0L} = V_0/I_0$		_	12		W	
tDEAD	Dead Time LO Turn-Off to HO Turn-On & CL = 1000pF between HO Turn-Off to LO Turn-On LO-GND, $V_{IN} = 0 \sim 3V$		0.5	_	1.00	us	
VPonr	Power On Reset Voltage		_	_	6	V	
tPonr(FIL)	Power On Reset Filter Time		300	_		ns	
t _{dLH}	Turn-On Propagation Delay	CL = 1000pF between HO-V _S , LO-GND, $V_{IN} = 0 \sim 3V$	0.6	0.9	1.2	us	
t _{dHL}	Turn-Off Propagation Delay	CL = 1000pF between HO-V _S , LO-GND, $V_{IN} = 0 \sim 3V$	0.1	0.15	0.25	us	
t _{rH}	High Side Turn-On Rise Time CL = 1000pF between HO-V _S		_	75	180	ns	
t _{fH}	High Side Turn-Off Fall Time	CL = 1000pF between HO-V _S	_	75	180	ns	
t _{rL}	Low Side Turn-On Rise Time CL = 1000pF between		_	75	180	ns	
t _{fL}	Low Side Turn-Off Fall Time CL = 1000pF between LO-GNI			75	180	ns	

^{*1} Typ. is not specified.


INPUT/OUTPUT TIMING DIAGRAM

FUNCTION TIMING DIAGRAM

- 1. HO has positive logic with reference to IN. LO has negative logic with reference to IN.
- 2. Output signal (HO) is triggered by the edge of input signal.

3. Logic During UV(Vcc. VBs) Error

Error Signal	НО	LO
UV error (Vcc)	HO is locked at "L" level as long as UV error for V_{CC} is detected. After V_{CC} UV reset level, the lock for HO is removed following an "L" state of the IN signal, and then HO responds to the input. $(V_{\text{CC}}{>}V_{\text{BS}})$	LO is locked at "L" level as long as UV error for V_{CC} is detected. After V_{CC} exceeds V_{CC} UV reset level, the lock for LO is removed and responds to IN signal.
UV error (V _{BS})	HO is locked at "L" level as long as UV error for V_{BS} is detected. After V_{BS} UV reset level, the lock for HO is removed following an "L" state of the IN signal, and then HO responds to the input.	LO is independent of V_{BS} to respond to IN.

^{*}IF UV error for V_{CC} is detected when HO is in "H" level and the falling speed of V_{CC} is exceeds 0.03V/ μ s, the off signal for HO might not be transmitted from low side to high side and then HO stays "H".

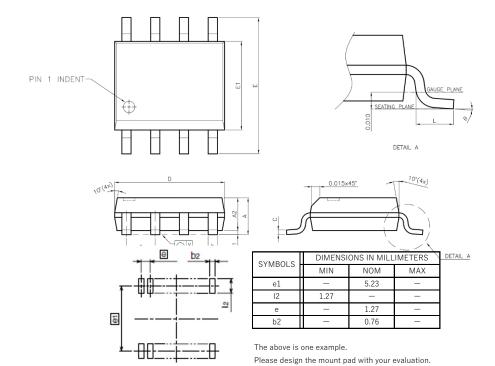
^{*}If supply voltage drops lower than VPonr, output becomes "L" not after tVccuv or tVBSuv but after tPonr(FIL).

<HVIC>

M81734FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

4. Supply start up sequence


Please start up V_{CC} supply and V_{BS} supply in that order, and, please shut down V_{BS} supply and V_{CC} supply in that order. Please start up V_{CC} supply and V_{BS} supply with gentle slope. If you start up supply with sharp slope, there is some possibility that HO or LO outputs "H" for a moment.

If V_{CC} supply is less than 10V(outside of RECOMMENDED OPERATING CONDITIONS), there is some possibility that output does not change in response to input. Please evaluate carefully about supply start up or restart after shut down in your application systems.

ENVIRONMENTAL CONSCIOUSNESS

M81734FP is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU+(EU)2015/863.

PACKAGE OUTLINE

Recommended Mount Pad

	DIMENSIONS IN MILLIMETERS			
SYMBOLS	MIN	NOM	MAX	
A	1.47	1.60	1.73	
A1	0.10		0.25	
A2		1.45		
b	0.33	0.41	0.51	
С	0.19	0.20	0.25	
D	4.80	4.85	4.95	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
L	0.40	0.71	1.27	
у			0.076	
0	0,		8*	

M81734FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

Main Revision for this Edition

		Revision		
		Panes	Revision Points	
A	30 May. 2010	-	New	
В	28 Apr. 2021	6 -	Add PACKAGE OUTLINE1,2 Update format.	
С	10 Jan. 2023	6	Delete PACKAGE OUTLINE (Not recommended for new designs)	

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Thermal Cycle or others, or when having assembling stress (e.g. high temperature of reflow process, or rinse after the reflow), or when used under special operating conditions (e.g. rise/fall time of the power supply voltage, or excessive voltage/current injection), or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a high voltage/large current power supply and power semiconductor products(e.g. IGBT, MOSFET) to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Publication Date: Jan. 2023

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.MitsubishiElectric.com/).
- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© Mitsubishi Electric Corporation

Publication Date : Jan. 2023 9 MITSUBISHI ELECTRIC CORPORATION