<HVIC>

M81767FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION

M81767FP is high voltage Power MOSFET and IGBT gate
driver for half bridge applications.

FEATURES

-Floating Supply Voltage 600V
\bullet Output Current $\pm 3.5 \mathrm{~A}$ (Typ.)

- Half Bridge Driver
-SOP-8 Package

APPLICATIONS

MOSFET and IGBT module driver.
PIN CONFIGURATION (TOP VIEW)

BLOCK DIAGRAM

M81767FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER
ABSOLUTE MAXIMUM RATINGS ($\mathbf{T a}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Ratings	Unit
V_{B}	High Side Floating Supply Absolute Voltage		- $0.5 \sim 624$	V
V	High Side Floating Supply Offset Voltage		$\mathrm{V}_{\mathrm{B}}-24 \sim \mathrm{~V}_{\mathrm{B}}+0.5$	V
V_{BS}	High Side Floating Supply Voltage	$V_{B S}=V_{B}-V_{S}$	$-0.5 \sim 24$	V
V HO	High Side Output Voltage		$\mathrm{V}_{\mathrm{S}}-0.5 \sim \mathrm{~V}_{\mathrm{B}}+0.5$	V
Vcc	Low Side Fixed Supply Voltage		-0.5~24	V
VLo	Low Side Output Voltage		$-0.5 \sim \mathrm{Vcc}+0.5$	V
VIN	Logic Input Voltage	HIN,LIN Terminal	-0.5~Vcc + 0.5	V
Pd	Package Power Dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$, On Board	0.6	W
K θ	Linear Derating Factor	Ta $>25^{\circ} \mathrm{C}$, On Board	4.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Rth(j-c)	Junction-Case Thermal Resistance		50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Tj	Junction Temperature		- $40 \sim 150$	${ }^{\circ} \mathrm{C}$
Topr	Operation Temperature		-40~125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature	On Board	-40~150	${ }^{\circ} \mathrm{C}$
TL	Solder Reflow Condition	Pb-free	255:10s, max 260	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
V_{B}	High Side Floating Supply Absolute Voltage		$\mathrm{V}_{\mathrm{S}}+10$	-	$\mathrm{V}_{\mathrm{S}}+20$	V
$\mathrm{V}_{\text {S }}$	High Side Floating Supply Offset Voltage	$\mathrm{V}_{\mathrm{B}}>10 \mathrm{~V}$	-5	-	500	V
$V_{B S}$	High Side Floating Supply Voltage	$V_{B S}=V_{B}-V_{S}$	10	-	20	V
V ${ }^{\text {HO}}$	High Side Output Voltage		V_{s}	-	VB	V
V ${ }_{\text {cc }}$	Low Side Fixed Supply Voltage		10	-	20	V
VLo	Low Side Output Voltage		0	-	Vcc	V
VIN	Logic Input Voltage	HIN,LIN Terminal	0	-	7	V

Note:For proper operation, the device should be used within the recommended conditions

THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)

ELECTRICAL CHARACTERISTICS ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{VCC}=\mathrm{VBS}(=\mathrm{VB}-\mathrm{VS})=15 \mathrm{~V}$, unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			Unit	
			Min.	Typ.*1	Max.		
$\mathrm{I}_{\text {FS }}$	Floating Supply Leakage Current	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=600 \mathrm{~V}, 25^{\circ} \mathrm{C}$	-	-	1.0	uA	
$\mathrm{I}_{\text {BS }}$	$V_{B S}$ Standby Current	$\mathrm{HIN}=\mathrm{LIN}=0 \mathrm{~V}$	-	0.2	0.5	mA	
I_{Cc}	$\mathrm{V}_{\text {cc }}$ Standby Current	$\mathrm{HIN}=\mathrm{LIN}=0 \mathrm{~V}$	0.2	0.6	1.0	mA	
V_{OH}	High Level Output Voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$	13.8	14.4	-	V	
V_{OL}	Low Level Output Voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$	-	-	0.1	V	
V_{IH}	High Level Input Threshold Voltage *3	HIN,LIN Terminal	-	-	4.0	V	
$\mathrm{V}_{\text {IL }}$	Low Level Input Threshold Voltage *4	HIN,LIN Terminal	0.8	-	-	V	
I_{IH}	High Level Input Bias Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, HIN,LIN Terminal	-	17	40	uA	
$\mathrm{I}_{\text {IL }}$	Low Level Input Bias Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, HIN,LIN Terminal	-	-	1	uA	
$\mathrm{V}_{\text {BSuvr }}$	$V_{\text {BS }}$ Supply UV Reset Voltage		8.0	8.9	9.8	V	
$\mathrm{V}_{\text {BSuvh }}$	$\mathrm{V}_{\text {BS }}$ Supply UV Hysteresis Voltage		0.3	0.7	-	V	
$\mathrm{tvBSuv}^{\text {d }}$	$V_{B S}$ Supply UV Filter Time		-	7.5	-	us	
$\mathrm{V}_{\text {CCurr }}$	$V_{\text {CC }}$ Supply UV Reset Voltage		8.0	8.9	9.8	V	
$\mathrm{V}_{\text {CCuvh }}$	$\mathrm{V}_{\text {cc }}$ Supply UV Hysteresis Voltage		0.3	0.7	-	V	
tvccuv	$V_{\text {cc }}$ Supply UV Filter Time		-	7.5	-	us	
VPonr	Power On Reset Voltage		-	-	6.0*2	V	
tPonr(FIL)	Power On Reset Filter Time		300*2	-	-	ns	
IOH	Output High Level Short Circuit Pulsed Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{PW}<10 \mathrm{us} * 5$	2.3	3.5	-	A	
loL	Output Low Level Short Circuit Pulsed Current	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{PW}<10 \mathrm{us} \mathrm{*5}$	2.3	3.5	-	A	
R_{OH}	Output High Level On Resistance	$\mathrm{I}_{\mathrm{O}}=-200 \mathrm{~mA}, \mathrm{R}_{\mathrm{OH}}=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{O}}\right) / \mathrm{I}_{\mathrm{O}}$	-	10	20	Ω	
R ${ }_{\text {OL }}$	Output Low Level On Resistance	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{O}}$	-	1.3	3	Ω	
$\mathrm{t}_{\mathrm{dLH}}(\mathrm{HO})$	High Side Turn-On Propagation Delay	$\mathrm{CL}=1000 \mathrm{pF}$ between $\mathrm{HO}-\mathrm{V}_{\mathrm{S}}$	-	340	480	ns	
$\mathrm{t}_{\mathrm{dHL}}(\mathrm{HO})$	High Side Turn-Off Propagation Delay	$\mathrm{CL}=1000 \mathrm{pF}$ between $\mathrm{HO}-\mathrm{V}_{\mathrm{S}}$	-	340	480	ns	
$\mathrm{t}_{\mathrm{r} \mathrm{H}}$	High Side Turn-On Rise Time	$\mathrm{CL}=1000 \mathrm{pF}$ between $\mathrm{HO}-\mathrm{V}_{\mathrm{S}}$	-	-	45	ns	
t_{fH}	High Side Turn-Off Fall Time	$\mathrm{CL}=1000 \mathrm{pF}$ between $\mathrm{HO}-\mathrm{V}_{\mathrm{S}}$	-	-	35	ns	
$\mathrm{t}_{\text {dLH }}(\mathrm{LO})$	Low Side Turn-On Propagation Delay	CL $=1000 \mathrm{pF}$ between LO - GND	-	340	480	ns	
$\mathrm{t}_{\mathrm{dHL}}$ (LO)	Low Side Turn-Off Propagation Delay	CL $=1000 \mathrm{pF}$ between LO - GND	-	340	480	ns	
t_{rL}	Low Side Turn-On Rise Time	CL $=1000 \mathrm{pF}$ between LO - GND	-	-	45	ns	
t_{fL}	Low Side Turn-Off Fall Time	CL $=1000 \mathrm{pF}$ between LO - GND	-	-	35	ns	
$\triangle \mathrm{tdLH}$	Turn-On Propagation Delay Matching	\|tdLH(HO) - tdLH(LO)		-	0	30	ns
$\Delta \mathrm{tdHL}$	Turn-Off Propagation Delay Matching	\|tdHL(HO) - tdHL(LO)		-	0	30	ns
IN(FIL)	Input Filter Time	Convex Pulse, HIN,LIN	-	100	-	ns	
		Concave Pulse, HIN,LIN	-	100	-	ns	

*1 Typ. is not specified.
*2 High Side Circuit Only.
*3 Please set High level input voltage more than the minimum value of limits.
*4 Please set Low level input voltage less than the maximum value of limits.
*5 The short circuit pulse cannot be continuously.

INPUT/OUTPUT TIMING DIAGRAM

FUNCTION TABLE (X:H or L)

HIN	LIN	VBSUV	VccuV	HO	LO	Behavioral state
$\mathrm{H} \rightarrow \mathrm{L}$	L	H	H	L	L	$\mathrm{HO}=\mathrm{L}, \mathrm{LO}=\mathrm{L}$
$\mathrm{H} \rightarrow \mathrm{L}$	H	H	H	L	H	LO = H
$\mathrm{L} \rightarrow \mathrm{H}$	L	H	H	H	L	$\mathrm{HO}=\mathrm{H}$
$\mathrm{L} \rightarrow \mathrm{H}$	H	H	H	H	H	$\mathrm{HO}=\mathrm{H}, \mathrm{LO}=\mathrm{H}$
$\mathrm{H} \rightarrow \mathrm{L}$	L	L	H	L	L	$L O=L, H O=L$ when $V_{B S} U V$ is detected
$\mathrm{H} \rightarrow \mathrm{L}$	H	L	H	L	H	$\mathrm{LO}=\mathrm{H}, \mathrm{HO}=\mathrm{L}$ when $\mathrm{V}_{\text {BS }} U V$ is detected
$\mathrm{L} \rightarrow \mathrm{H}$	L	L	H	L	L	$L O=L, H O=L$ when $V_{B S} U V$ is detected
$\mathrm{L} \rightarrow \mathrm{H}$	H	L	H	L	H	$\mathrm{LO}=\mathrm{H}, \mathrm{HO}=\mathrm{L}$ when $\mathrm{V}_{\mathrm{BS}} \mathrm{UV}$ is detected
$\mathrm{H} \rightarrow \mathrm{L}$	X	H	L	L	L	$\mathrm{LO}=\mathrm{L}$ when VccUV is detected
$\mathrm{L} \rightarrow \mathrm{H}$	X	H	L	L	L	$\mathrm{HO}=\mathrm{L}, \mathrm{LO}=\mathrm{L}$ when $\mathrm{Vcc}_{\text {c }} \mathrm{UV}$ is detected

Note1: "L" state of $V_{B S} U V, V_{C C} U V$ means that $V_{C C}\left(V_{B S}\right)$ Supply become under UV trip voltage.
Note2 : In the case of both input signals (HIN and LIN) are "H", output signals (HO and LO) become "H".
Note3 : Output Signal (HO) is triggered by the edge of input signal.

M81767FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

FUNCTION TIMING DIAGRAM

1. Input/Output Timing Diagram

High Active.

2. $\mathrm{V}_{\mathrm{Cc}}\left(\mathrm{V}_{\mathrm{BS}}\right)$ Supply Under Voltage (UV) Lockout Timing Diagram

If V_{cc} supply voltage drops below UV trip voltage (Vccuvt) for V_{cc} supply UV filter time, LO output signal is shut down. And then, if Vcc supply voltage rises over UV reset voltage, LO will return to the usual operation mode.

If Vcc supply voltage drops below UV trip voltage (Vccuvt) for Vcc supply UV filter time, HO output signal is shut down. And then, if Vcc supply voltage rises over UV reset voltage, HO will return to the usual operation mode.

M81767FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

If V_{BS} supply voltage drops below $U V$ trip voltage (V_{BS} uvt) for V_{BS} supply UV filter time, HO output signal is shut down. And then, if $\mathrm{V}_{\text {BS }}$ supply voltage rises over UV reset voltage, HO will respond to the next active HIN signal $(\mathrm{L} \rightarrow \mathrm{H})$.

3. Input Filter Timing Diagram

If the pulse that is longer than Input Filter Time has been entered, it will output a signal corresponding to the input after Turn-On Propagation Delay form rising edge or falling edge of the input signal.

If the pulse that is shorter than Input Filter Time has been entered, output will hold the state by the input filter protection.

NOTES

1) Allowable supply voltage transient

It is recommended to supply V_{cc} firstly and supply V_{BS} secondly. In the case of shutting off supply voltage, please shut off $V_{B S}$ firstly and shut off $V_{C C}$ secondly.
When applying VCC and VBS, power supply should be applied slowly.
If it rises rapidly, output signal (HO or LO) may be malfunction.
2) Supply voltage start up or restart after shut down

If $V_{c c}$ supply is less than 10 V (outside of RECOMMENDED OPERATING CONDITIONS), there is some possibility that output does not change in response to input.
Please evaluate carefully about supply start up or restart after shut down in your application systems.
3) V_{B} supply voltage

Please use V_{B} supply voltage within RECOMMENDED OPERATING CONDITIONS
($\mathrm{V}_{\mathrm{S}}+10 \mathrm{~V}<\mathrm{V}_{\mathrm{B}}<\mathrm{V}_{\mathrm{S}}+20 \mathrm{~V}: \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ minimum)
If V_{B} supply voltage is used on the other conditions, output signal HO may be malfunction.
Please evaluate carefully about V_{B} supply voltage in your application systems.
4) Inter-terminal processing

In this product, the terminal of the low voltage part and the high voltage part are adjacent (No.5:Vcc, No.6:Vs).
There may be cases where there is insufficient insulation clearance distance between the pins.
Please use such as coating between the terminals.

ENVIRONMENTAL CONSCIOUSNESS

M81767FP is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU+(EU)2015/863.

M81767FP

600V HIGH VOLTAGE HALF BRIDGE DRIVER

PACKAGE OUTLINE1

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
A	1.47	1.60	1.73
A1	0.10	-	0.25
A2	-	1.45	-
b	0.33	0.41	0.51
C	0.19	0.20	0.25
D	4.80	4.85	4.95
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	-	1.27	-
L	0.40	0.71	1.27
y	-	-	0.076
θ	0^{*}	-	8^{\prime}

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
e 1	-	5.23	-
I 2	1.27	-	-
e	-	1.27	-
b 2	-	0.76	-

The above is one example.
Please design the mount pad with your evaluation.
Recommended Mount Pad

Main Revision for this Edition

Rev.	Date	Revision	
		Pages	Points
A	1 Mar. 2018	-	New
B	20 Mar. 2018	3	To correct mistakes,we modified "Turn-On Input Filter Time" and "Turn-Off Input Filter Time" it ems to "Input filter time" items.
C	4 Apr. 2019	1	"PRELIMINARY" was deleted. "This is not a final specification. Some parametric limits are subject to change." was deleted.
D	28 Apr. 2021	8	Add PACKAGE OUTLINE1,2 Update format.
E	10 Jan. 2023	8	Delete PACKAGE OUTLINE (Not recommended for new designs)

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Thermal Cycle or others, or when having assembling stress (e.g. high temperature of reflow process, or rinse after the reflow), or when used under special operating conditions (e.g. rise/fall time of the power supply voltage, or excessive voltage/current injection), or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a high voltage/large current power supply and power semiconductor products(e.g. IGBT, MOSFET) to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

-These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
-Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
-All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.MitsubishiElectric.com/).
-When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
-Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
-The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
-If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
-Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

