

[Issue No.] FA-A-0068-D

[Title] Precautions for replacing A/QnA (large type) series CPU with Universal model QCPU [Date of Issue] December 2009 (Ver. D:July 2016)

[Relevant Models] A1NCPU, A2NCPU, A2NCPU-S1, A3NCPU, A2ACPU, A2ACPU-S1, A3ACPU, A2UCPU, A2UCPU-S1, A3UCPU, A4UCPU, Q2ACPU, Q2ACPU-S1, Q3ACPU, Q4ACPU, Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDEHCPU

Thank you for your continued support of Mitsubishi programmable controllers.

This technical bulletin describes precautions for replacing an A/QnA (large type) series CPU with a Universal model QCPU.

Note that the reference manuals or the references described in this bulletin are information as of July 2016.

Contents

GEN	ERIC TERMS	2			
1.	Introduction	3			
2.	Precautions for system configuration				
2.1	Connection of the QA extension base unit	··4			
2.2	Use of the Q series large type base unit	9			
2.3	GOT connection ·····	10			
3.	Utilizing programs	11			
3.1	Sequence instructions requiring a review before replacing the ACPU	11			
	3.1.1 Replacement example of the PR instruction	12			
	3.1.2 Replacement example of the KEY instruction	16			
3.2	Sequence instructions requiring a review before replacing the QnACPU	19			
	3.2.1 Replacement example of the IX and IXEND instructions	20			
	3.2.2 Replacement example of the IXDEV and IXSET instructions	22			
	3.2.3 Replacement example of the PR instruction	24			
	3.2.4 Replacement example of the CHKST and CHK instructions	28			
	3.2.5 Replacement example of the KEY instruction	31			
3.3	SFC (MELSAP-II/MELSAP3) ·····	34			
	3.3.1 Functions requiring a review before replacing the ACPU with SFC (MELSAP-II)	34			
	3.3.2 Functions and instructions requiring a review before replacing the QnACPU with SFC (MELSAP3)	35			
4.	Precautions for the performance and specifications of the CPU modules	37			
4.1	1 Precautions for performance and specifications when the ACPU is replaced				
4.2	2 Precautions for performance and specifications when the QnACPU is replaced				
4.3	B Device latch function ····································				
REVI	SIONS	44			

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

[1/44]

[Issue No.] FA-A-0068-D

GENERIC TERMS

Generic term	Description
ACPU (including CPU with link function)	A generic term for A1NCPU, A2NCPU, A2NCPU-S1, A3NCPU, A2ACPU, A2ACPU-S1,
	A3ACPU, A2UCPU, A2UCPU-S1, A3UCPU, and A4UCPU
QnACPU	A generic term for Q2ACPU, Q2ACPU-S1, Q3ACPU, and Q4ACPU
A/QnA (large type) series CPU (including	A generic term for A1NCPU, A2NCPU, A2NCPU-S1, A3NCPU, A2ACPU, A2ACPU-S1,
CPU with link function)	A3ACPU, A2UCPU, A2UCPU-S1, A3UCPU, A4UCPU, Q2ACPU, Q2ACPU-S1, Q3ACPU,
	and Q4ACPU
Universal model QCPU	A generic term for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU,
	Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDEHCPU, Q06UDHCPU,
	Q06UDVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU,
	Q13UDVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU,
	Q26UDVCPU, and Q26UDEHCPU
High-speed Universal model QCPU	A generic term for Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and
	Q26UDVCPU

1. Introduction

When replacing an A/QnA (large type) series CPU with a Universal model QCPU, please read this technical bulletin with the following handbooks and materials. (Among replacement to the Universal model QCPU, this bulletin describes contents that differ from those described in the following handbooks and materials.)

For contents not described in this bulletin, refer to the following handbooks.

Note that the Q00UJCPU, Q00UCPU, and Q01UCPU partly differ in specifications such as the number of I/O points and the number of device points, and functions such as available instructions. When the Q00UJCPU, Q00UCPU, or Q01UCPU replaces the existing CPU module, refer to the related manuals to see if the CPU module after replacement meets the specifications and the functions of the existing system.

(Handbook for transition (rele	eased))	
Transition from MELSEC-A/C	QnA (Large Type) Series to Q Series Handbook	
	(Fundamentals)	L-08043ENG
	(Intelligent Function Modules)	L-08046ENG
	(Network Modules)	L-08048ENG
	(Communications)	L-08050ENG
Transition from MELSEC-A0.	J2H Series to Q Series Handbook	L-08060ENG
Transition from MELSECNET	Г/MINI-S3, A2C(I/O) to CC-Link Handbook	L-08061ENG
Transition from MELSEC-I/O	LINK to CC-Link/LT Handbook	L-08062ENG
Transition from MELSEC-A/C	QnA Large Type Series to AnS/Q2AS Small Type Series Handbook	L-08064ENG
Transition of CPUs in MELSE	EC Redundant System Handbook (Transition from Q4ARCPU to QnPRHCPU)	L-08117ENG
(Renewal catalogue)		
MELSEC-A/QnA Series Tran	sition Guide	L-08077E
(Renewal examples)		
MELSEC-A/QnA Series Tran	sition Examples	L-08121E

2. Precautions for system configuration

This chapter describes precautions for system configuration when the Universal model QCPU replaces the existing CPU module.

2.1 Connection of the QA extension base unit

To connect the QA extension base unit for using the A/QnA (large type) series modules, the Universal model QCPU whose serial number (first five digits) is "13102" or later must be used.

When the Universal model QCPU whose serial number is "13101" or earlier is used, the QA extension base unit cannot be connected. This means that the A/QnA (large type) series modules cannot be used in the system. All modules need to be replaced with Q series modules.

(1) When the serial number (first five digits) of the replaced Universal model QCPU is "13102" or later

Table 2.1 Precautions for using the A/QnA (large type) series modules

Module	Precautions	Replacement method	Reference
A/QnA (large type)	Can be used.	Replace the module with a	QCPU User's Manual (Hardware Design,
series module		specified module.	Maintenance and Inspection)
			 Transition from MELSEC-A/QnA (Large Type)
			Series to Q Series Handbook (Fundamentals)
			Section 1.2.2 (1)
			MELSEC-A/QnA Series Transition Examples
AnS/Q2AS series			 QCPU User's Manual (Hardware Design,
module			Maintenance and Inspection)
			 Transition from MELSEC-A/QnA (Large Type)
			Series to Q Series Handbook (Fundamentals)
			Section 1.2.2 (2)
			MELSEC-A/QnA Series Transition Examples
MELSECNET (II, /B)	MELSECNET (II, /B) data link is		 QCPU User's Manual (Hardware Design,
data link module	supported. Only the MELSECNET		Maintenance and Inspection)
	(II, /B)-compatible A1SJ71A□23Q		 Transition from MELSEC-A/QnA (Large Type)
	(23BQ) can be used.		Series to Q Series Handbook (Network
			Modules) Section 1.1.3
			MELSEC-A/QnA Series Transition Examples

[Issue No.] FA-A-0068-D

Example 1) Module replacement

- *1 To use the A/QnA series extension base units in the system after replacement, observe the following precautions.
 - The extension base units shall be connected in the following order:
 - Q5□B/Q6□B→QA1S5□B/QA1S6□B→QA6□B→QA6ADP+A5□B/A6□B.
 - The QA1S6 cannot be used together with the QA6ADP+A5 B/A6 B.
 - Since the QA1S51B does not have the extension cable connector (OUT), it cannot be used together with the QA6DB or QA6ADP+A5DB/A6DB.

[Issue No.] FA-A-0068-D

Example 2) Network configuration

Example of a MELSECNET(II) configuration including the Q series modules

(2) When the serial number (first five digits) of the replaced Universal model QCPU is "13101" or earlier

Table 2.2 Precautions for using the A/QnA (large type) series modules

Module	Precautions	Replacement method	Reference
A/QnA (large type)	Cannot be used.	Replace all modules with Q series	 Transition from
series module	The following base units, for using	modules.	MELSEC-A/QnA (Large Type)
	A/QnA (large type) series modules,		Series to Q Series Handbook
	cannot be connected.		(Fundamentals) Section 1.2.2
	 QA extension base unit 		(1)
	• A series (large type) extension base		 MELSEC-A/QnA Series
	unit + QA6ADP		Transition Examples
AnS/Q2AS series	 QA1S extension base unit 		 Transition from
module	 A-A1S module conversion adapter 		MELSEC-A/QnA (Large Type)
	(A1ADP-XY/SP)		Series to Q Series Handbook
			(Fundamentals) Section 1.2.2
			(2)
			 MELSEC-A/QnA Series
			Transition Examples
MELSECNET (II, /B)	MELSECNET (II, /B) data link is not	Use other network systems, such as	 Transition from
data link module	supported. (The MELSECNET (II,	CC-Link IE Controller Network,	MELSEC-A/QnA (Large Type)
	/B)-compatible A1SJ71A□23Q	CC-Link IE Field Network, and	Series to Q Series Handbook
	(23BQ) cannot be used.)	MELSECNET/H(10).	(Network Modules) Section
			1.1.3
			MELSEC-A/QnA Series
			Transition Examples

[Issue No.] FA-A-0068-D

Example 1) Module replacement

*1 The replacement step 1, which is written in Section 1.2.2 of the Transition from MELSEC-A/QnA (Large Type) Series to Q Series Handbook (Fundamentals), is not available. Skip the step 1 and perform the step 2.

[Issue No.] FA-A-0068-D

Example 2) Network configuration

Example of a MELSECNET(II) configuration including the Q series modules

2.2 Use of the Q series large type base unit

When the Q series large type base unit, Q series large type I/O modules, and renewal tool manufactured by Mitsubishi Electric Engineering Co., Ltd. are used, the terminal block of an existing A/QnA (large type) series I/O module can be used without rewiring. This helps to reduce time for wiring.

Module	Precautions	Replacement method	Reference
Q series large type	Can be used except the following	No restrictions ^{*1}	Transition from
base unit	cases:		MELSEC-A/QnA (Large Type)
	 When the Q00UJCPU is used 		Series to Q Series Handbook
	 In multiple CPU configuration 		(Fundamentals) Section 1.2.2
			(3)
			MELSEC-A/QnA Series
			Transition Examples
Renewal tool	No restrictions	For details of specifications,	 Transition from
manufactured by	(The Q series large type base unit can	precautions, and restrictions, contact	MELSEC-A/QnA (Large Type)
Mitsubishi Electric	be used together.)	your local Mitsubishi representative.	Series to Q Series Handbook
Engineering Co.,			(Fundamentals) Section 1.2.2
Ltd.			(4)
			MELSEC-A/QnA Series
			Transition Examples

Table 2.2 Precautions for using the Q series large type base unit

*1 Example of using the Q series large type base unit with the Universal model QCPU

2.3 GOT connection

Only GOT1000 series can be connected to the Universal model QCPU.

When GOT other than GOT1000 series is used, it must be replaced with GOT1000 series regardless of the connection method.

Table 2.3 Precautions for GOT connection

Item	Precautions	Replacement method	Reference
GOT	Only GOT1000 series can be connected to the	Replace the connected GOT with GOT1000	GOT1000 Series
connection	Universal model QCPU regardless of the	series.	Connection Manual
	connection method (such as bus connection,	GOT1000 series can be connected by any	(Mitsubishi Products)
	CPU direct connection, and Ethernet	connection methods including bus connection,	
	connection).	CPU direct connection, and Ethernet	
		connection *1	

*1 For the QnUDE(H)CPU, CPU direct connection is not available.

Product	Product Model GT Designer2 OS version compatible with the Universal model QCPU ^{*2}			J*2	GT Works3 OS Version compatible with the Universal model QCPU ^{'2}			
		Used with Q00UJ/Q00U /Q01UCPU	Used with Q02U/Q03UD/ Q04UDH/Q06 UDHCPU	Used with Q13UDH/ Q26UDH CPU	Used with Q10UDH/ Q20UDH CPU	Used with Q03UDE/Q04U DEH/Q06UDEH /Q13UDEH/Q26 UDEHCPU	Used with Q10UDEH/Q 20UDEHCPU	Used with High-speed Universal model QCPU
GOT1000	• GT15□-□ • GT11□-□	Version 2.91V or later	Version 2.60N or later	Version 2.76E or later	Version 2.91V or later	Version 2.81K or later	Version 2.91V or later	Version 1.64S or later
	● GT10□-□	Version 2. 91V or later	Version 2.76E or later	Version 2.76E or later	Version 2.91V or later	Version 2.81K or later	Version 2.91V or later	Version 1.64S or later

*2 There are no restrictions on GOT version.

3. Utilizing programs

The following section contains some instructions that cannot be converted into those for the Universal model QCPU or instructions whose specifications differ from those for the Universal model QCPU. (Relevant handbook)

Transition from MELSEC-A/QnA (Large Type) Series to Q Series Handbook (Fundamentals) 7.2 Instruction Conversion

This chapter explains instructions for the Universal model QCPU whose descriptions differ from those described in the above section.

3.1 Sequence instructions requiring a review before replacing the ACPU

This section describes instructions requiring a review before replacing the ACPU with the Universal model QCPU.

Symbol	Instruction	Replacing method	Reference
PR	Print ASCII code instruction	It is recommended to use GOT as an ASCII code display device. ASCII codes stored in devices are directly displayed as characters on GOT	Section 3.1.1
		 Instructions can be replaced using a replacement program. 	
PRC	Print comment instruction	 It is recommended to use GOT as an ASCII code display device. Device comments can be displayed on GOT. 	
		 Comment data can be output to a display device in the replacement program of the PR instruction after reading data using the reading 	
		device comment data instruction (COMRD(P)).	

Table 3.1 Instructions requiring a review before replacing the ACPU (common instructions)

Table 3.2 Instructions requiring a review before replacing the ACPU (AnA/AnU-dedicated instructions)

Symbol	Instruction	Replacing method	Reference
IX	Index modification of entire	Use alternative programs.	Section 3.2.1
IXEND	ladder		
KEY	Numerical key input	 It is recommended to use GOT as a numeral input device. 	Section 3.1.2
	instruction	 Instructions can be replaced using a replacement program. 	

3.1.1 Replacement example of the PR instruction

The following shows the example of a program for replacement using the PR instruction.

(1) Example of device assignment

(Before replacement)		
Application	Device	⇔
Output string	D0 to D3	
ASCII code output signal	Y100 to Y107	
Strobe signal	Y108	
In-execution flag	Y109	

(After replacement)	
Application	Device
Output string	D0 to D3
ASCII code output signal	Y100 to Y107
Strobe signal	Y108
In-execution flag	Y109
Output string storage address (BIN32)	D20 to D21
Output string storage address (BIN32)	D200 to D201
(Used for sub-routine programs and	
interrupt programs)	
Number of output characters	D202
Output module start Y number	D203
Character extraction position	D204
Number of extracted characters	D205
String output status value	D206
Result of string extraction by the MIDR	D207
instruction	
String output in-execution flag	M200
For index modification	ZO

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

(2) Program before replacement

[Issue No.] FA-A-0068-D

(3) Program after replacement

In the sequence program after replacement, three programs are required as shown below.

(a) Main routine program

- Replace the PR instruction with the CALL instruction so that a subroutine program is called.
- Output string storage device ('D0' in the program below) cannot be specified directly with the CALL instruction.

Use the ADRSET instruction to acquire the indirect address for the CALL instruction.

- Y device ('Y100' in the program before replacement shown in (2)) cannot be specified directly as output Y number with the CALL instruction. Specify the output Y number in integer.
- An interrupt program is used to output character codes via the output module. Enable the execution of interrupt program using the El instruction.

(b) Subroutine program

- In the subroutine program, the data for outputting ASCII codes using a fixed scan interrupt program (10ms) are set to work devices. Also, the flag for activating the processing in the fixed scan interrupt program is turned on.
- Specify the following arguments for the subroutine program.

			First argument	Output string storage address	(Input)			
			Second argument	Output module start Y number	(Input)			
P1	SM400				[DMOV	FD0	D200	٦	
		SM701			[LEN	@D200	D202]	Data specified by the CALL(P) arguments are saved.
		SM701			[mov	K16	D202] [Output string storage address Number of output strings Output modulo start number
					[MOV	FD1	D203	J	
					[MOV	K1	D204	3)	5
					[MOV	K1	D205		output processing of the interrupt program I31 are
					[MOV	КО	D206	J	initialized.
					[MOV	D203	ZO	J	
					—[MOV	К0	K2Y0Z0	3	
						[rst	Y8Z0		Yn0 to Yn7 (ASCII code), Yn8 (strobe signal), and Yn9 (in-execution flag) are all turped OFE
						[SET	Y9Z0	3	
					[RFS	YOZO	K10	J	
						[set	M200	Th ou pro	e flag to activate the string tput processing of the interrupt ogram is turned ON.
-							[RET	ŀ	

(c) Interrupt program

The following processing is added to a fixed scan interrupt program (10ms). The fixed scan interrupt program outputs ASCII codes from the output module and controls the strobe signal.

3.1.2 Replacement example of the KEY instruction

The following shows the example of a program for replacement using the KEY instruction.

(1) Example of device assignment

(Before replacement)		
Application	Device	⇒
Numeric input execution instruction	MO	
Input complete flag	M1	
ASCII code input signal	X100 to X107	
Number of input digits	D10	
Data storage device	D20 to D21	

(After replacement)	
Application	Device
Numeric input execution instruction	M0
Input complete flag	M1
Input data area	D200 to D202
ASCII code input signal	X100 to X107
Strobe signal	X108
Input data area address (BIN32)	D210 to D211
(Input data area + 0) address (BIN32)	D212 to D213
(Input data area + 1) address (BIN32)	D214 to D215
(Input data area + 2) address (BIN32)	D216 to D217
For shifting input data	D218
For converting input data	D219 to D220

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

(2) Program before replacement

[Issue No.] FA-A-0068-D

(3) Program after replacement

In the sequence program after replacement, two programs are required as shown below.

(a) Main routing program

- Set '0' in the input data area on the rising edge of the execution instruction ('M0' in the program below) and initialize the program.
- Execute the CALL instruction on every rising edge of the strobe signal ('X108' in the program below) so that a subroutine program is called.
- In the subroutine program, input codes are added to the input data area and the completion status is checked.
- Pass the following data to the subroutine program at the execution of the CALL instruction.
 - ASCII code input value from the input module (Xn0 to Xn7)
 - Number of digits to be input.
 - Indirect address of the input data area (Use the ADRSET instruction to acquire the indirect address for the input data area.)
 - Bit devices to be turned on when input is completed.

(b) Subroutine program

- In the subroutine program, ASCII codes specified by an argument are added to the input data area and the completion status is checked.
- Specify the following arguments for the subroutine program.

				First a	argument	ASCII code input from the input module (K2Xn)				(In	put)		
				Secor	nd argument	Number of digits to be input					(In	put)	
				Third	argument	jument Indirect address of the input data area					(In	put)	
				Fourth	n argument	Bit device t	urned on whe	en input is	s comple	ted	(0	utput)	
P2	FX3	-[=	FD0	HOD]				[set	FY3	3	Nume	ric entry is ended when
									-[cJ	P3	3	S the at ON or	-completion ON signal is ODH is input.
								[DMOV	FD2	D212])	
							[D+	D212	K1	D214	3	Addre area a device	esses of the input data are saved in the work es.
							D+	D214	K1	D216	3	J	
	E<	@D212	FD1]				—[MOV	@D214	D218	3)	
								[SFR	D218	K12]	The 1	st to 4th digit numerals in
								[SFL	@D216	К4	3	≻(input for on	data area +2) areshifted e digit to the left.
									D218	@D216	3	J	
								[MOV	FD0	D220	3)	
								[SFL	D220	K8	}		
									H30	D220	3	Nume is con	eral entered in ASCII code verted into one numeral in
								[MOV	H3030	D219	3	BIN d instru	ata using the HABIN ction.
									D219	D219	3		
								[WAND	HOF	D219	3	J	
								[SFL	@D214	K4	3	The 5 (input	th to 8th digit numerals in data area +1) are
									D219	@D214	3	and the set to	the 8th digit.
									[INC	@D212	3	The numb (input data incremente	er of digits to be input in area +0) is ed by one.
				L=	@D212 FD1]			[set	FY3	3	The at-cor turned ON processing	npletion ON signal is when the input g for specified digits is
P3										-[RET]	completed	l.

3.2 Sequence instructions requiring a review before replacing the QnACPU

This section describes instructions requiring a review before replacing the QnACPU with the Universal model QCPU.

Symbol	Instruction	Replacing method	Reference
IX	Index modification of entire	Use alternative programs.	Section 3.2.1
IXEND	ladder		
IXDEV	Modification value specification	Change the program so that the device offset values specified by	Section 3.2.2
IXSET	in index modification of entire	the IXSET instruction are directly set to the index modification table	
	ladder	using the MOV instruction.	
PR	Print ASCII code instruction	• It is recommended to use GOT as an ASCII code display device.	Section 3.2.3
		ASCII codes stored in devices are directly displayed as characters	
		on GOT.	
		 Instructions can be replaced using a replacement program. 	
PRC	Print comment instruction	• It is recommended to use GOT as an ASCII code display device.	
		Device comments can be displayed on GOT.	
		 Comment data can be output to a display device in the 	
		replacement program of the PR instruction after reading data	
		using the reading device comment data instruction (COMRD(P)).	
CHKST	Specific format failure check	Instructions can be replaced using a replacement program.	Section 3.2.4
CHK	instruction		
CHKCIR	Format change instruction for	Failure detection ladder patterns can be changed in a replacement	
CHKEND	CHK instruction	program.	
PLOW	Program low-speed execution	Use the PSCAN instruction instead of this instruction when	-
	registration instruction	low-speed execution type programs are replaced with scan	
		execution type programs.	
		No instruction can be used if low-speed execution type programs	
		are replaced with fixed scan execution type programs.	
PCHK	Program execution status check	Check a program execution status on the Program monitor list	
	instruction	screen of GX Developer. For details, refer to Section 3.13.1 in the	
		QnUCPU User's Manual (Function Explanation, Program	
		Fundamentals).	
KEY	Numerical key input instruction	• It is recommended to use GOT as a numeral input device.	Section 3.2.5
		Instructions can be replaced using a replacement program.	

Table 3.3 Instructions requiring a review before replacing the QnACPU

3.2.1 Replacement example of the IX and IXEND instructions

A replacement example of program using the IX and IXEND instructions is shown below. To save index register data using the ZPUSH instruction, a 23-word index register save area is required.

(1) Example of device assignment

(Before replacement)		
Application	Device	⇔
Index modification table	D100 to D115	

(After replacement)	
Application	Device
Index modification table	D100 to D115
Index register save area	D200 to D222

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

(2) Program before replacement

		[IX	D100	The modification value set in the index modification table is added.
X1Z2 M62Z4 Y24Z3		[set	M6Z4	J_
T495Z0 C270Z1 B20Z6	[MOV	KO	D0Z8	Modification target (No change required)
X1972			— (Y40Z3	
			[IXEND	3

(3) Program after replacement

- Replace the IX instruction with the ZPUSH instruction and set the contents of index modification table in the to index register.
- Replace the IXEND instruction with the ZPOP instruction.

SM400			Гариен	D200	Current index register is
				DZUU	saved.
		Емол	D100	Z0	
		Гиол	D101	Z1	в
		[MOV	D102	Z2	3
		МОУ	D103	Z3	3
		[MOV	D104	Z4	3
		[MOV	D105	Z5	3
		[MOV	D106	Z6]
		[MOV	D107	Z7	Contents of the index modification table are set to the index registers 70 to 715
		[MOV	D108	Z8]
		[MOV	D109	Z9	3
		[MOV	D110	Z10	3
		[MOV	D112	Z12	3
		[MOV	D113	Z13	3
		[MOV	D114	Z14	3
		[MOV	D115	Z15	
X1Z2	M62Z4 Y24Z3		[SET	M6Z4	3)
T495Z0	C270Z1 B20Z6	Смол	КО	D0Z8	Modification target (No change required)
X19Z2				—(Y40Z3	,]
SM400			[ZPOP	D200	The saved index register is restored. (Transition from the IXEND instruction)

3.2.2 Replacement example of the IXDEV and IXSET instructions

The following shows the example of a program for replacement using the IXDEV and IXSET instructions. Change the program so that the device offset values specified for the contacts between the IXDEV and IXSET instructions are directly set to the index modification table using the MOV instruction.

For a device whose offset value is not specified by the IXDEV and IXSET instructions, set the value to 0 in the program after replacement.

The following figure shows correspondence between device offset specification and index modification table set by the IXDEV and IXSET instructions.

Device offset specifica and IXSET instructions	tion by the IXDEV	Ir	idex modification table
Timer]	► (D)+0
Counter			► (D)+1
Input *1	×□ ⊣⊢		► (D)+2
Output *1			► (D)+3
Internal relay			► (D)+4
Latch relay			► (D)+5
Edge relay			► (D)+6
Link relay *1	BD 		► (D)+7
Data register	DD.XX 		► (D)+8
Link register *1	w⊡xx ⊣⊢	<u> </u>	► (D)+9
File register	R⊡.XX ⊣⊢		► (D)+10
Intelligent function	UE\GE.XX	Start I/O number	► (D)+11
module device *2	- -	Buffer memory	► (D)+12
Link direct device *3		1	(D)+13
File register (through number)	ZR⊡.XX ⊣⊢	1	► (D)+14
Pointer		1	► (D)+15

*1 Device numbers are represented in hexadecimal. Use hexadecimal constants (H□) when setting values in the index modification table.

*2 Start I/O numbers (U□) are represented in hexadecimal. Use hexadecimal constants (H□) when setting values in the index modification table.

*3 Devices B, W, X, or Y can be specified following J□\. Set device numbers for B, W, X, and Y as device offset values of each device in the index modification table.

For example, if 'J10\Y220' is specified by the IXDEV or IXSET instruction, set 'K10' in (D)+13 and 'H220' in (D)+3 in the replacement program. ((D) indicates the start device in the index modification table.)

[Issue No.] FA-A-0068-D

(1) Program before replacement

3.2.3 Replacement example of the PR instruction

The following shows the example of a program for replacement using the PR instruction. The number of output characters can be switched by turning on/off SM701.

⇔

(1) Example of device assignment

(Before replacement)	
Application	Device
Output string	D0 to D3
ASCII code output signal	Y100 to Y107
Strobe signal	Y108
In-execution flag	Y109

(After replacement)	
Application	Device
Output string	D0 to D3
ASCII code output signal	Y100 to Y107
Strobe signal	Y108
In-execution flag	Y109
Output string storage address (BIN32)	D20 to D21
Output string storage address (BIN32)	D200 to D201
(Used for sub-routine programs and	
interrupt programs)	
Number of output characters	D202
Output module start Y number	D203
Character extraction position	D204
Number of extracted characters	D205
String output status value	D206
Result of string extraction by the MIDR	D207
instruction	
String output in-execution flag	M200
For index modification	ZO

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

(2) Program before replacement

(3) Program after replacement

In the sequence program after replacement, three programs are required as shown below.

(a) Main routine program

- Replace the PR instruction with the CALL instruction so that a subroutine program is called.
- Output string storage device ('D0' in the program below) cannot be specified directly with the CALL instruction.

Use the ADRSET instruction to acquire the indirect address for the CALL instruction.

- Y device ('Y100' in the program before replacement shown in (2)) cannot be specified directly as output Y
 number with the CALL instruction. Specify the output Y number in integer.
- An interrupt program is used to output character codes via the output module. Enable the execution of interrupt program using the El instruction.

M0 Y109	[\$MOV	"ABCDEFGHIJKLMNOPQRSTUVWX	YZ″	DO	3
		[ADRSE	T DO	D20] The strings stored in D0 or later are
		[CALLP P1	D20	H100] output to Y100 to Y107.
				[EI	An execution of interrupt program is enabled.
				[FEND	3

(b) Subroutine program

- In the subroutine program, the data for outputting ASCII codes using a fixed scan interrupt program (10ms) are set to work devices. Also, the flag for activating the processing in the fixed scan interrupt program is turned on.
- Specify the following arguments for the subroutine program.

			First argument	Output string storage address	(Input)				
			Second argument	Output module start Y number	(Input)				
P1	SM400				 Fdmov	FDO	D200		
		\$#701			L			1	
					-[LEN	@D200	D202] [arguments are saved.
		SM701			-[MOV	K16	D202	3	address Number of output strings Output module start number
					-Емол	FD1	D203	J	
					[MOV	K1	D204	J	Dovision used for the string
					-[MOV	K1	D205		output processing of the interrupt program I31 are initialized.
					-[MOV	KO	D206	J	
					-[MOV	D203	Z0	3)	
					-[MOV	KO	K2Y0Z0	3	
						-[rst	Y8Z0		Yn0 to Yn7 (ASCII code), Yn8 (strobe signal), and Yn9 (in-execution flag) are all turned OFF
						-[set	Y9Z0	3	
					-[RFS	YOZO	K10	J	
						-[set	M200	Th ou pro	e flag to activate the string tput processing of the interrupt ogram is turned ON.
							-[RET	ŀ	

(c) Interrupt program

The following processing is added to a fixed scan interrupt program (10ms). The fixed scan interrupt program outputs ASCII codes from the output module and controls the strobe signal.

3.2.4 Replacement example of the CHKST and CHK instructions

The following shows the example of a program for replacement using the CHKST and CHK instructions. In the example below, if the replacement program for the CHKST and CHK instructions detects failure, the failure number (contact number + coil number) is stored in D200 and the annunciator F200 turns on.

(1) Example of device assignment

(Before replacement)		
Application	Device	4
Advance end detection sensor	X100	
input 1		
Retract end detection sensor	X101	
input 1		
Advance end detection sensor	X102	
input 2		
Retract end detection sensor	X103	
input 2		
Advance end detection sensor	X104	
input 3		
Retract end detection sensor	X105	
input 3		
Advance end detection sensor	X106	
input 4		
Retract end detection sensor	X107	
input 4		
Failure detection output 1	Y100	
Failure detection output 2	Y102	
Failure detection output 3	Y104	
Failure detection output 4	Y106	

(After replacement)

Application	Device
Advance end detection sensor input 1	X100
Retract end detection sensor input 1	X101
Advance end detection sensor input 2	X102
Retract end detection sensor input 2	X103
Advance end detection sensor input 3	X104
Retract end detection sensor input 3	X105
Advance end detection sensor input 4	X106
Retract end detection sensor input 4	X107
Failure detection output 1	Y100
Failure detection output 2	Y102
Failure detection output 3	Y104
Failure detection output 4	Y106
Coil number (failure type detected)	D100
Contact number	D101
Failure number	D200
Failure detection display	F200
For index modification	Z0

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

When the advance end detection sensor input performs a failure detection of Xn, assign device numbers for the retract end detection sensor input and the failure detection output as described below.

Advance end detection sensor	Xn
input	
Retract end detection sensor	Xn+1
input	
Failure detection output	Yn

[Issue No.] FA-A-0068-D

(2) Program before replacement

(3) Program after replacement

In the sequence program after replacement, two programs are required as shown below.

(a) Main routine program

- Replace the CHKST and CHK instructions with the CALL instructions so that a subroutine program is called.
- One CALL instruction is required for each device specified as check condition before the CHK instruction. (In the program before replacement shown in (2), four CALL instructions need to be added since there are four check conditions before the CHK instruction.)
- Device number and contact number of X devices (check condition) are specified in each CALL instruction.
- Contact number is used to display failure number when a failure is detected.

(b) Subroutine program

- In the subroutine program, a failure status is checked using a failure detection ladder pattern.
- If a failure is detected, a failure number is stored in D200 and the annunciator F200 is turned on.
- Specify the following arguments for the subroutine program.

(4) Replacement method when failure detection ladder patterns are changed by the CHKCIR and CHKEND instructions

Failure detection ladder patterns can be changed in the subroutine program described in (3).

3.2.5 Replacement example of the KEY instruction

The following shows the example of a program for replacement using the KEY instruction.

(1) Example of device assignment

(Before replacement)				
Application	Device	⇒		
Numeric input execution instruction	M0			
Input complete flag	M1			
Input data area	D200 to D203			
ASCII code input signal	X100 to X107			
Strobe signal	X108			

(After replacement)	
Application	Device
Numeric input execution instruction	M0
Input complete flag	M1
Input data area	D200 to D202
ASCII code input signal	X100 to X107
Strobe signal	X108
Input data area address (BIN32)	D210 to D211
(Input data area + 0) address (BIN32)	D212 to D213
(Input data area + 1) address (BIN32)	D214 to D215
(Input data area + 2) address (BIN32)	D216 to D217
For shifting input data	D218
For converting input data	D219 to D220

If the device numbers in the example above are used for other applications, assign unused device numbers instead.

(2) Program before replacement

[Issue No.] FA-A-0068-D

(3) Program after replacement

In the sequence program after replacement, two programs are required as shown below.

(a) Main routing program

- Set '0' in the input data area on the rising edge of the execution instruction ('M0' in the program below) and initialize the program.
- Execute the CALL instruction on every rising edge of the strobe signal ('X108' in the program below) so that a subroutine program is called.
- In the subroutine program, input codes are added to the input data area and the completion status is checked.
- Pass the following data to the subroutine program at the execution of the CALL instruction.
 - ASCII code input value from the input module (Xn0 to Xn7)
 - Number of digits to be input.
 - Indirect address of the input data area (Use the ADRSET instruction to acquire the indirect address for the input data area.)
 - Bit devices to be turned on when input is completed.

(b) Subroutine program

- In the subroutine program, ASCII codes specified by an argument are added to the input data area and the completion status is checked.
- Specify the following arguments for the subroutine program.

				First argument	ASCII code input from	(Input)					
				Second argument	cond argument Number of digits to be input			(Input)			
				Third argument	Indirect address of th	e input da	ata area		(Input)		
				Fourth argument	Bit device turned on v	when inpu	it is com	pleted	(Output)		
P2	FX3	-[=	FD0	нор			[SET	FY3	Numeric of	entry is ended when	
	FX3						[CJ	P3] S the at-cor ON or 0D	H is input.	
	SM400	Ι				[DMOV	FD2	D212	³)		
					D+	D212	K1	D214	Addresse area are s devices.	s of the input data saved in the work	
					D+	D214	K1	D216	J		
	[<	@D212	FD1]		[MOV	@D214	D218	³)		
						[SFR	D218	K12] The 1st to	4th digit numerals in	
						[SFL	@D216	К4	for one dig	git to the left.	
						[wor	D218	@D216	J		
						[MOV	FD0	D220	³ J		
						[SFL	D220	K8	E		
						[wor	H30	D220] Numeral e	entered in ASCII code	
							[MOV	H3030	D219	BIN data instruction	using the HABIN
						[HABIN	D219	D219	E		
						[WAND	HOF	D219	J		
						[SFL	@D214	K4] The 5th to (input dat	o 8th digit numerals in a area +1) are	
							D219	@D214] Shifted for and the c set to the	one digit to the left onverted numeral is 8th digit.	
							[INC	@D212	The number of (input data are incremented b	f digits to be input in ta +0) is y one.	
				[= @D212 FD1]		[SET	FY3	The at-comple turned ON wh processing for	etion ON signal is en the input specified digits is	
P3								-[RET	completed.		

3.3 SFC (MELSAP-II/MELSAP3)

3.3.1 Functions requiring a review before replacing the ACPU with SFC (MELSAP-II)

If the ACPU with SFC (MELSAP-II) is replaced by the Universal model QCPU, some functions of the ACPU will be unavailable.

The following table shows the functions unavailable for the Universal model QCPU.

Item	Precautions	Replacement method	Reference
Step transition	The step transition monitoring timer is not	Change the program as described in	Section 4.6 and Appendix 3.1 in
monitoring	supported.	Appendix 3.1 in the	the MELSEC-Q/L/QnA
timer		MELSEC-Q/L/QnA Programming	Programming Manual (SFC)
		Manual (SFC).	
Number of	Maximum 128 blocks can be used for the	If the number of blocks or the	Chapter 3 in the
blocks	Q00UJCPU, Q00UCPU, Q01UCPU, and	number of steps is insufficient, select	MELSEC-Q/L/QnA Programming
	Q02UCPU.	the Q03UDCPU or higher model.	Manual (SFC)

Table 3.4 Functions unavailable for the Universal model QCPU

3.3.2 Functions and instructions requiring a review before replacing the QnACPU with SFC (MELSAP3)

If the QnACPU with SFC (MELSAP-3) is replaced by the Universal model QCPU, some functions and some SFC control instructions of the QnACPU will be unavailable.

The following tables show the functions and SFC control instructions unavailable for the Universal model QCPU.

ltem	Precautions	Replacement method	Reference
Step transition monitoring timer	The step transition monitoring timer is not supported.	Change the program as described in Appendix 3.1 in the MELSEC-Q/L/QnA Programming Manual (SFC).	Section 4.6 and Appendix 3.1 in the MELSEC-Q/L/QnA Programming Manual (SFC)
SFC operation mode setting	The periodic execution block setting is not supported.	Change the program as described in Appendix 3.2 in the MELSEC-Q/L/QnA Programming Manual (SFC).	Section 4.7.4 and Appendix 3.2 in the MELSEC-Q/L/QnA Programming Manual (SFC)
	Use the Universal model QCPU whose serial number (first five digits) is "12052" or later when selecting an operation mode at double block START. When the Universal model QCPU whose serial number (first five digits) is "12051" or earlier is used, the operation mode is fixed to "WAIT".	-	Section 4.7.5 in the MELSEC-Q/L/QnA Programming Manual (SFC)
	An operation mode at transition to active step (Operation mode at double step START) cannot be selected. (Fixed to "TRANSFER".)	Consider to execute an SFC program with the operation mode at transition to active step "TRANSFER" (Operation mode at double step START).	Section 4.7.6 in the MELSEC-Q/L/QnA Programming Manual (SFC)
SFC program for program execution management	SFC programs for program execution management are not supported.	Consider to execute a program with one normal SFC program.	Section 5.2.3 in the MELSEC-Q/L/QnA Programming Manual (SFC)
SFC control instruction	Some SFC control instructions are not supported.	Table 3.6 shows unavailable instructions and replacement methods.	Section 4.4 in the MELSEC-Q/L/QnA Programming Manual (SFC)
Number of blocks	Maximum 128 blocks can be used for the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.	If the number of blocks or the number of steps is insufficient, select the Q03UDCPU or higher model.	Chapter 3 in the MELSEC-Q/L/QnA Programming Manual (SFC)
Number of SFC steps	Maximum 1024 steps can be used for the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.		

Table 3.5 Functions unavailable for the Universal model QCPU

Symbol	Instruction	Alternative method	Reference
LD TRn	Forced transition check	When the programmable controller type is changed, these	-
AND TRn	instruction	instructions are converted into SM1255.	
OR TRn		Modify programs as needed.	
LDI TRn			
ANDI TRn			
ORI TRn			
LD BLm\TRn			
AND BLm\TRn			
OR BLm\TRn			
LDI BLm\TRn			
ANDI BLm\TRn			
ORI BLm\TRn			
SCHG(D)	Active step change	Refer to Appendix 3 "Restrictions on Basic Model QCPU,	The MELSEC-Q/L/QnA
	instruction	Universal Model QCPU, and LCPU and Alternative	Programming Manual (SFC)
SET TRn	Transition control	Methods" in the MELSEC-Q/L/QnA Programming Manual	
SET BLm\TRn	instruction	(SFC).	
RST TRn			
RST BLm\TRn			
BRSET(S) ^{*1}	Block switching	When the programmable controller type is changed, these	
	instruction	instructions are converted into SM1255.	
		Modify programs as needed.	

Table 3.6 SFC control instructions unavailable for the Universal model QCPU

*1 This instruction can be used with the Universal model QCPU whose serial number (first five digits) is "13102" or earlier.

4. Precautions for the performance and specifications of the CPU modules

An A/QnA (large type) series CPU and a Universal model QCPU partly differ in performance and specifications.

This chapter describes precautions for the performance and specifications of the CPU modules.

4.1 Precautions for performance and specifications when the ACPU is replaced

Table 4.1 Precautions for performance and specifications when the ACPU is replaced

ltem	Precautions		Replacement method	Reference
Program	The program size for each	CPU module is as follows:	Select a CPU module having enough	Section 6.2 in the
size	Q00UJCPU:	10K steps	size to store the programs used in the	QCPU User's Manual
	Q00UCPU:	10K steps	existing system.	(Hardware Design,
	Q01UCPU:	15K steps		Maintenance and
	Q02UCPU:	20K steps		Inspection)
	Q03UD(E)CPU:	30K steps		
	Q04UD(E)HCPU:	40K steps		
	Q06UD(E)HCPU:	60K steps		
	Q10UD(E)HCPU:	100K steps		
	Q13UD(E)HCPU:	130K steps		
	Q20UD(E)HCPU:	200K steps		
	Q26UD(E)HCPU:	260K steps		
Number of	The number of I/O points for	or each CPU module is as	Select a CPU module having the	
I/O points	follows:		number of I/O points greater than or	
	Q00UJCPU:	256 points	equal to that of the existing system.	
	Q00UCPU, Q01UCPU:	1024 points		
	Q02UCPU:	2048 points		
Latch	If latch ranges of internal us	ser devices are specified, the	The latch function of the Universal	 Section 4.3
setting	processing time is added in	n proportion to the device points	model QCPU is enhanced.	 Section 3.3 in the
	set to be latched. (For exar	nple, if 8K points are latched for	(1) Large-capacity file register (R, ZR)	QnUCPU User's
	the latch relay (L) with the (QnUD(E)(H)CPU, the	(2) Writing/reading device data to the	Manual (Function
	processing time is 28.6µs.)		standard ROM (SP.DEVST and	Explanation, Program
			S(P).DEVLD instructions)	Fundamentals)
			(3) Latch range specification of	
			internal devices	
			Change the latch method to the	
			method described in (1) to (3) above	
			according to the application.	
Interrupt	Interrupt counter is not sup	ported.	Check the numbers of executions for	-
program			interrupt programs on the Interrupt	
			program monitor list screen of GX	
			Developer.	
SM/SD	Use the Universal model Q	CPU whose serial number (first	-	Appendix 2 and
	five digits) is "10102" or late	er when using the A		Appendix 3 in the
	series-compatible special r	elay and special register		QCPU User's
	(SM1000 to SM1255/SD1000 to SD1255). When the			Manual(Hardware
	Universal model QCPU whose serial number (first five			Design, Maintenance
	algits) is "10101" or earlier is used, replace them with the			and inspection)
	Universal model QCPU-compatible special relay and			
	special register by using the	e conversion function of a		
	programming tool. Note, no			
	ropload with SM1255 and			
	needed	ועסדעס אוועטווע programs as		
	needed.			

[Issue No.] FA-A-0068-D

ltem	Precautions	Replacement method	Reference
Processing	Scan time and other processing times are different.	Modify programs as needed,	-
time		checking the processing timing.	
MC	The following frame types cannot be used when accessing	Use the frame types below.	MELSEC-Q/L
protocol	the Universal model QCPU. ^{*1}	 QnA-compatible 2C/3C/4C frame 	MELSEC
(dedicated	A-compatible 1C frame	 QnA-compatible 3E frame 	Communication
protocol)	A-compatible 1E frame	• 4E frame	Protocol Reference
	The following commands cannot specify	-	Manual
	monitoring conditions.		
	 Randomly reading data in units of word (Command: 		
	0403)		
	 Device memory monitoring (Command: 0801) 		
	The applicable frame types are as follows:		
	QnA-compatible 3C/4C frame		
	QnA-compatible 3E frame		
	• 4E frame		
LED	LED indication priority cannot be set. Only LED indication	-	Section 3.20.2 in the
indication	setting at error occurrence is supported.		QnUCPU User's
priority			Manual (Function
setting			Explanation, Program
			Fundamentals)
Others	Specifications including the processing time of instructions a	nd processing methods of timer and	-
	counter depend on the CPU module.		
	The scan time and activation timing of interlock signals may	depend on the performance,	
	specifications, and functions of the CPU module.		
	After starting a system after replacement, check operations of		
	to the actual operation.		

*1 Applicable to the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q13UDHCPU, and Q26UDHCPU if the serial number (first five digits) is "10101" or earlier.

4.2 Precautions for performance and specifications when the QnACPU is replaced

Table 4.2 Precautions for performance and specifications when the QnACPU is replaced

ltem	Precautions		Replacement method	Reference
Program	The program size for each	CPU module is as follows:	Select a CPU module having enough	Section 6.2 in the
size	Q00UJCPU:	10K steps	size to store the programs used in the	QCPU User's Manual
	Q00UCPU:	10K steps	existing system.	(Hardware Design,
	Q01UCPU:	15K steps		Maintenance and
	Q02UCPU:	20K steps		Inspection)
	Q03UD(E)CPU:	30K steps		
	Q04UD(E)HCPU:	40K steps		
	Q06UD(E)HCPU:	60K steps		
	Q10UD(E)HCPU:	100K steps		
	Q13UD(E)HCPU:	130K steps		
	Q20UD(E)HCPU:	200K steps		
	Q26UD(E)HCPU:	260K steps		
Number of	The number of I/O points fo	or each CPU module is as	Select a CPU module having the	
I/O points	follows:		number of I/O points greater than or	
	Q00UJCPU:	256 points	equal to that of the existing system.	
		1024 points		
	Q02UCPU:	2048 points		
Program	Low-speed execution type	programs are not supported.	Use scan execution type programs or	Section 2.10 in the
execution			fixed scan execution type programs.	QnUCPU User's
type				Manual (Function
				Explanation, Program
	A			Fundamentais)
	A program execution type of	cannot be changed by remote	Use instructions for switching program	Section 2.10.5 in the
	operation.		POFF and DSCAN	QNUCPU Users
			POFF, and PSCAN.	Explanation Brogram
				Explanation, Flogram
Latch	If latch ranges of internal us	ser devices are specified the	The latch function of the Universal	Section 4 3
setting	nrocessing time is added in	proportion to the device points	model OCPLL is enhanced	Section 3.3 in the
Setting	set to be latched. (For example, if 8K points are latched for		(1) Large-capacity file register (R ZR)	OnLICPUL User's
			(2) Writing/reading device data to the	Manual (Function
	processing time is 28 6us.)		standard ROM (SPDEVST and	Explanation Program
			S(P) DEVI D instructions)	Fundamentals)
			(3) Latch range specification of	
			internal devices	
			Change the latch method to the	
			method described in (1) to (3) above	
			according to the application.	
Interrupt	Interrupt counter is not sup	ported.	Check the numbers of executions for	-
program			interrupt programs on the Interrupt	
			program monitor list screen of GX	
			Developer.	
	The interrupt pointer (I32 to	140) for an error is not	-	-
	supported.			
ZPUSH	The number of index regist	ers is increased to 20 for the	Increase the save areas used for the	Section 7.18.8 in the
instruction	Universal model QCPU. Th	ne area for saving the data in	ZPUSH instruction as needed.	MELSEC-Q/L
	the index register with the 2	ZPUSH instruction is increased		Programming Manual
	as well.			(Common Instruction)

[Issue No.] FA-A-0068-D

Item	Precautions	Replacement method	Reference
File	The following file usability setting for each program is not	When file usability has been set,	Section 2.10 in the
usability	available.*1	modify the program.	QnUCPU User's
setting for	• File register		Manual (Function
each	Initial device value		Explanation, Program
program	Comment		Fundamentals)
SM/SD	Usage of a part of the special relay and special register is	Check the specifications of the special	Appendix 2 and
	different.	relay and special register and modify	Appendix 3 in the
		the program as needed.	QCPU User's Manual
	Use the Universal model QCPU whose serial number (first	-	(Hardware Design,
	five digits) is "10102" or later when using the A		Maintenance and
	series-compatible special relay and special register		Inspection)
	(SM1000 to SM1255/SD1000 to SD1255). When the		
	Universal model QCPU whose serial number (first five		
	digits) is "10101" or earlier is used, replace them with the		
	Universal model QCPU-compatible special relay and		
	special register by using the conversion function of a		
	programming tool. Note, however, that the ones which are		
	not compatible with the Universal model QCPU are		
	replaced with SM1255 and SD1255. Modify programs as		
	needed.		
Processing	Scan time and other processing times are different.	Modify programs as needed, checking	-
time		the processing timing.	
Module	The module service interval time cannot be read.	-	-
service			
interval			
time read			
MC	The following frame types cannot be used when accessing	Use the frame types below.	MELSEC-Q/L
protocol	the Universal model QCPU. ^{*2}	QnA-compatible 2C/3C/4C frame	MELSEC
(dedicated	A-compatible 1C frame	 QnA-compatible 3E frame 	Communication
protocol)	A-compatible 1E frame	• 4E frame	Protocol Reference
	The following commands cannot specify monitoring	-	Manual
	conditions.		
	 Randomly reading data in units of word (Command: 		
	0403)		
	 Device memory monitoring (Command: 0801) 		
	The applicable frame types are as follows:		
	QnA-compatible 3C/4C frame		
	QnA-compatible 3E frame		
	• 4E frame		
Error	Error history data cannot be stored in the memory card.	The Universal model QCPU stores all	Section 3.18 in the
history		storable data (up to 100) in the built-in	QnUCPU User's
		memory.	Manual (Function
			Explanation, Program
			Fundamentals)
LED	LED indication priority cannot be set. Only LED indication	-	Section 3.20.2 in the
indication	setting at error occurrence is supported.		QnUCPU User's
priority			Manual (Function
setting			Explanation, Program
			Fundamentals)

[Issue No.] FA-A-0068-D

ltem	Precautions	Replacement method	Reference
Monitor ^{*3}	The monitoring condition cannot be set.	Use the sampling trace function for	Section 3.11.1 and 3.14
		checking device data under the	in the QnUCPU User's
		specified monitoring condition. With	Manual (Function
		this function, changes of the specified	Explanation, Program
		device data can be recorded at the	Fundamentals)
		following timings:	
		• at the execution of the specified step	
		 at the rising/falling edge of bit 	
		devices	
		 when the value of word devices 	
		coincide with the setting value	
		 at every specified time (settable 	
		range: 1ms to 5000ms)	
Others	Specifications including the processing time of instructions a	nd processing methods of timer and	-
	counter depend on the CPU module.		
	The scan time and activation timing of interlock signals may		
	specifications, and functions of the CPU module.		
	After starting a system after replacement, check operations		
	to the actual operation.		

*1 The local device file usability setting is also not available for the Universal model QCPU if the serial number (first five digits) is "10011" or earlier.

*2 Applicable to the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q13UDHCPU, and Q26UDHCPU if the serial number (first five digits) is "10101" or earlier.

*3 Applicable to the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q13UDHCPU, and Q26UDHCPU if the serial number (first five digits) is "10041" or earlier.

[Issue No.] FA-A-0068-D

4.3 Device latch function

The device latch function^{*1} for the Universal model QCPU is more enhanced compared to that for the A/QnA (large type) series CPU.

This section describes the enhanced device latch function in the Universal model QCPU.

*1 The latch function is used to hold device data even when the CPU module is powered off or reset.

(1) Device data latch methods

Device data of the Universal model QCPU can be latched by:

- using a large-capacity file register (R, ZR),
- writing/reading device data to/from the standard ROM (with the SP.DEVST and S(P).DEVLD instructions), or
- specifying a latch range of internal user devices.

(2) Details of each latch method

(a) Large-capacity file registers (R, ZR)

File register size is larger and processing speed is higher in the Universal model QCPU, compared to the A/QnA (large type) series CPU.

To latch a lot of data (many device points), use of a file register is effective.

Table 4.3 shows capacities of file registers for each CPU module.

Table 4.3 File register size available for each CPU module

Model	File register (R, ZR) size in the standard RAM
Q00UCPU, Q01UCPU, and Q02UCPU	64K points
Q03UDCPU and Q03UDECPU	96K points
Q04UDHCPU and 04UDEHCPU	128K points
Q06UDHCPU and 06UDEHCPU	384K points
Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU and Q13UDEHCPU	512K points
Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU and Q26UDEHCPU	640K points

(b) Writing/reading device data to/from the standard ROM (SP.DEVST/S(P).DEVLD instructions)

Device data of the Universal model QCPU can be latched using the SP.DEVST and S (P).DEVLD instructions (instructions for writing/reading data to/from the standard ROM).

Utilizing the standard ROM allows data backup without batteries. This method is effective for latching data that will be updated less frequently.

[Issue No.] FA-A-0068-D

(c) Specifying the latch range of internal user devices

Device data of the Universal model QCPU can be latched by specifying a latch range of internal user devices in the same way as for the A/QnA (large type) series CPU.

The ranges can be set in the Device tab of the PLC parameter dialog box.

Internal user devices that can be latched are as follows:

- Latch relay (L)
- Link relay (B)
- Annunciator (F)
- Edge relay (V)
- Timer (T)
- Retentive timer (ST)
- Counter (C)
- Data register (D)
- Link register (W)

POINT

 If latch ranges of internal user devices are specified in the Universal model QCPU, the processing time will increase in proportion to the points of the device to be latched. (For example, if 8K points are latched for the latch relay (L) with the QnUD(E)(H)CPU, the processing time is 28.6µs.)

To shorten the scan time, remove unnecessary latch device points to minimize the latch range.

• The scan time will not increase when a latch range of the file register (R, ZR) is specified.

(3) How to shorten the scan time

When data to be latched are stored in a file register (R or ZR), the processing time is shorter than that for latching internal user device.

Example Reducing the latch points of the data register (D) from 8K points to 2K points, and using the file register (ZR) instead (when the Q06UDVCPU is used).

Table 4.4 Differences between before and after moving latch points of the data register (D) to the file register (ZR)

Item		Before	After
Latch points for data register (D)		8192 (8K) points	2048 (2K) points
			(6K points are moved to file
			register.)
Number of devices in the program	Data register (D) (Latch range)	400	100
	File register (ZR) (Standard RAM)	0	300
Additional scan time		0.37ms	0.11ms ^{*1}
Number of steps increased		-	300 steps

*1 Indicates the time required additionally when file register data are stored in the standard RAM.

[Issue No.] FA-A-0068-D

REVISIONS

Version	Print Date	Revision
-	December 2009	First edition
A	July 2011	The descriptions of the reference manuals or the references have been changed in accordance with
		the composition changes of the manuals.
В	December 2011	Revision on the new functions of the Universal model QCPU whose serial number (first five digits) is
		"13102" or later.
С	December 2011	Precautions for using MELSECNET (II, /B) data link modules in Section 2.1 (1) (Table 2.1 and
		Example 2) are corrected.
D	July 2016	Descriptions are revised in accordance with the partial correction of the description in the Method of
		replacing High Performance model QCPU with Universal model QCPU [FA-A-0001].