Changes for the Better

CNC MELD/IS AC SERVO

SERVO ADJUSTMENT MANUAL

1 PROLOGUE

1-1	Servo Adjustment	1-2
1-1-	-1 Basic knowledge on machines	.1-2
1-1-	-2 How to use a high-coder	.1-3
1-1-	-3 D/A Output specifications for MDS-C1/CH-Vx	.1-4
1-1-	-4 D/A Output specifications for MDS-B-SVJ2	.1-6
1-1-	-5 Parameters Concerning with Acceleration/Deceleration Processing	.1-8

1 PROLOGUE

1-1 Servo Adjustment

1-1-1 Basic knowledge on machines

It is important to have basic knowledge on machine characteristics. It is required to comprehend the characteristics of the machine and set the appropriate parameters. Especially, the 2 items mentioned below have to be fully understood.

– (1) Load inertia

Inertia is physical quantity to express load amount. In servo control, load inertia converted into motor axis is more important than load weight. Servo response is in proportion to speed loop gain (VGN) and in inverse proportion to load inertia. It is essential to know the load inertia amount when determining appropriate VGN.

Servo response ∞ (Proportion) Load inertia

(2) Resonance frequency

All machines have a resonance point and the resonance of ball screw is a serious problem for general machine tools. Resonance has to be suppressed as it prevents VGN from being raised.

Notch filter is installed on servo and it suppresses the resonance. However, resonance frequency has to be set for each machine to set parameters.

The clue to the efficient servo adjustment is recognizing resonance frequency, suppressing resonance and raising VGN as much as possible.

Vibration waveform

1-1-2 How to use a high-coder

Before adjusting servo, it is required to understand the servo condition. Measure the D/A output (analogue output) mounted on the servo drive unit with a high-coder etc. Get used to using a high-coder before starting servo adjustment.

Prepare the cable SH21 (NC bus cable, etc.) and the tools shown below in advance. Relay terminal (MR-J2CN3TM) is a tool designated for MDS-B-SVJ2 and MR-J2-CT. In case that DO output has already been used, let the signal go through to encourage the D/A output by using a relay terminal as the D/A output, contactor and DO output for break control shares the same connector.

SH21 (NC bus cable)

MR-J2CN3TM (Relay terminal)

Have a look at the trial output in the display when finished connecting high-coder. An example of MDS-B-SVJ2 is shown the right.

Waveform of MDS-B-SVJ2 trial output result

1 PROLOGUE

1-1-3 D/A Output specifications for MDS-C1/CH-Vx

(1) D/A Output specifications

Item	Explanation
No. of channels	2ch
Output cycle	888 µsec (minimum value)
Output precision	8bit
Output voltage	0V to 2.5V to +5V
Output scale setting	±1/256 to ±128 times
Output pins	CN9 connector MO1 = pin 9 MO2 = pin 19 GND = pin 1, 11
Function	Phase current feed back output function L-axis U-phase current FB : pin 7 L-axis V-phase current FB : pin 17 M-axis U-phase current FB : pin 6 M-axis V-phase current FB : pin 16
Option	A drive unit with 2 axes (MDS-C1/CH-V2) also has 2 channels for D/A output. Therefore, set the output data of the axis (SV061,62), which is not observed, to "-1".

(2) Setting the output data

No.	Abbrev	Paramete	ameter name		Explanation					
SV06	DA1NO	D/A output chanr	output channel 1 data No.		Input the No. of the data to be outputted to each data D/A output channel.					
SV06	2 DA2NO	D/A output chanr	A output channel 2 data No.							
				1						
					Standard setting value of output scale	Standard	Output			
NO.	Ou	tput data	Standard outp	ut unit	(Setting values in SV063, SV064)	output unit	cycle			
-1	D/A output n	on-selected	For an Amp. wit used.	h 2 axes	s (MDS-C1/CH-V2). Set for the paramet	er of the axis whic	ch is not			
	ch1. Speed f	feedback	r/min		13 (in case of 2000r/min)	1000r/min / V	3.55ms			
0	citi. Opeeu i	eeuback	1/11111		9 (in case of 3000r/min)	1500r/min / V	3.55ms			
	ch2: Current	command	Stall%		131	Stall 100% / V				
1	Current com	mand	Stall%		131	Stall 100% / V	3.55ms			
2	-									
3	Current feed	back	Stall%		131	Stall 100% / V	3.55ms			
4	-									
5	-									
6	Position droc	p	NC display ur	nit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms			
7	-									
8	8 Feedrate (FAT)		(NC display unit / 2) / communication cycle		55 (When 1µm,3.5ms)	1000(mm/min) / 0.5V	3.55ms			
9	-									
10	Position com	mand	NC display ur	nit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms			
11	-									
12	Position feed	back	NC display ur	nit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms			
13	-									
14	Collision det torque	ection estimated	Stall%		131	Stall 100% / V	3.55ms			
15	Collision det disturbance	ection torque	Stall%		131	Stall 100% / V	3.55ms			
64	Current com (High-speed	mand)	Internal ur	nit	8 (adjustment required)	_	888µs			
65	Current feed (High-speed	back)	Internal ur	nit	8 (adjustment required)	-	888µs			
77	Estimated di	sturbance torque	Internal unit		8 (adjustment required)	-	888µs			
125	Saw-tooth w	ave test output	0V to 5V		0 (256)	Cycle: 227.5ms	888µs			
126	Rectangular	wave test output	0V to 5\	/	0 (256)	Cycle: 1.7ms	888µs			
127	2.5V (data 0) test output	2.5V		0 (256)	-	888µs			

(3) Setting the output scale

Usually, the standard setting value is set for the output scale (SV063, SV064). When "0" is set, the output will be made as well as when "256" is set.

DATA x
$$\frac{\text{SV063}}{256}$$
 x $\frac{5 [V]}{256 (8bit)}$ + 2.5 [V] (offset) = Output voltage [V]

(Example) When outputting the current FB with 100%/V-stall (SV061=3, SV063=131)

$$100 \times \frac{131}{256} \times \frac{5}{256} + 2.5 = 3.499 [V]$$

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV063	DA1MPY	D/A output channel 1	The standard setting value is specified usually.	-32768 to 32767
		output scale	(When "0" is set, the output will be made as well as when "256"	
SV064	DA2MPY	D/A output channel 2	is set)	
		output scale		

(4) Output voltage range and offset

The output voltage range for MDS-C1/CH-Vx series is different from MDS-B-SVJ2 series. When using MDS-C1/CH-Vx series, adjust the zero level on Hi-coder side because of 2.5V offset voltage. (When the data is "0", 2.5V)

1 PROLOGUE

1-1-4 D/A Output specifications for MDS-B-SVJ2

(1) D/A output specifications

Item	Explanation		
No. of channels	2ch		
Output cycle	888µsec (min. value)		
Output precision	8bit		
Output voltage range	-10V to 0 to +10V		
Output scale setting	±1/256 to ±128 times		
Output pins	CN3 connector MO1 = pin 4 MO2 = pin 14 GND = pin 1, 11		
Function	Offset amount adjustment function Output clamp function Low path filter function		
Option	Relay terminal: MR-J2CN3TM Connect from the CN3 connector using the SH21 cable as a lead-in wire.		

(2) Setting the output data

No.	Abbrev	Parameter name		Explanation						
SV061	DA1NO	D/A output		Input the N	o. of the dat	a to l	be outputted to each D/A o	output channel.		
		channel 1 da	ita No.	(Channel	No.9, 10, 29	9 and	30 correspond to C1 and	subsequent versions	of software.)	
SV062	DA2NO	D/A output		(Channel	Channel No.8 and 28 correspond to C3 and subsequent versions of software)					
		channel 2 da	ita No.							
No	Quita	ut data	Sta	indard	Output	No	Output data	Standard	Output	
INO.	Outp		outp	out unit	cycle	INO.		output unit	cycle	
0	0V test outp	out	For offs	et amount a	djustment					
1	Speed feed	back	1000r	/min / 2V	888µsec	21	Motor load level	100% / 5V	113.7ms	
2	Current fee	dback	Rate 100	ed(stall) 0% / 2V	888µsec	22	Amplifier load level	100% / 5V	113.7ms	
3	Speed com	mand	1000r	/min / 2V	888µsec	23	Regenerative load level	100% / 5V	910.2ms	
4	Current con	nmand	Rate 100	ed(stall))% / 2V	888µsec	24	PN bus wire voltage	50V / V (1/50)	888µsec	
5	V-phase cu	rrent value	10)A / V	888µsec	25	Speed cumulative item	-	888µsec	
6	W-phase cu	urrent-value	10	10A / V		26	Cycle counter	0-5V (Regardless of resolution)	888µsec	
7	Estimated of torque	listurbance	Rate 100	ed(stall) % / 2V	888µsec	27	Excessive error detection amount	mm / V	3.55ms	
8	Collision de disturbance	tection torque	Rate 100	ed(stall) % / 2V	888µsec	28	Collision detection estimated torque	Rated (stall) 100% / 2V	888µsec	
9	Position fee	dback (stroke)	100	mm / V	3.55ms	29	Position command (stroke)	100mm / V	3.55ms	
10	Position fee	dback (pulse)	10 ₁	µm / V	3.55ms	30	Position command (pulse)	10µm / V	3.55ms	
11	Position dro	оор	m	m / V	3.55ms	31				
12	Position dro	oop (×10)	100)µm / V	3.55ms	to	-			
13	Position dro	oop (×100)	10	µm / V	3.55ms	99				
14	Feedrate (F	ΔΤ)	10000(r	nm/min) / V	888µsec	100	5V test output			
15	Feedrate (F	ΔT × 10)	1000(m	nm/min) / V	888µsec	101	Saw-tooth wave test	-5 to 5V	8880500	
16	Model posit	ion droop	mi	m / V	3.55ms	101	output	Cycle: 113.7ms	000µ3ec	
17	Model posit (x10)	ion droop	100	100µm / V		102	Rectangular wave test	0 to 5V	8880500	
18	Model posit (×100)	ion droop	10µm / V		3.55ms	102	output	Cycle: 227.5ms	oooµsec	
19	q-axis curre cumulative	ent value		-	888µsec	103	Setting prohibited			
20	d-axis curre cumulative	ent value		_	888µsec	to	Setting prohibited			

(3) Setting the output scale

This is set when an output is to be made with a unit other than the standard output unit.

(Example 1) When SV061 = 5, SV063 = 2560

The V-phase current value will be output with 1 A/V unit to D/A output ch.1.

(Example 2) When SV063 = 11, SV064 = 128

The position droop will be output with a 2mm/Vunit to D/A output ch.2.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV063	DA1MPY	D/A output channel 1	When "0" is set, the output will be made with the standard	-32768 to 32767
		output scale	output unit. To change the output unit, set a value other than 0.	
SV064	DA2MPY	D/A output channel 2	The scale is set with a 1/256 unit. When 256 is set, the unit	
		output scale	will be the same as the standard output.	

(4) Setting the offset amount

This is used when the zero level of the output voltage is to be finely adjusted. The output scale when the data No. is "0" will be the offset amount. After setting the offset, set the data No. to a value other than "0", and do not set it to "0" again. Because the offset amount is saved in the drive unit memory, it does not need to be set again when the drive unit power is turned ON next.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV061	DA1NO	D/A output channel 1	Set "0".	0 to 102
		data No.	After setting the offset amount in SV063 and SV064, change	
SV062	DA2NO	D/A output channel 2	the data No. to a value other than "0".	
		data No.		
SV063	DA1MPY	D/A output channel 1	The amount can be set with the output precision unit.	-10 to 10
		offset amount	Observe the output value and set so that the output value is 0V.	
SV064	DA2MPY	D/A output channel 2	Because the offset amount is saved in the drive unit memory, it	
		offset amount	does not need to be set again when the drive unit power is	
			turned ON next.	

1 PROLOGUE

1-1-5 Parameters Concerning with Acceleration/Deceleration Processing

As for acceleration/deceleration control with NC, there are 4 types of processing. The setting of acceleration/deceleration time constant is based on "constant time", which means that the inclination changes in accordance with the speed. (cf. constant inclination)

(1) Exponential (primary delay) acceleration/deceleration

Acceleration/deceleration is made according to exponential function. This acceleration/deceleration control has been used for a long time as the way it is controlled is very simple. However, it takes longer time to complete positioning and it is not used for rapid traverse feed any more. This is occasionally used for cutting feed.

(2) Exponential acceleration - linear deceleration

This acceleration/deceleration control enabled to shorten the time to complete positioning by improving the exponential acceleration/deceleration control.

(3) Linear acceleration/deceleration

This acceleration/deceleration control is most commonly used. Comparing with exponential acceleration/ deceleration control, the motor torque output is more ideal and the time to complete positioning can be reduced. This acceleration/deceleration control requires the memory capacity, therefore, it was limited when using conventional NC though the present NC has been relieved from such a limitation. Use linear acceleration/deceleration for rapid traverse feed. Use also for the cutting feed.

(4) S-pattern (Soft) acceleration/deceleration

Use this acceleration/deceleration control in case that the shock at the start of acceleration when using linear acceleration/deceleration, or in case that the torque output efficiency is not good enough as the acceleration/deceleration torque is not constant (the protrusion can be observed in the torque waveform) in the axis with a large inertia (acceleration/deceleration time constant ≥300ms). However, this acceleration/deceleration type cannot be used for the cutting feed in interpolation axis because the synchronization between axes is not available.

(3) Linear acceleration/deceleration

M60S	Abbrev.	Parameter name	Unit		Explanation	Setting range	
#2001	rapid	Rapid traverse	mm/m	in	Set rapid traverse rate for each axis.	1 to 999,999	
		rate			The setting value has to be less than the	e maximum spindle	
					speed of the motor.		
#2002	clamp	Cutting feed	mm/m	in	Set the cutting feed (G1 feed) clamp sp	eed.	1 to 999,999
#2003	smast	Acceleration/	Designs	ato m	ne programmed speed is restricted by	onthing) control:	
#2005	Singst	deceleration mode	Designa			Journing) control,	
			L L	oit	Meaning when "0" is set	Meaning when "1" i	s set
			0		Set the G0 feed (rapid traverse)	1: Linear acceleration/de	celeration
					acceleration/deceleration type.	2: Exponential (primary of	delay)
			1	R1		acceleration/decelerat	ion
			2			8: Exponential accelerati	on, linear
						deceleration	
			3	R3		F: S-pattern (soft)	
			-		Set the C1 feed (outting feed)	acceleration/decelerat	ion
			4		Acceleration/deceleration type	2: Exponential (primary of	
			5	C1	noocleration acceleration type.	acceleration/decelerat	ion
						8: Exponential accelerati	on, linear
			6			deceleration	
			7	C3		F: S-pattern (soft)	
						acceleration/decelerat	ion
			8	OT	Stroke end stop time constant	Stroke end stop time con	stant
					Stroke end stop type: linear	Position loop step stop	
			9	OT	deceleration		
			10	OT	3	(Speed loop step stop)	
			11		(Note) Set this parameter(bit8-10) wit	h a limit switch (H/W).	
			12				
			13				
			14				
			15 Sot "0" i	in hit	s with no particular description		<u>I</u>
#2004	G0tl	G0 time constant	ms		Set time constant for linear control with	G0 feed (rapid traverse)	1 to 4000
	0012	(linear)			acceleration/deceleration, or time cons	tant at the 1st step of	
		、 ,			S-pattern acceleration/deceleration cor	itrol	
#2005	G0t1	G0 time constant	ms		Set the exponential time constant with	G0 feed (rapid traverse)	1 to 5000
		(exponential)			acceleration/deceleration, exponential	acceleration-linear	
					deceleration time constant, or time con	stant at the 2nd step of	
#2006	C0t2				S-pattern time constant.		0
#2000	0012				Not used.		0
#2007	G1tL	G1 time constant	ms		Set time constant for linear control with	G1 (cutting feed)	1 to 4000
		(linear)			acceleration/deceleration, or time cons	tant at the 1st step of	
					S-pattern time constant.		
#2008	G1t1	G1 time constant	ms		Set the exponential time constant with	G1 feed (cutting feed)	1 to 5000
		(exponential)			acceleration/deceleration, exponential	acceleration-linear	
					S-pattern time constant	stant at the 2nd step of	
#2009	G1t2		ms		Not used		0
#2013	OT-	Soft limit I –	mm		These set the soft limit area with zero p	oint of basic machine	-99999.999
#2014	OT+	Soft limit I +			coordinate system as reference point.	When the inputted value	to
					exceeds this parameter, the machine c #2013 is set to the same value as #201	4 except for "0" this	99999.999
					function is disabled. (For maker setur))	

Axis specification parameters (M60S series) concerning with acceleration/deceleration control.

2-1	Setting Initial Parameters2-3
2-1-1 2-1-2 2-1-3	Setting the gear ratio
2-2	Gain Adjustment2-4
2-2-1 2-2-2 2-2-3 2-2-4 2-2-5 2-2-6	Preparation before operation2-4Measuring the inertia rate2-6Determining the standard speed loop gain2-7Explanation of notch filter2-8Adjusting the speed loop gain2-12Adjusting the position droop waveform2-14
2-3	Adjusting Acceleration/Deceleration Time Constant2-20
2-3-1 2-3-2	Rapid traverse feed (G0 feed)2-20Cutting feed (G1)2-21
2-4	Initial Adjustment for the Servo Functions2-22
2-4-1 2-4-2 2-4-3	Standard settings for the lost motion compensation2-22Excessive error width detection2-23Vertical axis drop prevention control2-24
2-5	Procedures for Adjusting Each Functions2-28
2-5-1 2-5-2 2-5-3 2-5-4	Disturbance observer function2-28Overshooting compensation2-30Collision detection function2-34Voltage non-sensitive zone (Td) compensation2-38
2-6	Full Closed System2-39
2-6-1 2-6-2 2-6-3	Basic knowledge2-39 Speed loop delay compensation2-42 Dual feedback control
2-7	MDS-C1/CH-Vx Parameter List2-46

Prepare the following manuals when adjusting the MDS-C1-Vx Series (200V series) and MDS-CH-Vx Series (400V series) servo parameters in accordance with this manual.

"MDS-C1 SERIES SPECIFICATIONS MANUAL" BNP-C3000

"MDS-CH SERIES SPECIFICATIONS AND INSTRUCTION MANUAL " BNP-C3016

When adjusting the servo for the first time (primary adjustment), set and adjust the following items in order from 2-1 to 2-4. "2-5 Procedures for adjusting each function" are set and adjusted only when required.

2-1 Setting initial parameters
2-2 Gain adjustment
2-3 Adjusting acceleration/deceleration time constant
2-4 Initial adjustment for the servo functions

In this manual, [Normal setting range] of parameters are shown instead of [Setting range]. [Normal setting range] means the range of the values used in actual parameter adjustment (though [Setting range] means the range of values that does not cause an error).

<Example of parameter explanation>

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV008	VIA	Speed loop leading compensation	"1364" is set as a standard. "1900" is set as a standard during SHG control. Adjust in increments of approx. 100 at a time.	700 to 2500

This manual explains only in case of high gain mode of MDS-C1-Vx.

2-1 Setting Initial Parameters

Input the setting values listed in the "Standard Parameter list per motor" in the specifications manual for the initial parameters before adjusting the servo. If a wrong value is input, the initial parameter error (ALM37) will occur. In this case, the parameter number causing an error is displayed on the NC screen. Some parameters are determined by the machine specification and they are explained below.

2-1-1 Setting the gear ratio

Input the ratio of gear tooth. When initial parameter error (ALM37) –error parameter number 101– occurs, reconsider the specification as electric gear must be overflowing.

When the machine specification is "rack and pinion", π is included in the deceleration ratio. In this case, the accurate positioning is impossible to be made. Express the π with a rough fractional number when calculating the gear ratio.

No.	Abbrev	Parameter name	Explanation
SV001	PC1	Motor side gear ratio	Calculate the reducible number of each gear tooth and set the result. When PC1 < PC2, deceleration is set. In case that π is included as well as "rack and pinion", the accurate positioning is
SV002	PC2	Machine side gear ratio	impossible to be made as π is calculated into a rough fractional number when calculating the gear ratio. For accurate positioning, the full-closed loop control using a linear scale is required.

2-1-2 Setting detector specifications

When using the linear scale, refer to the linear scale instruction manual, and set the parameters correctly.

No.	Abbrev	Parameter name	Explanation
SV019	RNG1	Position detector resolution	For semi-closed loop (using the detector at the motor end only), set the same value as SV020. For full-closed loop, set in accordance with the linear scale specification.
SV020	RNG2	Speed detector resolution	Set the motor detector resolution with kp/rev (1000 pulse/1 rotation) unit.
SV025	MTYP	Motor/detector type	The 2 high-order digits have to be set in accordance with the specification of the detector at the motor end and linear scale. Refer to the "2-7 List of MDS-C1/CH-Vx Parameters" in addition.

2-1-3 Confirming the machine specifications value

Confirm the following machine specifications value to be set in axis specification parameters.

M60S Series	Abbrev.	Parameter name	Explanation
#2001	rapid	Rapid traverse rate	Set the rapid traverse rate. Confirm the maximum rotation speed of the motor.
#2002	clamp	Cutting feed clamp speed	Specify the maximum speed of the cutting feedrate. Even though the feedrate for G01 exceeds this value, clamped with this speed.
#2003	smgst	Acceleration/deceleration mode	Set in accordance with machine specifications. In machine tools, rapid traverse feed is generally set to "Linear acceleration/deceleration" mode and cutting feed is generally set to "Exponent acceleration/deceleration" mode. S-pattern (soft) acceleration/deceleration function is occasionally used for the machine with a large inertia.

2-2 Gain Adjustment

2-2-1 Preparation before operation

(1) Confirming the safety

The servo is ready to be operated when the initial parameter settings are completed. Confirm the safety by checking the following items before operation.

Cancel the emergency stop and make READY ON.	Is any alarm occurring?
\bigcup	
Confirm the axis movement by using a manual pulse generator.	Are there any vibration or strange sound? Is the load too large? (Is the current too large?)
\bigcup	
Confirm the soft limit movement by using a manual pulse generator.	Does the axis stop before hitting the machine? Confirm the soft limit (over travel) protection.
\bigcup	
Make a program taking account of axis movement range.	Make a program taking account of soft limit position. (Refer to the sample program.)
\square	
Specify the single block operation and set the rapid traverse override to less than 25%.	Move slowly at first confirming the program.
Move axis forward and backward by memory operation (program operation). If there is no problem, cancel the single block and raise the override up to 100% gradually.	If the acceleration current is too large, make acceleration/deceleration time constant longer. If there is more than 100% of acceleration current, that will be enough.

(Sample program of rapid traverse feed for reciprocating operation.)						
G28 X0;	X axis zero return					
N01 G90 G0 X <u>-200.;</u> G4 X1.0; G0 X0; G4 X1.0; Make sure not collide. No "." means 200µm, do not fail to add ".".	Move X axis to X= -200 with rapid traverse feed by absolute position command (the line N01). Dwell for 1 second. (1-second pause) Use "X" even for Y axis and Z axis. Make X axis move to X=0 by rapid traverse feed. Dwell for 1 second. (1-second pause) Use "X" even for Y axis and Z axis. Back to "N01"					

CAUTION Do not fail to confirm the soft limit movement (over travel) to prevent collision. Be careful of the position of other axes and pay attention when the cutter has already mounted as the collision possibly occurs before the soft limit.

(2) Confirming the acceleration/deceleration waveform with a Hi-coder

Measure speed FB waveform and current waveform during acceleration/deceleration after connecting a Hi-coder. <u>Zero level adjustment</u> on <u>Hi-coder side is required</u> to obtain the waveform shown right because of 2.5V offset.

(Items to be checked)

- 1) Voltage output level (ch.1, ch.2)
- 2) Zero level (ch.1, ch.2)
- 3) Output polarity of the current FB

Make sure that the hi-code data is reliable as the rest of the servo adjustment procedures which will be done later depend on this Hi-coder data.

When measuring repeatedly, set the trigger for starting Hi-coder measurement at the start of speed FB. When measuring the data later, change the data of ch.2 only and leave ch.1 at speed FB, so that the measurement is always executed at the same timing. Set the timing of the measurement, and the data can be compared easily in case that the operation conditions including parameters are changed.

The waveforms shown in this manual are measured at one acceleration/deceleration as the reciprocating operation includes the same waveform which has different polarity. In case of the waveform shown the right, the trigger level is set as follows;

ch.1: 100mV ↑direction

Determine the measuring timing by setting the trigger

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV061	DA1NO	D/A output channel 1 data No.	The data No. to be output each D/A output channel is	-1 to 12,
SV062	DA2NO	D/A output channel 2 data No.	output.	64, 65, 77,
				125 to 127
SV063	DA1MPY	D/A output channel 1 output scale	The output will be made with a standard output unit	-32768
SV064	DA2MPY	D/A output channel 2 output scale	normally. The scale is set with a 1/256 unit. Refer to	to 32767
			"1-2-3 D/A Output Specifications for MDS-C1/CH-Vx ".	

2-2-2 Measuring the inertia rate

Measure the load inertia by using the disturbance observer function of a servo drive unit to determine the standard speed loop gain (standard VGN). Set the measured load inertia rate in the servo parameter SV037.

2-2-3 Determining the standard speed loop gain

The standard speed loop gain (standard VGN) is determined referring to the respective load inertia rate in the following table. If the standard VGN is set as it is, vibration would occur in most models; so at this point, keep this value in mind as the target value for adjusting the gain.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV005	VGN1	Speed loop gain 1	Determine the standard setting value by measuring load inertia scale and referring to the graph below.	100 to 400

2-2-4 Explanation of notch filter

Machine resonance occurs when the speed loop gain is increased to improve the control accuracy. The machine resonance is a phenomenon that occurs when the servo's speed loop control acts on the machine's specific frequency (characteristic resonance frequency). When adjusting the speed loop gain, a notch filter must be set to suppress this machine resonance (vibration) resulting in an increase of vibration. The notch filter functions to suppress the servo response at the set frequency, and thereby suppress the occurrence of vibration. Always understand the methods of setting the notch filter before adjusting the speed loop gain. Refer to section "2-2-5 Adjusting the speed loop gain" for details on setting the notch filter.

(1) Notch filter specifications

Mainly the following two notch filters are used with the MDS-C1/CH-Vx series.

	Frequency range	Frequency settings	Depth compensation settings
Notch filter 1	100Hz to 2250Hz	SV038	SV033.bit1 to 3
Notch filter 2	100Hz to 2250Hz	SV046	SV033.bit5 to 7

MDS-C1/CH-Vx filters

The operation frequency parameter can be set in 1Hz increments, but the internal control will function at the frequency shown below which is the closest to the setting value. Set the setting frequency shown below in the parameter when adjusting the notch filter.

The depth compensation is a function that sets the notch filter at a low frequency. A stable notch filter can be set even at a low frequency. Usually, the standard value that matches the setting frequency is set as shown below.

Setting frequency	Standard filter depth	Setting frequency	Standard filter depth	Setting frequency	Standard filter depth
2250Hz	0	562Hz	0	281Hz	4
1800Hz	0	529Hz	0	250Hz	4
1500Hz	0	500Hz	0	225Hz	4
1285Hz	0	474Hz	0	204Hz	4
1125Hz	0	450Hz	0	187Hz	8
1000Hz	0	429Hz	0	173Hz	8
900Hz	0	409Hz	0	160Hz	8
818Hz	0	391Hz	4	150Hz	8
750Hz	0	375Hz	4	132Hz	8
692Hz	0	346Hz	4	125Hz	8
642Hz	0	321Hz	4	112Hz	8
600Hz	0	300Hz	4	100Hz	С

Setting frequency and standard filter depth for notch filter 1 and 2

(Note) The depth compensation setting above shows a HEX setting value when the bit0 or bit4 setting is 0.

bit	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SV033 setting		:	*		*		Notch filter 2 depth compensation		*	Notch filter 2 depth compensation		*				
When bit0, 4 = 0	D	oes no	t chanę	ge	Does not change		0, 4, 8, C			0, 4, 8, C						
When bit0, 4 = 0	D	oes no	t chang	ge	Does not change		1, 5, 9, D			1, 5, 9, D						

(2) Measuring the resonance frequency

The resonance frequency must be measured before setting the notch filter frequency. To measure, gradually increase the speed loop gain to generate vibration, and measure the current waveform with a Hi-corder.

The phase current feedback output function is used to measure the resonance frequency of the MDS-C1/CH-Vx. (Refer to the following table) Output the U-phase current feedback to Ch. 1 of the Hi-corder, and the V-phase feedback to Ch. 2 as shown on the right. Then measure the two phase current feedbacks simultaneously. Depending on the motor rotation angle, there may be cases where vibration cannot be measured at either one of the current phases; however, if measuring the two phases simultaneously, the vibration can always be measured.

Once the resonance frequency has been measured, immediately apply emergency stop and stop the vibration.

Measuring vibration frequency (233Hz) (Measure manually when vibration occurs.)

To calculate the vibration frequency, select an easy-to-view range in the Hi-corder grid, and calculate the number of waves generated in one second. (The unit is [Hz] at this time.)

MDS-C1/CH-V1	MDS-C1/CH-V2	Signal	Output pin	GND pin
Laxis	Laxis (No. 1 axis)	U-phase current FB	7 pins	
Eano		V-phase current FB	17 pins	1, 11 pins (Common for each
	Maxis (No. 2 axis)	U-phase current FB	6 pins	signal)
	W 4X10 (140. 2 4X10)	V-phase current FB	16 pins	

Phase current feedback of	output function (CN9)
---------------------------	-------------------	------

POINT
 1. Measure the Y-phase current feedback and V-phase current feedback simultaneously so that the measurement can be completed without being affected by the motor angle.
 2. The phase current feedback is used, so when the motor is rotating, a SIN wave that is 4-fold the speed (for HC motor) can be measured.
 3. If a "squeak" is heard at the instant when acceleration/deceleration is started, the machine is vibrating at a high frequency exceeding 700Hz. The 750Hz or 1125Hz filter is effective in this case.

When generating resonance, make sure that the speed loop gain is not increased too far resulting in a large vibration. After measuring the resonance frequency, immediately apply emergency stop to stop the vibration. The machine or servo amplifier could fail if vibration is generated for a long time.

(3) Setting the notch filter frequency

After measuring the resonance frequency, refer to the "Setting frequency and standard filter depth for notch filter 1 and 2". Select the setting frequency larger than but closest to the resonance frequency and set the parameter. Set the depth compensation parameter to the standard filter depth that matches the frequency.

In the example of measurement on the previous page, the measured resonance frequency is 233Hz. Thus, set the following:

Filter setting frequency = 250Hz, Filter depth = 4

The notch filter easily becomes unstable when a low frequency is set. Even when set, only the resonance frequency may change (the vibration tone changes), and the resonance may not be completely removed. If the state is unstable, try using a higher frequency.

Basically, all resonance can be removed by setting the notch filter. The MDS-C1/CH-Vx series has the following functions in addition to the notch filter. Use those as necessary.

(4) Jitter compensation

Jitter compensation is effective to eliminate the vibration occurring when the axis motor whose backlash is comparatively large or whose linear movement object is heavy stops rotating. Set from 1 pulse by turn and confirm how it works.

Jitter compensation is effective only in case that the vibration occurs due to the backlash, thus, it does not work when the vibration is caused by other factors. (Even when set, only the vibration tone changes.) If the jitter compensation is not effective, remove the vibration with the notch filter.

Parameter setting	No jitter compensation	Compensation 1 pulse	Compensation 2 pulses	Compensation 3 pulses
SV027. bit4	0	1	0	1
SV027. bit5	0	0	1	1

Jitter compensation

(5) Other filters

The notch filter 3 with an operation frequency fixed at 1125Hz, and the speed feedback filter fixed at 2250Hz are the other notch filters available. The usage methods are the same as notch filter 1 and 2. Set them as necessary such as when treating with the third frequency.

	Frequency range	Frequency settings	Depth compensation settings
Notch filter 3	1125 Hz fixed	SV033. bit4	None
Speed feedback filter	2250 Hz fixed	SV017. bit3	None

Other MDS-C1/CH-Vx filters

No.	Abbrev.	Parameter name	Unit			Explana	tion				Normal setting range
SV038	FHz1	Notch filter frequency	Hz	Set Set	the resonance frequ "0" when the filter is	ency to be su not be used.	ppress	ed. (Valio	d at 36	or more.)	150 to 1125
SV046	FHz2	Notch filter frequency 2	Hz	Set Set	the resonance frequ "0" when the filter is	ency to be su not to be used	ppress d.	ed. (Valio	d at 36	or more.)	150 to 1125
SV017	SPEC*	Servo specification selection	F <start s<br="">b 3</start>	E m peed it vfb	D C B // htr drva dr feedback filter> El Meaning wh Speed FB filter st	9 8 vu mpt mp minate the hig en "0" is set op	7 abs gh frequ	6 5 vdir uency vibra Mea Speed FE	4 fdir ation of aning v 3 filter s	3 2 vfb qrc f a motor when "1" start (225	1 0 dfbx fdir2 and a detector. is set DHz fixed)
SV027	SSF1	Servo function selection 1	F aflt <start j<br="">b 4 5 <active C D E F</active </start>	E Zrn2 itter c it vfct adap it afse zrn2 aft	D C B A afse ovs ompensation> El No jitter compensation 0 0 otive filter> Meaning wh Raise the sensition 00: Standard sen Set to "1"	A 9 8 Imc Imc Iminate the vi Pulse of compensative of type1 1 0 Iminate the vi 1 0 0 Iminate the adares 1 Iminate the adares 1 Iminate the adares 1	7 omr bratior f tion aptive f 11: I	6 5 zrn3 vi n while the Pulse compen type 0 1 1 Mea filter. high-sensi (Set 2 bit Adaptive	4 fct a motoo a of sation a2 aning v itivity c at the filter a	3 2 upd r is stopp com when "1" of vibratic same tim	1 0 ing. ulse of pensation type3 1 1 is set n n detector ne.)
SV033	SSF2	Servo function selection 2	F <depth 1 to 3 <activa 4 <depth b 5 to 7</depth </activa </depth 	E comp it nfd1 nfd1 nf3 comp it nfd2	D C B dis Ds dis dis Densation for the numbers and the numbers such as the setting value When bit0 (zck) = numbers such as the setting value the filter 3> Elimin Meaning when Notch filter 3 stop Densation for notch Set the same as Set shallowly to r from the filter free not be expected. not be expected.	A 9 8 otch filter 1> = 0 (Standard) 0, 2, 4A, C is, the shallow hate the high "0" is set oped filter 2> the depth com nake control s quency though	7 Explan), set the (), s	6 5 nfd2 nation he first dig E. 0 is th e filter is. maximum for a single nation for n and preve	4 nf3 nf3 nf3 nf3 nf3 nf3 nf3 nf nf3 nf nf3 nf3	3 2 nfd V033 to 0 pest. T en "1" is : d (fixed to lter 1. er vibration n elimina	1 0 1 zck even he higher set 51125Hz) ons apart tion can

Parameter settings related to resonance removing filter

2-2-5 Adjusting the speed loop gain

The speed loop gain (SV005) is gradually increased from the state where resonance does not occur. Once resonance starts, set the notch filter to remove the resonance. Next, increase the speed loop gain while removing the vibration with the notch filter, and adjust the speed loop gain targeting the standard VGN determined from the load inertia. A 30% margin must be secured to ultimately set the standard VGN value, so set a standard VGN x 1.3 value and confirm that resonance does not occur.

If the resonance cannot be eliminated even when the notch filter is set, the speed loop gain setting will be limited. Set a value 30% lower than the maximum value at which resonance does not occur.

CAUTION Do not set the notch filters to the frequency where vibration does not occur as a means of insurance. Setting many notch filters does not necessarily guarantee a better effect.

- The final SV005 (VGN1) setting value is 70% of the maximum value at which machine resonance does not occur. If the resonance is suppressed and the SV005 setting is increased by using a vibration suppression function, such as a notch filter, the servo can be adjusted easier later on.
- If the vibration is caused by resonance (mutual action of servo control and machine characteristics), the vibration can always be stopped by lowering SV005 (VGN1). If the vibration does not change even when SV005 is lowered, there may be a problem in the machine. The notch filter is not effective when there is a problem in the machine.

<<Reference material>>

POINT

Machine resonance is not the only vibration that occurs at the servo shaft. Types of vibration that occur at the servo shaft are listed below.

Types of vibration	Cause	Vibration frequency	Measures	Explanation
Machine resonance	Delay in servo control response	150Hz to 1kHz	Set the notch filterLower VGN1 (SV005)	There may be several resonance points. The vibration can always be stopped by lowering VGN1.
Hunting	The speed loop PI gain (VGN, VIA) is unbalanced	Several Hz	 Lower VIA (SV008) Raise VGN1 (SV005) Use the disturbance observer 	Visually apparent that the shaft vibrates during acceleration, or the shaft trembles when stopped.
Isolated machine vibration	Insufficient machine rigidity	10 to 20Hz	 Lower PGN1 (SV003) Use S-pattern (soft) acceleration/deceleration 	The machine vibrates due to impact during acceleration/deceleration. A "clonk" sound may be heard during acceleration.

2-2-6 Adjusting the position droop waveform

After adjusting the filter and determining the optimal speed loop gain (VGN1), adjust the speed loop leading compensation (VIA) and position loop gain (PGN) observing the position droop waveform.

(1) Measuring the position droop

During rapid traverse feed, position droop takes a few millimeters. However, the unit of the waveform to be observed is "µm" and the overflowing waveform is displayed on the Hi-coder. Before adjusting, make the waveform as shown right appear on the Hi-coder.

Smooth convergence is the most important thing about position droop waveform. The position droop have to converge smoothly when the speed becomes constant or when positioning is completed and position droop becomes "0". Both of the waveforms enclosed with circles can be used for gain adjustment, however, the waveform at when positioning is completed is normally used because it enables to confirm the overshooting at the same time when adjusting servo.

It is necessary to confirm that the waveform of the positioning converges smoothly (approaches to "0") at the range of 10μ m/0.5V because accurate control is required for the feed axis of machine tools.

when positioning is completed

(2) Adjusting speed loop leading compensation

There may be no problem when used at a normal load inertia scale. However, if used at a load inertia scale exceeding 500% with an insufficient speed loop gain (SV005) set, the position droop waveform may vibrate just before the motor stops. If the speed loop gain is small, and the shaft has relatively low wear, the motor may repeatedly reciprocate just before stopping resulting in hunting.

If vibration of the position droop is not improved much even when the position loop gain (SV003) is lowered, the leading compensation (SV008) value set for the proportional gain (SV005) is too large, so lower SV008 by approx. 100.

SV008 VIA Speed loop leading 1364 is set as a standard. 1900 is set as a standard during SHG control. 700	No.	Abbrev.	Parameter name	Explanation	Normal setting range
compensation Adjust in increments of approx 100	SV008	VIA	Speed loop leading	1364 is set as a standard. 1900 is set as a standard during SHG control.	700 to 2500

(3) Adjusting position loop gain

When raising the position loop gain, the responsiveness of the position and cutting accuracy is improved. Setting time is shortened and the cycle time can also be reduced. However, be aware of the limit value determined by the speed loop characteristics and machine characteristics.

The same position gain has to be set in both interpolation axes (the axes to perform synchronous control with). Set the position loop gain of the all axes to the lowest limit value of all.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV003	PGN1	Position loop gain 1	Set 33 as a standard. Adjust in increments of approx. 3. If PGN is increased, cutting precision will be improved and the setting time will be shortened.	18 to 70

L imit of	the n	osition	loon	aain
	uic p	0311011	loop	yan

Limit of PGN	Phenomenon	Cause	Remedy
Limit of speed loop	Position droop waveform vibrates during positioning.	Insufficient speed loop gain (VGN1)	Suppress the resonance more and raise VGN. Use disturbance observer.
characteristics	Overshooting occurs during positioning.		
Limit of machine	Machine vibrates or makes strange noise during	Insufficient	Use SHG control function.
characteristics	acceleration/deceleration.	machine rigidity	Use S-pattern acceleration/deceleration
	When feeding with the maximum scale by a		function when vibration occurs in rapid
	pulse generator, machine vibrates or makes		traverse feed. (NC function)
	strange noise.		

Set the same position loop gain (PGN) to all the interpolation axes. (For the PGN of X, Y, Z axes, set the smallest value of the three to all of X, Y, Z axis.)

(4) SHG (Smooth High Gain) control

A high-response control and smooth control (reduced impact on machine) were conventionally conflicting elements; however, SHG control enables the two elements to function simultaneously by controlling the motor torque (current GB) with an ideal waveform during acceleration/deceleration.

Start the adjustment with PGN1=23 (hereinafter referred to as 23SHG) for the feed axis of a machine tool at first. Try to adjust the SHG value so that it become as close to 47SHG as possible. If more than 33SHG can be set, this machine tool is a precision machine. If more than 23SHG can be set, the machine tool precision is good enough. SHG control function is efficient for feed axes of machine tools (X axis, Y axis or Z axis of the machining center etc.) to meet the demand of high-speed and high-accuracy cutting.

When changing normal control to SHG control, start adjusting, by setting PGN1 to "1/2". SHG control is as effective as when PGN1 is doubled. SHG control also can shorten the cycle time as it reduces the setting time.

No.	Abbrev.	Parameter name	Setting ratio				Setti	ing exa	mple				Normal setting range
SV003	PGN1	Position loop gain 1	1	18	21	23	26	33	38	47	60	70	18 to 70
SV004	PGN2	Position loop gain 2	8	48	56	62	70	86	102	125	160	186	48 to 186
SV057	SHGC	SHG control gain	6	108	126	140	160	187	225	281	360	420	108 to 420
SV008	VIA	Speed loop leading compensation	Set 1900 a	s a sta	ndard fo	or SHG	control	l.					700 to 2500
SV015	FFC	Acceleration feed forward gain	Set 100 as	a stan	dard for	· SHG o	control.						0 to 300

The SHG control is an optional function. Confirm if the option is set in the NC with a System Specification Order List.

(5) Confirming overshooting

Adjust to make overshooting amount become less than 1 µm.

Cause and remedy of overshooting

If more than "100" is set in acceleration feed forward gain (SV015) during SHG control, overshooting will be caused easily.

(6) Adjusting the position droop waveform

2-3 Adjusting Acceleration/Deceleration Time Constant

2-3-1 Rapid traverse feed (G0 feed)

For rapid traverse feed, linear acceleration/ deceleration function is normally used. Occasionally, S-pattern (soft) acceleration/deceleration function is used to ease the collision against machines.

(1) Confirm that the rapid traverse rate \leq max. rotation speed

Fist of all, confirm that the rapid traverse rate is less than the maximum rotation speed of the servo motor.

(2) Adjust acceleration/deceleration time constant by the maximum current command value

Perform the rapid traverse reciprocating operation confirming in NC servo monitor screen and adjust acceleration/deceleration time constant (with NC axis specification parameter) so that the maximum current command value during acceleration/deceleration becomes less than the range of the table shown below.

(Acceleration/deceleration time constant is not judged by current FB but by current command)

Specc [500 r/min/div] SV061 = 0 Current FB [50 %/div] 2 SV061 = 3 Position droop [100 µm/div] 2 SV062 = 6 Waveforms during rapid traverse feed

Memory Single - 5%

x1 shot

100ms

Speed FB

♣ ᄠᆞᆱ

🖸 🚠

Scroll

(3) Confirm the rapid traverse feed

- Confirm: 1) if the machine does not vibrate or make strange noise.
 - 2) if the waveforms during acceleration/deceleration are not disturbed when observing current FB waveform and position droop waveform.
 - 3) if the friction torque is normal.
 - 4) 1) to 3) with the override changing.

Max. current command value when adjusting acceleration/deceleration time constant (MDS-C1/CH-Vx)

Motor type	Max. current command value	Motor type	Max. current command value	Motor type	Max. current command value
HC52	Within 388%	HA40N	Within 400%	HC-H52	Within 400%
HC102	Within 340%	HA80N	Within 365%	HC-H102	Within 340%
HC152	Within 380%	HA100N	Within 260%	HC-H152	Within 500%
HC202	Within 275%	HA200N	Within 225%	HC-H202	Within 340%
HC352	Within 251%	HA300N	Within 200%	HC-H352	Within 260%
HC452	Within 189%	HA700N	Within 205%	HC-H452	Within 270%
HC702	Within 221%	HA900N	Within 220%	HC-H702	Within 280%
HC902	Within 227%			HC-H902	Within 215%
		HA053N	Within 240%	HC-H1102	Within 200%
HC53	Within 264%	HA13N	Within 240%	HC-H1502	Within 190%
HC103	Within 257%	HA23N	Within 230%	HC-H53	Within 290%
HC153	Within 266%	HA33N	Within 230%	HC-H103	Within 280%
HC203	Within 257%	HA43N	Within 295%	HC-H153	Within 350%
HC353	Within 230%	HA83N	Within 275%	HC-H203	Within 320%
HC453	Within 177%	HA103N	Within 245%	HC-H353	Within 240%
HC703	Within 189%	HA203N	Within 210%	HC-H453	Within 240%
		HA303N	Within 180%	HC-H703	Within 195%
HA-LF11K2	Within 215%	HA703N	Within 180%	HC-H903	Within 230%
HA-LF15K2	Within 240%			HC-H1103	Within 190%

2-3-2 Cutting feed (G1)

For cutting feed, exponent acceleration/deceleration function is normally used. S-pattern acceleration/ deceleration cannot be used as it disables synchronous interpolation.

(1) Reciprocating operation without dwell

During cutting feed, no confirmation of in-position is made before going on to the next step. Adjust the acceleration/deceleration time constant during acceleration/deceleration by reciprocating operation without dwell. Set the feedrate at the maximum (clamp: axis specification parameter) and confirm the maximum current command during the turn without swell.

(Cutting feed reciprocating operation	on Sample program)
G28 X0;	X axis zero return
N01 G90 G1 X-200. <u>F8000;</u>	Move X axis to X=-200 with F5000 cutting feed by absolute position command.
G1 X0;	Turn without dwell and move to X=0 with F5000 cutting feed.
G4 X1.0;	Dwell for a second. (Pause for a second) Use "X" even for Y axis and Z axis.
GOTO 01 Max. cutting feedrate	Go back to the line N01.

(2) Adjust acceleration/deceleration time constant by max. current command value

Confirm the maximum current command value in the servo monitor and adjust acceleration/deceleration time constant (with NC axis specification parameter) so that the maximum current command value becomes less than the range of the table shown in the chapter "2-3-1 Rapid traverse feed (G0)".

(3) Set all the interpolation axes to the same value as the axis with the longest time constant

For example, set the same value for the cutting feed time constant of X axis, Y axis and Z axis in machining center because interpolation control is required.

(4) Confirm the cutting feed

Confirm : 1) if the machine does not vibrate or make strange noise.

- 2) if the waveforms during acceleration/deceleration are not disturbed when observing current FB waveform and position droop waveform.
- 3) 1) and 2) with the override changing.

2-4 Initial Adjustment for the Servo Functions

2-4-1 Standard settings for the lost motion compensation

(1) Unbalance torque and frictional torque

As for the initial adjustment of lost motion compensation, set the standard compensation amount. Measure the unbalance torque and the frictional torque to calculate the standard compensation amount. During a stop, the static frictional torque may effect. Feed slowly by about F1000, measure the load current in the servo monitor screen of NC and calculate by the following expression.

Unbalance torque = (+ Feed load current%) + (- Feed load current%)2 Frictional torque = (+ Feed load current%) - (- Feed load current%)2

	Horizontal axis	Unbalance axis		
	Lathe: Z axis	Lathe: X axis		
In machine tools	Vertical machining center: X axis, Y axis	Vertical machining center: Z axis		
	Horizontal machining center: X axis, Z axis etc.	Horizontal machining center: Y axis etc.		
		The average of the load torque when feeding to		
Unbalance torque	0	both + and – direction by about F1000.		
Estation of termina	The load torque when feeding by about F1000.	The difference between load torque and unbalance		
Frictional torque		torque when feeding by about F1000.		

Unbalance torque and frictional torque

(2) Setting the standard compensation amount

As for lost motion compensation type, use type 2 (SV027.bit9). Set the unbalance torque in SV032 and set the doubled frictional torque in SV016 as a standard compensation amount. (Set SV041 to "0".) To adjust the compensation amount more accurately, determine the value to be set in SV016 and SV041 by measuring the roundness.

How to set the standard lost motion compensation amount

Setting item	Parameter setting				
(1) Start lost motion compensation type 2	SV027.bit9 = 1 (SV027.bit8 = 0)				
(2) Unbalance torque setting	SV032 = unbalance torque [%]				
(3) Lost motion compensation standard amount	SV016 = 2 x frictional torque [%] (SV041 = 0)				

When using the disturbance observer, further adjustment by roundness measurement is required because the lost motion compensation amount (SV016) calculated as mentioned above will become over compensation.

(Example) In case that the load current% is -25% in + direction and -65% in – direction when performing JOG feed by about F1000, Unbalance torque = $\frac{-25 + (-65)}{2}$ = -45% Frictional torque = $\left|\frac{-25 - (-65)}{2}\right|$ = 20% Therefore, set SV032 = -45, SV016 = 40.

No. A	Abbrev	Parameter name	Explanation							
SV027	SSF1	Servo function selection 1	Normally type 2 is used for the lost motion compensation.							
			FEDCBA9876543210afltzrn2afseovsImcomrzrn3vfctupcvcntbitExplanationB00: lost motion compensation stop10: lost motion compensation type 29Imc00: lost motion compensation type 111: Setting prohibited						0 /cnt type 2	

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV032	TOF	Torque offset	Stall%	6 Set the unbalance torque amount.	
SV016	LMC1	Lost motion compensation 1	Stall%	Set "2 × (frictional torque)" as an initial value. When using disturbance observer, further adjustment by roundness measurement is required.	0 to 60
SV041	LMC2	Lost motion compensation 2	Stall%	Set "0" as a standard (initial adjustment value). When "0" is set, compensate the value set in SV016 in both + and – direction.	0 to 60

2-4-2 Excessive error width detection

In most cases, no problem will occur with the standard setting values.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV023	OD1	Excessive error detection width during servo ON	mm	Calculate as follows by using rapid traverse rate and position loop gain (PGN1). When "0" is set, the excessive error alarm will not be detected.	3 to 15
SV026	OD2	Excessive error detection width during servo OFF	mm	<standard setting="" value=""> OD1=OD2=</standard>	

2-4-3 Vertical axis drop prevention control

Vertical axis drop prevention control is performed for the unbalance axis which equips a motor brake. Set the time to delay the servo ready OFF confirming the drop amount when an emergency stop occurs.

(1) Parameter settings

Set the 3 parameters (SV048, SV055 and SV056) at the same time to enable vertical axis drop prevention control. For MDS-C1/CH-Vx series, set the parameters of the axes which does not perform the vertical axis drop prevention control because the converter unit of MDS-C1 series are in common with other servo axes and spindles. (Refer to "2-4-3(3) Parameter settings in each system" in this manual)

<How to set>

- 1) Adjust the vertical axis drop prevention time (SV048) and set the minimum value at which the axis does not drop when the Emergency stop is inputted.
- 2) Set the same value as the adjusted vertical axis drop prevention time (SV048) for the max. gate off delay time after emergency stop (SV055).
- 3) Set the same axis as the acceleration/deceleration time constant in the deceleration time constant at emergency stop (SV056) is set for the axis that controls the drop prevention.
- 4) If the vertical axis is MDS-C1/CH-V2 (drive unit with 2 axes), set the servo parameter of the other axis.
 SV048 = the same value as SV048 of the vertical axis
 SV055 = the same value as SV055 of the vertical axis

SV056 = the same value as rapid traverse acceleration/deceleration time constant of the identical axis

- 5) If the converter which supplies the PN power to the vertical axis is controlled by a spindle drive unit, set the spindle parameter SP033.bit15 = 1.
- 6) If the converter which supplies the PN converter to the vertical axis is controlled by the other servo drive unit, set the servo parameters of the axis. (as mentioned in (4))

No.	Abbrev.	Parameter name	Unit	Explanation	Normal
					setting range
SV048	EMGrt	Vertical axis drop	ms	Increase the setting by 100 ms at a time and set the minimum	0 to 300
		prevention time		value where the axis does not drop.	
SV055	EMGx	Max. Gate off delay	ms	Set the time from emergency stop input to compulsory ready OFF.	0 to 300
		time after emergency		When performing vertical axis drop prevention control, set the	
		stop		same value as SV048.	
SV056	EMGt	Deceleration time	ms	When performing vertical axis drop prevention control, set the	0 to 300
		constant at emergency		deceleration control. Set the same value as the rapid traverse	
		stop		acceleration/deceleration time constant.	

- SV048 and SV055 are set individually in each axis. However, when using MDS-C1/CH-V2 (drive unit with 2 axes), both axes are controlled at the same time with the larger setting value of these 2 parameters.
 This control will not function if an alarm for which dynamic brakes are set as the
 - 2. This control will not function if an alarm for which dynamic brakes are set as the stopping method occurs in an axis where the vertical axis drop prevention control is being carried out.
 - 3. A drop amount of several µm to 10µm) will remain due to the brake play.

When only SV048 and SV055 are set and SV056=0, machine will occasionally come into collision because stopping method is changed from "decelerating to a stop" to "Steps to a stop".

(2) Adjustment procedures for vertical axis drop prevention control

(3) Parameter settings in each system

1) In case that a spindle controls the converter, Z axis = drive unit with 1 axis. (Z axis: Vertical axis)

Axis	X axis	Y axis	Z axis (Vertical axis)	Spindle	
Parameters MDS-C1/CH-V2		1/CH-V2	MDS-C1/CH -V1	MDS-C1/CH -SP	
SV048			Set after adjustment.	Spindle	
SV055	SV055 – –		The same value as SV048.	parameter	
SV056 – –		_	The same value as rapid traverse time constant of Z axis.	SP033.bitF = 1	

2) In case that a spindle control the converter, Z axis = drive unit with 2 axes (Z axis: Vertical axis)

Axis	X axis	Y axis	Z axis (Vertical axis)	Spindle
Parameter	MDS-C1/CH -V1	MDS-C1	/CH -V2	MDS-C1/CH -SP
SV048	_	The same value as Z axis.	Set after the adjustment.	Spindle
SV055 –		The same value as Z axis.	The same value as SV048.	narameter
\$1/056	_	The same value as rapid traverse	The same value as rapid traverse	SP033.bitF = 1
37030	_	time constant of Y axis.	time constant of Z axis.	

(3) In case that Z axis controls the converter, Z axis = drive unit with 1 axis (Z axis: Vertical axis).

Axis	X axis	Y axis	Z axis (Vertical axis)	Spindle	
Parameter	MDS-C1/CH -V2		MDS-C1/CH -V1	MDS-C1/CH -SP	
SV048	_	_	Set after the adjustment.	Spindle	
SV055	_	-	The same value as SV048.	parameter	
SV056	_	_	The same value as rapid traverse time constant of Z axis.	No need to set	

(4) In case that Z axis controls the converter, Z axis = drive unit with 2 axes (Z axis: Vertical axis).

Axis	X axis	Spindle		
Parameter	MDS-C1/CH -V1	MDS-C1	/CH -V2	MDS-C1/CH -SP
SV048 –		The same value as Z axis.	Set after the adjustment.	Spindlo
SV055 –		The same value as Z axis.	Set the same value as SV048.	narameter
SV/056		The same value as rapid	Set the same value as rapid	No need to set
37030	_	traverse time constant of Y axis.	traverse time constant of Z axis.	

2-5 Procedures for Adjusting Each Functions

2-5-1 Disturbance observer function

(1) When to use

1) When improving cutting accuracy

Disturbance observer function is efficient to improve the cutting accuracy. For roundness measurement, cutting accuracy can be improved especially at around 45 degrees.

2) When suppressing the vibration of position droop waveform

Disturbance observer function can suppress the vibration of position droop waveform caused by the insufficient speed loop gain (VGN) without lowering speed loop leading compensation (VIA).

3) When suppressing the collision sound during lost motion compensation When the lost motion compensation amount is increased, the collision sound is occasionally caused. The compensation amount can be made smaller by using disturbance observer function, and it also suppresses the collision sound.

(2) Precautions

1) Vibration (resonance) is easily caused

Disturbance observer is hardly used for some machine characteristics.

2) Lost motion compensation has to be readjusted

The optimum lost motion compensation amount (SV016, SV041) changes when the disturbance observer's filter frequency (SV043) and gain (SV044) are changed.

When starting disturbance observer, lost motion compensation has to be adjusted again.

(3) Procedures for disturbance observer adjustment

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV037	JL	Load inertia scale	%	Set the value calculated in the way explained in "2-2-2 Measuring the inertia rate".	150 to 600
SV043	OBS1	Disturbance observer filter frequency	rad/sec	Set the disturbance observer filter band. Set "100" as a standard. The setting is enabled at more than 100.	100
SV044	OBS2	Disturbance observer gain	%	Set the disturbance observer compensation gain. As a standard, set between 100 and 300. Lower the setting if vibration occurs.	100 to 300

2-5-2 Overshooting compensation

(1) When to use

1) When compensating overshooting

Both overshooting during rapid traverse positioning and during pulse feed can be improved.

Overshooting during rapid traverse positioning

Overshooting during pulse feed

(2) Precautions

1) Do not use overshooting compensation function to solve the problem caused by gain adjustment

Overshooting can occur when position loop gain (SV003) and acceleration feed forward gain (SV015) is too high. Adjust the gain at first whenever overshooting is found. In case that the overshooting cannot be solved by gain adjustment, use overshooting compensation function as it seems to be caused by machine-side factors including torsion and friction. The overshooting can be suppressed with overshooting compensation by 1% to 3%.

In the full closed system using a linear scale, adjust with [2-6-2 Speed loop delay compensation] (SV007) at first.

2) If the compensation amount is too much, the roundness precision will be worsened

When the overshooting compensation amount is too much, the roundness precision is occasionally worsened. Be careful when setting the value which is more than 5% in SV031 (compensation amount).

3) The overshooting which is more than 1µm has to be suppressed Normally the overshooting which is more than 1µm is considered as a problem. If it is less than 1 µm is hardly suppressed due to the control resolution.

(3) Details of overshooting compensation

1) Overshooting compensation type 1

This is an old compatible type and not used for an initial adjustment.

2) Overshooting compensation type 2

This is an old compatible type and not used for an initial adjustment.

3) Overshooting compensation type 3

This is compatible with the standard specifications. The offset amount is set based on the motor's stall current. Determine the amount that is free from overshoot by adjusting the compensation gain (SV031, SV042) while increasing its value in increments of 1%. This adjustment is usually made within the range from 1% to 3%.

During the feed forward control (the high-speed high-accuracy control), an overshoot may be occurred due to inappropriate adjustment of the feed forward gain. So, when adjusting the compensation gain (SV031, SV042), stop the feed forward control, or set "fwd_g" to "0". After adjusting, set the range of the non-sensitive zone for the overshooting compensation "SV034(SSF3)/bit F to C" (ovsn) to "1" (2 μ m).

If overshoot occurs in the feed forward control mode only (no overshoot occurs in the normal control mode), adjust the feed forward gain (fwd_g).

In the full closed system using a linear scale, adjust with [2-6-2 Speed loop delay compensation] (SV007) at first.

(4) Procedures for overshooting compensation

No.	Abbrev.	Parameter name	Explanation						
SV027	SSF1	Servo function selection 1	The overshooting compensation starts with the following parameter.						
			F E D C B A 9 8 7 6 5 4 3 2 aflt zrn2 afse ovs Imc omr zrn3 vfct upc	1 0 vcnt					
			A 00: Overshooting compensation 10: Overshooting compensation B ovs stop type2 01: Overshoot compensation 11: Overshoot compensation 11: Overshoot compensation type1 type3	nsation tion					
SV034	SSF3	Servo function selection 3	When using the feed forward control (the high-speed high-accuracy control), of the non-sensitive zone. F E D C B A 9 8 7 6 5 4 3 2 ovsn os2 zeg mohn	set the range					
			bit Explanation C Set the non-sensitive zone for the overshooting compensation type 3 in increments of 2µm. During the feed forward control, set the non-sensitive zone of the model position droop and ignore overshoot of the model. Set it to the standard 2µm (0001).						

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV031	OVS1	Overshooting compensation 1	Stall% (rated current%)	Increase the value by 1% at a time and find the value where overshooting dose not occur. When OVS2 is "0", the setting value will be applied in both the + and – directions.	-1 to 3
SV042	OVS2	Overshooting compensation 2	Stall% (rated current%)	Set "0" as a standard. Set this when the compensation amount is to be changed according to the direction.	-1 to 3

- 1. When either parameter SV031:OVS1 or SV042:OVS2 is set to "0", the same amount of compensation is carried out in both + and direction, using the setting value of the other parameter (the parameter which is not set to "0").
- 2. To compensate in only one direction, set -1 in the parameter (OVS1 or OVS2) for the direction in which compensation is prohibited.

2-5-3 Collision detection function

(1) When to use

1) To ease an impact when a machine collides

Collision detection function can ease the impact to the machine by detecting the alarm at the collision as soon as possible when collision occurs and by causing the pullback torque.

2) To keep the alarm history separating collision alarms from over load alarms

Collision alarms are conventionally detected as over load alarms. Collision detection function enables to keep the collision alarm history with special alarm numbers only for collision alarms.

(2) Precautions

1) Collision detection function does not guarantee the machine precision

As before, prevent the machine collision when operating a machine.

2) Alarm can be detected incorrectly

Collision is detected by detecting the disturbance torque, therefore, frictional torque or cutting torque can be incorrectly taken for a collision depending on condition of the machine or operation.

(3) Details of collision detection method 1

The required torque is estimated by considering the position command issued by the NC. The disturbance torque is calculated by the difference from the actual torque. When this disturbance torque exceeds the collision detection level set by the parameters, a collision is detected.

As soon as a collision is detected, pullback torque (which is adjustable with a parameter) is commanded and ease the impact. After the motor stopped, alarm 58 (during G0 command) or 59 (during G1 command) will occur, the system will be stopped.

	Collision detection level setting parameter	Detection alarm		
During rapid traverse (during G0 feed)	SV060	Alarm 58		
During cutting feed (during G1 feed)	SV060 × clG1 (SV035.bitC to E)	Alarm 59		

(4) Details of collision detection method 2

When the current command reaches the motor's maximum current, collision is detected. As soon as the collision is detected, pullback torque (which can be adjusted by a parameter) is commanded. After the motor stopped, the alarm 5A will occur and the system will stop. If the acceleration/deceleration time constant is short, and if detections are easily made incorrectly during normal operation, make the acceleration/deceleration time constant longer and adjust so that the current during acceleration is not saturated (so that the current does not reach the maximum value). Or, turn the parameter SV035.bitB ON and ignore the collision detection method 2.

(5) Torque estimated gain (SV059)

In SHG control mode, when the rapid traverse reciprocating operation is carried out after setting the unbalance torque (SV032), frictional torque (SV045) and "SV035.bitF=1", the value to be set in SV059 is displayed in MPOS (MP scale offset amount) in NC servo monitor screen. (Refer to [2-4-1 (1) Unbalance torque and frictional torque].) When accelerating, the value converges gradually. Set the convergence value to torque estimate gain (SV059).

(6) Collision detection level (SV60)

Collision detection level during G0/G1 feed

Feed	Detection level setting	How to adjust
G0	SV060	First, set "SV060: TLEV= 100", and carry out no-load operation at the maximum rapid traverse feed rate. If an alarm does not occur, lower the setting by "10", and if an alarm occurs, raise the setting by "20". Set the value which is in increment of the limit value at which the alarm does not occur by 1.5 times. If SV035.bitA (clet)=1 is set, the maximum disturbance torque will appear in MPOS in the NC servo monitor. When setting, refer to the value shown in MPOS.
G1	SV060 x clG1 (SV035)	The detection level during G1 feed is set as an inter-fold of the detection level during G0 feed. Calculate the maximum cutting load, and adjust the SV035.bitC to E (clG1) setting value so that the detection level becomes larger than the maximum cutting load.

(7) Confirming parameter settings

Calculate the estimated torque abstracting acceleration factors from position command to detect the collision. It is required to obtain the following items to detect collision correctly.

1) Torque estimated gain	(SV059)
2) Frictional torque	(SV045)
3) Unbalance torque	(SV032)

When confirming the setting values of above-mentioned parameters, output current FB and collision detection estimated torque at the same time as shown the right and adjust so that they both forms the same waveform.

How to confirm collision detection parameters

(8) Procedures for collision detection adjustment

SV035 SSF4 Servo function selection 4 F E D C B A 9 8 7 6 5 4 3 2 1 0 clt clG1 cl2n clet cltq iup iup tdt bit Meaning when "0" is set Meaning when "1" is set 8 Set the pullback torque during collision detection with a ratio of maximum motor torque. 00:100% 01:90% 10:80% (Standard) 11:70% 11:70% A clet Setting for normal use The peak value of disturbance torque in the last 2 seconds appears in MPOS on servo monitor screen. B cl2n Collision detection method 2 is enabled. Collision detection method 1 is disabled. C Set the collision detection level for the collision detection method 1	SV035 SSF4 Servo function selection 4 F E D C B A 9 8 7 6 5 4 3 2 1 0 clt clG1 cl2n clet cltq iup iup tdt bit Meaning when "0" is set Meaning when "1" is set 1 0 11:70% Set the pullback torque during collision detection with a ratio of maximum motor torque. 00:100% 01:90% 10:80% (Standard) 11:70% A clet Setting for normal use The peak value of disturbance torque in the last 2 seconds appears in MPOS on servo monitor screen. B cl2n Collision detection method 2 is enabled. Collision detection level for the collision detection method 1 is disabled. C D clG1 Cl1=0, the collision detection level will be SV060 x clG1. When clG1=0, the collision detection method 1 will not function during cutting feed. The setting value of SV059 is appeared in MPOS on servo	No.	Abbrev.	Parameter name							Expla	natior	า						
D clG1 clG1 cutting (G1) feed. G1 collision detection level will be SV060 × clG1. When clG1=0, the collision detection method 1 will not function during	E cutting feed. Setting for normal use The setting value of SV059 is E cut	No. SV035	Abbrev. SSF4	Parameter name Servo function selection 4	F clt 8 9 A B C D	E citq clet cl2n clG1	D C clG1 Set the p maximur 00:100% Setting for Collision enabled. Set the cutting (0 When cl	B cl2n aning oullba n moi or noi or noi dete collis G1=0	A clet when ck torc or torc 1:90% mal u: ction n ction n ed. G , the o	9 <u>"0" is</u> <u>que d</u> que. 11 se metho etecti 1 coll collisi	Expla 8 1tq 0:80% 00 2 is 00 le ision 00 de	ration 7 collisi 5 (Sta vel fc detec	6 iup iup ion de ndard The torq app mor Coll disa cr the tion le	5 Mea etection) 1 peak ue in peak ue in ision bled. collise evel w	4 aning on wit 1:70% c valu the la in MP ccreer detec	3 tr when h a ra % e of d ast 2 s OS o ction r detec SV06	2 ctt "1" is atio of isturb secon n sen netho tion r function	ance ds vo d 1 is netho dG1.	0
clG1 E clG1 clG1 clG1 clG1 clG1 clG1 clG1 clG1	Setting for normal use The setting value of SV059 is		C D ClG1			fion r 60 × c functio	netno IG1. on du	iring											
	D clG1 cutting (G1) feed. G1 collision detection level will be SV060 × clG1. E When clG1=0, the collision detection method 1 will not function during cutting feed. Setting for normal use The setting value of SV059 is appeared in MPOS on some			B	cl2n	Collision enabled. Set the	dete collis	ction n	netho	od 2 is	vel fo	Coll disa	Collision detection method 1 is disabled. the collision detection method 1						

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV032	TOF	Torque offset	Stall%	Set the unbalance torque amount.	-60 to 60
				compensation was adjusted.	
SV045	TRUB	Frictional torque	Stall%	Set the frictional torque amount.	10 to 30
(8 low-order				Refer to [2-4-1 (1) Unbalance torque and frictional torque].	
digit bit)					
SV059	TCNV	Collision detection torque estimating gain	_	When SV035.bitF (clt) = 1 is set and axis performs reciprocating operation, the value to be set is appeared in MPOS on servo monitor screen. Set the converged value after a few reciprocating operations. When operating as above, set SHG control function, SV032 and SV045 in advance or set SV060 = 0	0 to 32767
SV060	TLMT	Collision detection level	Stall%	Set the collision detection level of method 1 G0 feed when using the collision detection function. When "0" is set, all collision detection function will not function.	70 to 150

(Note) 8 low-order digit bit: The 16 bit-length parameter is divided into 8 high-order digit bit and 8 low-order digit bit. If high-order digit bit are set to "0" and low-order digit bit are set to "-128 to 127", set as well as normal parameters.

2-5-4 Voltage non-sensitive zone (Td) compensation

(1) When to use

1) When improving the cutting precision

Voltage non-sensitive zone compensation is effectual when the cutting accuracy is worsened before passing the quadrants during circle cutting or when the cutting accuracy while unbalance axis is lowering is worse than while it is rising. In short, voltage non-sensitive zone compensation improves the control precision when the control speed is slow and the output torque is controlled with nearly "0".

(2) Precautions

1) Vibration (resonance) easily occurs

Vibration can be inducted as voltage non-sensitive zone compensation can make the same effect as when the current loop gain is raised.

2) The drive sound during the motor rotation becomes noisier

If setting 100% (as a standard), the sound during the motor rotation will be noisier. However, the cutting precision is improved as long as vibration does not occur.

(3) Adjustment procedures

Set the value from 50 to 100% observing the vibration or noise occurrence.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV030 (8 low-order digits)	IVC1	Voltage non -sensitive band compensation	%	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. Compensation equivalent to 100% is possible even when 0 is set. If vibration or vibration sound occurs because of over-compensation, adjust the value to 100% or less.	0 to 100

(Note) 8 low-order digit bit: The 16bit-length parameter is divided into 8 high-order digit bit and 8 low-order digit bit. If high-order digit bit are set to "0" and low-order digit bit are set to "-128 to 127", set as well as normal parameters.

2-6 Full Closed System

2-6-1 Basic knowledge

(1) Full closed loop control

All the servo control performs closed loop control which uses a feedback from the detector. "Full closed loop control" means the system which directly detects the machine position by using a linear scale mainly and it is distinguished from "Semi-closed loop control" which detects the motor position. In the machine which drives the table with a ball screw.

- 1) coupling or backlash of the connecting point between a table and a ball screw
- 2) pitch error of a ball screw

exist and they worsen the precision. The high-accuracy position control, which is not affected by a backlash nor pitch error, is enabled by detecting the table position directly as the table position means the machine end.

However, the precision can be worse than we expected as the non-linear factors such as backlash and the torsion of ball screw prevent the position loop gain from being raised. The reason why this is caused is that the machine system is included in control loop in full closed loop. In other words, even though using the full closed loop to prevent the influence from the backlash etc., the high-accuracy cannot be obtained if the machine rigidity is not high enough. It does not mean that the precision can be improved by adding a linear scale to a conventional machine. Additionally, not only the parameter adjustment but also the machine side factors including the position where the linear scale is attached are very important to improve the precision.

Semi-closed loop is widely used because of its stability. It is stable as it does not includes the non-linear factors of the machine system in its control loop. NC has backlash compensation function and pitch error compensation function, the high-accuracy control is enabled by issuing a command in the direction which cancels the machine error.

In full closed system, the machine system is directly included in the position loop control. Therefore, the precision is not improved as the gain cannot be raised if the machine rigidity is not high enough.

(2) Servo adjustment

How to adjust the servo in full closed system is the same as in semi-closed system. However, the position loop gain is generally lower than that in semi-closed system as the vibration and overshooting is easily caused. Some functions are enabled only in full closed loop control (Refer to 2-6-2 and subsequent chapters). Set those functions if necessary.

In full closed system, the way that the machine error compensation is used is different from semi-closed loop control. Confirm the parameter settings referring to the table below.

Machine error compensation	Parameter	Use	Necessity	Details
Backlash compensation	Axis specification parameter	This compensates the machine backlash.	X (Partly O)	Normally set "0" as machine backlash can be compensated by a linear scale. Occasionally, this parameter is used for compensating the backlash of a linear scale itself.
Pitch error compensation	Machine error compensation parameter	This compensates the scale parallelism. (This originally compensates the pitch error of the ball screw.)	0	Use this parameter for as it is almost impossible to attach a linear scale to a ball screw completely. (The pitch error can be compensated by linear scale FB.)
Relative position compensation	Machine error compensation parameter	This compensates the orthogonality between axes.	0	A linear scale cannot compensate the orthogonality between axes, therefore, this parameter has to be set as well as in semi-closed loop control.

Machine	orror	comr	ansation	in in	full	hazolo	loon	control
wachine	enu	COLLIP	Jensaliur		Tuii	CIOSEU	loop	CONTINUE

M60S Series	Abbrev.	Parameter name	Unit	Explanation	Setting range
#2011	G0back	Backlash during G0 (rapid traverse) feed	Command unit / 2	Normally set "0" in full closed system.	-9999 to 9999
#2012	G1back	Backlash during G1 (cutting) feed			
#40 1	cmpax	Machine error compensation / base axis		In case that the base axis is a compensation axis, pitch error will be compensated.	Axis name
#40 2	drcax	Machine error compensation / compensation axis		In case that the base axis is not a compensation axis, relative position will be compensated.	
#40 6	SC	Machine error compensation / compensation scale		When "0" is set in this parameter, nothing will be compensated.	0 to 99

(Note) Set the axis number in the shown in above parameter list as follows; Set "0" for the 1st axis, "1" for the 2nd axis and "2" for the 3rd axis.

[MACHI #	[MACHINE ERROR COMPENSATION] SETUP PARA5. 1/15													
4000 Pi	nc	0												
	#<	1>	#<	2>	#<	3>	#<	4>	#<	5>				
cmpax	4001	X	4011	Y	4021	Z	4031	X	4041	X				
drcax	4002	X	4012	Y	4022	Z	4032	Y	4042	Z				
rdvno	4003	4111	4013	4211	4023	4311	4033	4411	4043	4511				
mdvno	4004	4101	4014	4201	4024	4301	4034	4401	4044	4501				
pdvno	4005	4200	4015	4300	4025	4400	4035	4500	4045	4600				
SC	4006	2	4016	2	4026	2	4036	2	4046	2				
spcdv	4007	10000	4017	10000	4027	10000	4037	10000	4047	10000				
	$\overline{}$		_	\sim										
		Pitch	n error o	compens	sation		Relativ	e positi	on com	pensation				
#()	DATA()												
LSK mn	n ABS	G40 G5	4	MEN	10RY									
MAC	COM	Ρ	PLC		MACE	20	P	SW		MENU				

Machine error compensation screen on NC (M60S Series)

(3) Overrun detection

In full closed system, the machine end position FB detected with a linear scale is used for position control, and at the same time, the motor end position FB is also detected and the difference between both FBs is observed. In case that the error amount, which means the difference between machine end position FB and motor end position FB, exceeds the servo parameter SV054, alarm 43 occurs and the system is stopped to prevent the overrun due to scale FB error.

The error amount during acceleration/deceleration is normally less than 100µm, therefore, setting "2mm" as a standard (parameter setting "0") has no problem.

No	Abbrev	Parameter name	Linit	Explanation	Normal
110.	Abbiev.	r arameter name	Onit	Explanation	setting range
SV054	ORE	Closed loop	mm	When the difference between the motor end detector and the linear	0
		overrun detection		scale (position detector) exceeds SV054, it is considered as overrun	
		width		and alarm 43 will occur.	
				If "-1" is set, alarms will not be detected.	
				If "0" is set, overrun will be detected by 2mm.	

The FB position mentioned above can be confirmed on the NC servo monitor screen.

1						
ſ	[SERVO MONITOR	(2)]			ALARM/DIAGN 2. 2/6	
L		<x></x>	<y></y>	<z></z>		
L	CYC CNT (p)	12321	0	99999		
L	GRDSP	10.000	10.000	10.000		
L	GRID	8.769	0.000	0.000		
L	MAC POS	35.688	0.000	0.000		
L	MOT POS] Č	35.230	0.000	0.000		
L	SCA POS }	35.188	0.000	0.000		
L	FB ERRORJ(i)	42	0	0		
L	DFB COMP (i)	0	0	0		
L	DIS TO GO	7.201	0.000	0.000		
L	POSITION (2)	35.688	0.000	0.000		
L	MANUAL IT	0.000	0.000	0.000		
l	LSK mm ABS G40 (ALARM S	G54 ME SERVO	MORY SPINDLE	PLC-I/I	F MENU	,
<u>\</u>						

Servo monitor screen on NC (M60S Series)

2-6-2 Speed loop delay compensation

(1) When to use

1) In case that the overshooting is caused when positioning or during pulse feed

Generally, machine end is positioned delaying from the motor end positioning. In position loop control of full closed loop, the machine end position is used as the position feedback. Therefore, the machine end position easily causes overshooting as the motor end position leads too much. Speed loop delay compensation function (type 2) prevents the overshooting by weakening the speed loop PI control after positioned loop has become "0". (Weakening the lead compensation means delaying.)

(2) Precautions

1) If the setting value is too large, the positioned loop falls into arrears

Speed loop delay compensation function weakens the leads compensation (PI control), as a result, it takes longer time to complete positioning. If the setting value is too large, positioning will not be performed and position droop will fall into arrears.

CAUTION If the setting value is too large, the positioned loop falls into arrears.

(3) Procedures for speed loop delay compensation

1) Start delay compensation control

Start delay compensation selection type 2 with SV027.bit1,0.

2) Set torque offset (SV032)

Set the unbalance torque of the axis in SV032 (TOF). (For how to measure the unbalance torque, refer to [2-4-1(1) Unbalance torque and frictional torque].)

3) Adjust speed loop delay compensation

Measure the position droop waveform and confirm the overshooting. Raise SV007 (VIL) by 5 at a time so that the overshooting will be eliminated. Do not raise too much, or position droop will fall into arrears after the axis has stopped.

No.	Abbrev.	Parameter name	Unit				Explanati	on			Normal setting range			
SV027	SSF1	Servo function selection 1	Use typ F aflt 0 1	E E zrn2 pit	D C afse Mea 00: Delay disabl 01: Delay type 1	mpensation B A ovs aning wher compensated compensa	n. (Type 1 9 8 Imc "0" is set tion select	ion	6 5 2rn3 vfo Mea 10: Delay type 2 11: Setting	tible type.) 4 3 ct ining when compensat prohibited	2 1 0 upc vcnt			
SV007	VIL	Speed loop delay compensation		Set duri	this when	limit cycle (iing.	occurs, or v	when	overshootir	ng occurs	0 to 30			
SV032	TOF	Torque offset	Stall%	Stall% Set the unbalance torque. -60 to 60 Set the same value as that is set when adjusting the lost motion compensation. -60 to 60										

2-6-3 Dual feedback control

(1) When to use

1) When the precision of the surface cut by deep cuts function is not good

When using a linear scale, the feedback will be returned sensitively until the cutting load collides as it directly detects the machine end position including a table etc. As a result, the position loop control becomes unstable, and the cut surface may have undulation. Dual feedback control enables the stable control and also the cutting precision is improved as the high frequency factors included in the machine end FB is eliminated.

2) When position droop vibrates during acceleration/deceleration

In case that the rigidity of machine system is low in the full closed system of a larger machine etc., position loop gain cannot be raised occasionally as the response at acceleration/deceleration becomes vibrative and overshooting is caused. By using dual feedback control, the vibration limit of the position loop gain (PGN) can be raised as it enables the stable position loop control.

(2) Precautions

1) Optional functions

Dual feedback control is an optional function. In case that the initial parameter error (error No. 103, error No. 2303 in M60S series) occurs, option parameter does not exist.

2) Do not raise the control time constant (SV051) too much

When raising the control time constant (SV051), the limit of position loop gain can be raised up to the level of semi-closed loop control, however, it affects interpolation precision and the quadrant protrusion cannot be compensated completely by lost motion compensation. (In case that the machine backlash is large,) this phenomenon occurs remarkably especially in the machine whose cutting feedrate is very fast. When raising time constant, the position loop control becomes stable as it becomes similar to the semi-closed loop control, however, it means that the machine end (linear scale) FB is not used.

3) Positioning time is postponed

In dual feedback control, positioning is performed according to the motor end FB position, and then moved to the machine end FB position according to control time constant (SV051). If the control time constant is small (less than about 20ms), it will not affect. However, if the difference between motor end FB and machine end FB is large and the control time constant is also large, it takes longer time to carry out the final positioning.

(3) Procedures for dual feedback control adjustment

1) Start dual feedback control

Set SV017.bit1 to "1" and turn OFF/ON the power again.

2) Confirm the effect

A certain effect can be obtained just by starting dual feedback control. If the effect is enough, set SV051 to "1" to make it clear that this function is being used and finish adjusting.

If the effect is not enough, following adjustment is required.

3) Set control voltage non-sensitive zone (SV052)

Set the machine backlash amount in SV052. Set the value which is equivalent to #2012:G1back, the axis specification parameter of NC (M60S series), in semi–closed loop control. (Note: The setting unit for G1back is normally [0.5µm].)

4) Adjust the control time constant

Raise SV051 by 5ms at a time from "0", adjust the time constant so that the precision of cut surface is improved and overshooting is suppressed, increase the adjusted time constant by 1.5 times to double to allow a margin, and finally set the resulted value.

No.	Abbrev.	Parameter name	Unit					Exp	lanati	on						Nor settina	mal range
SV017	SPEC*	Servo specification selection	Dual fe	edbad	k control i	is star	ted w	ith the	e follo	wing	parar	neters	S.			<u></u>	
			F	Е	E D C B A 9 8 7 6 5 4 3											1	0
				. m	mtr drva drvu mpt mp abs vdir fdir vfb qr										qro	dfbx f	dir2
			k	oit	Me	aning	when	"0" is	s set			Mea	aning	when	"1" is	s set	
			1	dfbx	Dual feed	back (contro	l stop			Dua	l feed	back o	contro	l start		
SV051	DFBT	Dual feedback control	ms	Set	the dual fe	edba	ck co	ntrol t	ime c	onsta	nt.					0 to	20
		time constant		When "0" is set, the control is performed by 1ms.													
SV052	DFBN	Dual feedback control	μm	n Set the machine backlash amount. 0 to 10											010		
		voltage dead zone		Set	the value	which	is eq	uivale	ent to	the N	C pa	ramet	er G1	back			

 Dual feedback control is for compensating the phenomenon caused by the insufficient rigidity of the machine. If there are any other items to be improved in the machine side (for example, the position where the scale is attached etc.), improve them at first.

- 2. Before using dual feedback control function, complete the servo adjustment in normal control (which means the full closed loop control without dual feed back control) and confirm the position loop gain (PGN).
- Lower the position loop gain if overshooting or vibration occurs during acceleration/deceleration even though control time constant (SV051) is set to "10ms".

2-7 MDS-C1/CH-Vx Parameter List

No.	Abbrev.	Parameter name	Explanation	Setting range	Reference
SV001	PC1*	Motor side gear ratio	Set the motor side and machine side gear ratio. For the rotary axis, set the total deceleration (acceleration) ratio.	1 to 32767	2-1-1
SV002	PC2*	Machine side gear ratio	Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767	2-1-1
SV003	PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/ deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC). (If "201" or bigger is set, the SHG control cannot be used.)	1 to 200	2-2-6 (3) 2-2-6 (4)
SV004	PGN2	Position loop gain	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC).	0 to 999 (rad/s)	
SV005	VGN1	Speed loop gain 1	When not using the SHG control, set to "0". Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 999	2-2-3 2-2-5
SV006	VGN2	Speed loop gain 2	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. As in the right figure, set the speed loop gain of the speed 1.2 times as fast as the motor's rated speed, and use this with SV029 (VCS). When not using, set to "0".	-1000 to 1000	_
SV007	VIL	Speed loop delay compensation	Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning. Select the control method with SV027 (SSF1)/bit1, 0 (vcnt). Normally, use "Changeover type 2". When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0". No changeover When SV027 (SSF1)/ bit1, 0 (vcnt)=00 The delay compensation control is always valid. Changeover type 1 When SV027 (SSF1)/ bit1, 0 (vcnt)=01 The delay compensation control works when the command from the NC is "0". Overshooting that occurs during pulse feeding can be suppressed. Changeover type 2 When SV027 (SSF1)/ bit1, 0 (vcnt)=10 The delay compensation control works when the command from the NC is "0" and the position droop is "0". Overshooting or the limit cycle that occurs during pulse feeding or positioning can be suppressed.	0 to 32767	2-6-2
SV008	VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999	2-2-6 (2) 2-2-6 (4)
SV009	IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics, the setting is fixed for each type of motor.	1 to 20/80	
SV010	IDA	Current loop d axis lead compensation	Set the standard values for all the parameters depending on each motor type.	1 10 20400	-
SV011		Current loop q axis gain Current loop		1 to 4096	
57012	100	d axis gain			

Abbrev.	Parameter name	Explanation	Setting range	Reference
ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 999 (Stall [rated] current %)	-
ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 999 (Stall [rated] current %)	_
FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.	0 to 999 (%)	2-2-6 (4)
LMC1	Lost motion compensation 1	Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/ Imc)) is selected. Type 1: When SV027 (SSF1)/ bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensa- tion amount is zero. Normally, use Type 2. Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero. When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings)	-1 to 200 (%) -1 to 100 (Stall [rated] current %)	2-4-1
	Abbrev. ILMT ILMTsp FFC	Abbrev. Parameter name ILMT Current limit value ILMTsp Current limit value in special control FFC Acceleration rate feed forward gain LMC1 Lost motion compensation 1	Abbrev. Parameter name Explanation ILMT Current limit value Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor. ILMTsp Current limit value in special control Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) FFC Acceleration rate feed forward gain "0". For the SHG control, set 0*100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time. Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/ Imc)) is selected. Type 1: When SV027 (SSF1)/ bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount based on the stall (rated) current of the motor. Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is dou	Abbrev Parameter name Explanation Setting range ILMT Current limit value Set the normal current (torque) limit value. (Limit values for both + and - direction.) 0 to 999 (Stall [rated] current %) ILMTsp Current limit value in special control Set the current (forque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + feed forward gain 0 to 999 (Stall [rated] current %) FFC Acceleration rate feed forward gain When the value is '500'' when not using. 0 to 999 (Stall [rated] current %) FFC Acceleration rate feed forward gain When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time. 0 to 999 (%) Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/ Imc)) is selected. 1 to 200 (%) LMC1 Lost motion compensation 1 Type 1: When SV027 (SSF1/ bit), 8 (Imc)=10 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensa- tion amount is zero. -1 to 200 (%) (Stall [rated] current %) LMC1 Lost motion compensation 10 Type 2: When SV027 (SSF1/ bit), 8 (Imc)=10 Set

No.	Abbrev.	Parameter name			Explanation Setting range R												Reference		
				F	E spi	D C m	В	A	9 mpt3	8 mp	7 abs	6	5 vdir	4 fdir	3 vfd	2 sec	1 h dfb	0 ox fdir2	
				b	it	Mea	ning	when	"0" is	s set			Mear	ning v	vher	า "1"	is se	et	Reference
				0	fdir2	Speed fe	edba	ck fo	rward	l pola	rity	Spee	ed fee	dbac	k re	vers	e pol	arity	—
				1	dfbx	Dual feed	back	contro	ol stop)		Dual	feedb	ack c	ontro	ol sta	rt		2-6-3
				2	seqh	READY/S	Servo	ON	time ı	norm	al	REA	DY/Se	ervo (ON t	ime	high :	speed	-
				3	vfb	Speed fe	edba	ck filt	ter sto	р		Spee	ed fee	dback	c filte	r sto	p (22	250Hz)	2-2-4 (5)
				4	fdir	Position f	eedb	ack fo	orwar	d pola	arity	Posit	ion fe	edba	ick r	ever	se po	olarity	-
SV/017	SDEC*	Servo		5	vdir Standard setting HA motor (4 pole motor) Detector installation position 90 degrees (B, D)								_						
30017	SFLU	selection		6															
				7	abs	Incremer	ntal co	ontro				Abso	olute p	oositio	on c	ontro	bl		-
				8	mp	MP scale	360F	' (2m	m pitc	:h)		MP s	cale 7	720P	(1mr	n pit	ch)		-
				9	mpt 3	MP scale	ABS	deteo	ction N	VC cc	ontrol	MP s (Star	cale Andard	ABS c settir	letec ng)	tion	autor	matic	_
				Α															
				В															
				C D E F	spm	0 : 3 1 : 1 2 : 3 3 to F	Settir When Settir Settir	ng for using ng for ng pro	norm g the 3 MDS phibite	nal us S type S-CH- ed	se e driv Vx (4	e unit 100V t	of the type)	MDS	8-C1	-Vx (200V	′ type)	
				(Not	e) Set	to "0" for	bits v	with r	no pai	rticula	ar de	scripti	on.						
SV018	PIT*	Ball screw pitch	Se	t the	ball so	crew pitch	. Se	et to "	360"	for th	ie rot	Set the ball screw pitch. Set to "360" for the rotary axis. 1 to 32767 (mm/rev)							

No.	Abbrev.	Parameter name	E	Explanation		Setting range	Reference
			In the case of the semi-close Set the same value as SV(of SV020.)	1 to 9999 (kp/rev)			
SV019	RNG1*	Position detector resolution	of SV020.) In the case of the full-closed Set the number of pulses p Detector model name OHE25K-ET, OHA25K-ET OSE104-ET, OSA104-ET OSE105-ET, OSA105-ET RCN723 (Heidenhain) Relative position detection scale AT41 (Mitsutoyo) FME type, FLE type (Futaba) MP type (Mitsubishi Heavy Industries) AT342 (Mitsutoyo)	loop control per ball screw pitcl Resolution 100,000 (p/rev 1,000,000 (p/rev 8,000,000 (p/rev 8,000,000 (p/rev 8,000,000 (p/rev 8,000,000 (p/rev 8,000,000 (p/rev 1,000,000 (p/	n. SV019 setting 100 100 100 NO NO NO NO NO NO NO NO NO NO	1 to 9999 (kp/pit)	2-1-2
			LC191M (Heidenhain)	Refer to specification manual for each detector Refer to	SV018 (PIT) PIT/Resolution (μm)		
			LC491M (Heidenhain)	specification manual for each detector	PIT/Resolution (µm)	-	
SV020	RNG2*	Speed detector resolution	Set the number of pulses per Detector model na OSE104, OSA104 OSE105, OSA105	one revolution of the second sec	ne motor end detector. SV020 setting 100 1000	1 to 9999 (kp/rev)	
SV021	OLT	Overload detection time constant	Set the detection time consta Set to "60" as a standard. (ant of Overload 1 (For machine tool b	Alarm 50). puilder adjustment.)	1 to 999 (s)	-
SV022	OLL	Overload detection level	Set the current detection leve the stall (rated) current. Set tool builder adjustment.)	110 to 500 (Stall [rated] current %)	-		
SV023	OD1	Excessive error detection width during servo ON	Set the excessive error detect <standard setting<br="">value> OD1=O When "0" is set, the excessive</standard>	ction width when s Rapid trav D2= (mm/ 60*P re error detection v	ervo ON. verse rate min) /2 (mm) GN1 vill not be performed.	0 to 32767 (mm)	2-4-2
SV024	INP	In-position detection width	Set the in-position detection Set the accuracy required for The lower the setting is, the however, the cycle time (settin setting is "50".	0 to 32767 (µm)	_		

Sv025 MTYP* Motor/Delector	No.	Abbrev.	Parameter name							Ex	kplan	ation							Reference
SV025 MTVP* Motor/Detector F E D C B A 9 8 7 6 5 4 3 2 1 0 bit Explanation Explanation Motor/SPEC. Set the motor type. <				*Whe	n using	, MC	DS-C1-V	x Serie	es (2	200V 1	type))							
SV025 MTYP* Motor/Detector Set the sole of the set of the sole of the so					FE	1	D C	В	A	9	8	7	(3 5	4	3	2	1 0	٦
Sv025 MTVP Motor/Detector Image: second						pen	•	-	е	ent					mty	2			1
Sv025 MTYP Motor/Detector Set the motor type. Set this along with Sv017 (SPEC)/spm. T SV025 MTYP Set the motor type. Set this along with Sv017 (SPEC)/spm. 1 When Sv017/spm=0 (Normal drive unit)					hit	<u> </u>						Evolor	onti	20					
SV025 MTVP* Motor/Detector Type Type Motor/Detector Type SV025 MTVP* Motor/Detector Type Type Type Type				C)	Se	t the mo	tor type	9	Set th	nis a	Explai long w	ialio vith	50 SV017 (S	PEC)/som	1		Reference
Sv025 MTVP* Motor/Detector type St St <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1)</td> <td>When S</td> <td>V017/s</td> <td>pm:</td> <td>=0 (N</td> <td>orma</td> <td>al drive</td> <td>e un</td> <td>it)</td> <td>. 20</td> <td>, opn</td> <td></td> <td></td> <td></td>				1		1)	When S	V017/s	pm:	=0 (N	orma	al drive	e un	it)	. 20	, opn			
Sv025 MTVP* Motor/Detector yp x0 HA40N HA400L HA53L				2	2		Setting	0x		1x		2x		Зx	4x	5x	6x	7x	
SV025 MTVP* Motor/Detector ype Motor/Detector ype SV025 MTVP* Motor/Detector ype ype Motor/Detector x1 Ma32N HC122				3	mtyp		x0	HA40	N		HA	50L	ļ.	HA53L					
SV025 MTVP Moto/Detector SV025 MTVP Moto/Detector Npe SV025 MTVP Moto/Detector Npe SV025 MTVP Moto/Detector Npe NTVP Moto/Detector Npe Noto/Detector SV025 MTVP MtvP Moto/Detector Npe Noto/Detector Npe Noto/Detector SV025 MTVP MtvP Moto/Detector Npe Noto/Detector Npe Noto/Detector Npe MtvP MtvP Moto/Detector Npe Mtv28 NtvP Moto/Detector Npe Mtv28 Npe Mtv28 Npe Mtv28 Npe Mtv28 Npe Mtv28 Npe Mtv28 Npe Npe Nt Mtv28 Npe Npe				4	<u>,</u>		x1 x2		N NN		HA1	100L		HA103L					
SV025 MTYP Motor/Detector NUTYP Motor/Detector Image: State of the state				6	<u>,</u>		x3	HA200)N		HAS	300L		HA303L					
SV025 MTVP Motor/Detector SV025 MTVP Motor/Detector ype Motor/Dete				7	,		x4	HA300)N		HA	500L		HA503L					
SV025 MTYP* Motor/Detector bype Motor/Detector SV025 MTYP* Motor/Detector Setting 8							x5	HA700	N		ļ		ļ						
SV025 MTYP- Motor/Detector type Motor/Detector Website HA150L HA150L x0 HA4150L HA150L HA150L HA150L x0 HA420N HC122 HC100 HC100 x1 HA30N HC102 HC103 HC103R x2 HA103N HC202 HC203 HC203S HC203R x6 HC020 HC203 HC203S HC203R HC202							x6	HA900)N		<u>ц</u> л		2						
SV025 MTYP* Motor/Detector ype							x7 x8				HA-	LH15K	2 2		ļ				
SV025 MTYP* Motor/Detector g A HA150L HA153L HA150L xC HA150L HA153L HA150L xC HA150L HA151L HA150L xD HA151L HA150L HA150L xD HA151L HA150L HA150L xD HA151L HA150L HA150L xD HA151L HA150L HA150L xD HA1511K2 HA150L HA150L xE HA1511K2 HA150L HA150L xE HA1411K2 HA150L HA150L xE HA1411K2 HA150L HA150L WDor/Detector W HA150L HC103R x2 HA103N HC102 HC103R x3 HA203N HC202 HC203 HC203R x3 HA203N HC452 HC453 HC503R HC503R x6 HA203N HC452 HC453 HC503R HC503R HC503R x6 HA203N HC452 HC453 HC452 HC453 <							x9						Ī						
SV025 MTYP* Motor/Detector MTYP* Motor/Detector type Motor/Detector							хA				HA1	150L		HA153L					
SV025 MTYP* Motor/Detector MTYP* Motor/Detector type Motor/Detector							хB												
SV025 MTYP* Motor/Detector type* type MTYP* type Motor/Detector type Setting 8x 9x Ax Bx Cx Dx Ex Fx x6 HA-LF15K2 HA-LF15K2 HC103 HC103R HC103R HC103R HC103R HC103R HC103R HC103R HC203R Hx Hx <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xC vD</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							xC vD												
SV025 MTYP* Motor/Detector ype Motor/Detector Setting 8x 9x Ax Bx Cx Dx Ex Fx x1 HA32N HC52 HC53 HC103 HC103R HC328 HC333							xE				HA-	LF11K	2						
SV025 MTYP* Motor/Detector Setting 8x 9x Ax Bx Cx Dx Ex Fx MTYP* Motor/Detector Type Motor/Detector HA33N HC102 HC103 HC103R x2 HA103N HC102 HC103 HC103R HC203 HC203R x3 HA203N HC202 HC203 HC203R HC203R HC203R x4 HA203N HC202 HC203 HC203R HC203R HC203R x4 HA203N HC202 HC203 HC203R HC202R HC203R x5 HA703N HC202 HC203 HC203R HC202R HC203R x6 HC702 HC703 HC203 HC203R HC202R HC203R HC202R x7 HA30N HC202 HC203 HC203R HC202R HC202R HC203R HC202R HC203R HC202R <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xF</td> <td></td> <td></td> <td></td> <td>HA-</td> <td>LF15K</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							xF				HA-	LF15K	2						
SV025 MTYP* Motor/Detector Setting 6x 9x Ax Bx Cx Dx Ex Fx x0 H433N HC102 HC103 HC103R HC102 HC103R HC103R HC102 HC103R HC103R HC102 HC103R HC104R HC102 HC102 HC118 HC118 HC118 HC118																			
SV025 MTYP* Motor/Detector image: motor moto							Setting	8x		9x	Ax	Bx		Cx	Dx	E	х	Fx	
SV025 MTYP* Motor/Detector Notor/Detector Notor/Detector Notor/Detector Notor/Detector x3 HA203N HC252 HC253 HC253R HC253R x4 HA203N HC252 HC253 HC253R HC253R x5 HA703N HC452 HC263R HC203R Image: Control of the state of							XU x1	HA43N HA83N	N N			HC52 HC10	2	HC53 HC103		HC1	03R		
SV025 MTYP* Motor/Detector type x3 HA203N HC202 HC203 HC203R HC4035R HC463 HC503R HC403R HC402R HC402R </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>x1 x2</td> <td>HA103</td> <td>3N</td> <td></td> <td></td> <td>HC15</td> <td>2</td> <td>HC153</td> <td></td> <td>HC1</td> <td>53R</td> <td></td> <td></td>							x1 x2	HA103	3N			HC15	2	HC153		HC1	53R		
1 type 1 + 4 + A303N HC352 HC353	SV025	MTYP*	Motor/Detector				x3	HA203	3N			HC20	2	HC203		HC2	03R		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01020		type				x4	HA303	3N		ļ	HC35	2	HC353		HC3	53R		
x0 Incrue							x5 x6	HA703	3N			HC45	2 2	HC453		HC5	03R		
x8 x8 x8 x9 x4 HA93N x8 x8 x8 xC HA053N x8 xD HA13N x8 xF HA33N x8 x8 x8 x9 x4 HA23N x6 x7 HA33N x8 x8 x8 x8 x9 x8 x8 x8 y8 x8 x9 x4 Bx Cx Dx Ex Fx x0 x1 x2 x3 x4 HC353 x5 x4 HC452 HC453 x6 x7 x8 x8 x8 x8 x8 x8 x8 x8 x8 x8 x6 x6 x6 XD X8							x0 x7					HC90	2	110703					_
x9 xA HA93N xA HA93N xB xC HA053N xA xA xD HA13N xA xA xB xD HA13N xA xA xB xE HA23N xF xA xA BX xF HA33N xF xB xB xB xF HA33N xF xB xB xB xF HA33N xB xB xB xB xF HA33N xB xB xB xB x1 xB xB xB xB xB x5 HC452 HC453 xB xB xB x6 HC702 xA xA xA xA x8 x9 xA xA xA xA xB xA xA xA xA xA xB xA xA xA xA xA xB xA xA xA xA xA xA <							x8				ļ								
xA HA93N							x9												
xc HA053N							xA vB	HA93N	۷		l					l			
x0 HA13N							xC	HA053	3N		İ					İ			
xE HA23N							хD	HA13N	٧										
xF HA33N I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>хE</td> <td>HA23N</td> <td>۷</td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td>							хE	HA23N	۷		ļ					ļ			
2) When SV017/spm=1 (S type drive unit) Setting 8x 9x Ax Bx Cx Dx Ex Fx x0							xF	HA33N	N										
Setting 8x 9x Ax Bx Cx Dx Ex Fx x0						2)	When S'	V017/s	pm:	=1 (S	type	drive	uni	t)					
x0 x1 x2 x2 x3 x4 HC353 x3 x4 HC452 HC453 x4 x5 HC452 HC453 x4 x6 HC702 x7 x8 x8 x9 x4 x8 x9 x4 x8 x9 x4 x8 x6 x8 x9 x8 x9 x8 x9 x8 x9 x9 x4 x8 x9 x6 x7 x8 x8 x9 x6 x7 x8							Setting	8x		9x		Ax	B>	Cx	Dx		x	Fx	
x1 x2 x3 x4 HC353 x4 x4 HC452 HC453 x4 x5 x6 HC702 x6 x7 x8 x7 x8 x9 x4 x8 x4 x8 x9 x4 x8 x6 x9 x6 x6 x7 x8 x9 x6 x9 x6 x8							x0												
x2 x3 HC353 x4 HC353 HC452 x5 HC452 HC453 x6 HC702 HC453 x7 HC453 HC453 x8 HC452 HC453 x9 HC453 HC453 x8 HC453 HC453 x9 HC453 HC453 x8 HC453 HC453 x9 HC453 HC453 x9 HC453 HC453 x8 HC453 HC453 x9 HC453 HC453 x8 HC453 HC453 x9 HC453 HC453 x0 HC453 HC453 x2 HC453 HC453 x1 HC453 HC453 x2 HC453 HC453 x4 HC453 HC45							x1												
x4 HC353 x5 HC452 x6 HC702 x7 x8 x9 xA xB xC xD xF							x3								1				
x5 HC452 HC453 Image: Constraint of the second secon							x4				HC	353							
x6 HC702 x7							x5		HC	452	HC4	453			l				
x7 x8 x8 x9 xA xa xB xa xC xa xD xa xF xa							x6		HC	702									
x0 x9 xA xB xC xD xE xF							x7 v9												
xA xB xC xD xE xF							x9												
xB xC xD xE xF							хA								1				
xC xD xE xF							хB												
							xC	ļ				ļ.							
							xD xF												
							xF												
											•				•				

No.	Abbrev.	Parameter name							E	Expl	lanati	on							Reference	
			Whe	en using	MD	S-CH-V×	Ser	ies (400V	' typ	e)									
			_							,,	,									
				bit							Ex	planat	ion						Reference	
				0	Se	t the mot	tor ty	/pe.	Set	this	alon	g with	SV01	7 (SPEC)/spn	۱.			
				1	Se	t SV017(SPE	:C)/s	spm to	o 2.										
				2		Setting	0	×	1x	_	2x	3x	4x	_	5x	6	x	7x		
				mtyp		x0														
				4		x1														
				5		X2										·				
			7		x3 															
				/		×4 ×5														
						×6														
						x0 x7							-			·				
						x8		ŕ									i			
						x9		(1			1			1				
						хA		ĺ		Ť						1	1			
						хB														
						xC														
						xD														
SV025	MTYP*	Motor/Detector type				хE													_	
0.010						xF														
						Cotting	0.7	0.4	A.,		Dv		I	0.4		Dv	F ₂	Бу		
						Setting	οx	9x	AX	нс	DX -H52		нс.н	53		DX	EX	FX		
						x1			1	нс	-H102		HC-H	103	3					
								x2				HC	C-H152	- 2	HC-H	153	3			
									x3			1	HC	C-H202	. 2	HC-H	203	3		
					x4 HC-H352 HC-H353	3														
						x5		ĺ	1	HC	C-H452	2	НС-Н	453	3					
						x6				HC	C-H702	2	HC-H	703	3					
						x7			<u> </u>	HC	C-H902	2	HC-H	903	3		ļ			
						x8				HC	C-H110)2	HC-H	110)3		ļ			
						x9			ļ	HC	C-H150)2								
						xA														
						xB														
						xC				ļ										
						xD -														
						xE														
						x⊢		<u> </u>	1	<u> </u>										
			╎└		1															

No.	Abbrev.	Parameter name		Explanation Setting range					
			Continuing	from the prev	vious page.				
<u>No.</u> SV025	MTYP*	Parameter name	Continuing bit 8 9 A ent B C D pen F	From the prevent of the provided of the positive for "entrient same value pen setting 0 1 2 3 4 5 6 6 7 8 8 9 9 A 8 9 0 A B C C D	Explanation ious page. ctor type. tion detector type ". In the case of for "pen" and "en ent setting 0 1 2 3 Setting impossible Setting impossible	Explanation e for "pen", and the speed de f the semi-closed loop contro t". Detector model name OSE104 OSE104 OSE105, OSA105 OHE25K-ET, OSE104-ET OHA25K-ET, OSA104-ET OHA25K-ET, OSA104-ET OHA25K-ET, OSA104-ET OSE105-ET, OSA105-ET, RCN (Heidenhain) Relative position detection scal (Mitsubishi Heavy Industries) AT41 (Mitsutoyo), FME type, FI (Futaba) AT342,AT343 (Mitsutoyo), LC191M/491M (Heidenhain), M The setting of the slave axis in speed/current synchronization of When the master axis is the sen control. The setting of the slave axis in speed/current synchronization of When the master axis is the full control.	Setting range	Reference	
					synchronization)	control. (Current synchronization contro for MDS-C1-V2.)	ol is only		
				Е	Setting impossible				
				F	Setting impossible				
		Excessive error	Set the ove	acciva arror d	etection width wh				
SV/026	002	detection width	For the sta	essive error u ndard setting	refer to the expla	nation of SV023 (OD1)	0 to 32767	2-4-2	
0,020	002	during servo OFF	When "0" is	s set, the exce	essive error detec	tion will not be performed.	(mm)		

r		1			
No.	Abbrev.	Parameter name	Explanation S	Setting range	Reference
SV027	SSF1	Servo function selection 1	F E D C B A 9 8 7 6 5 4 3 2 aflt zrn2 afse ovs Imc omr zrn3 vfct up bit Meaning when "0" is set Meaning when "1" 0 vfct up 0 vcnt 0: Delay compensation changeover type of the speed loop delay compensation. 0: Delay compensation changeover type of the speed loop delay compensation. 0 vcnt 0: Delay compensation changeover invalid Start torque compensation invalid Start torque compensation invalid 2 upc Start torque compensation invalid Start torque compensation invalid 10: Jitter compensation invalid 4 vfct Set the number of compensation pulses of the jitter compensation 01: Jitter compensation 10: Jitter compensation 10: Jitter compensation 10: Jitter compensation 10: 6 zrn3 ABS scale: Set to "1" in using AT342, AT343, LC191M/491M Machine end compensation 10: Lost motion compensation 10: Lost motion compensation 10: Lost motion compensation 10: Lost motion compensation 10: Lost motion compensation 10: Lost motion compensatio	2 1 0 2 1 0 pc vcnt " is set on type 2 sation valid msation. on 2 pulses M. sation valid 41 (LMC2). ensation apensation apensation apensation start	Reference 2-6-2
SV028			Not used. Set to "0".	0	-
SV029	VCS	Speed at the change of speed loop gain	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. Set the speed at which the speed loop gain changes, and use this with SV006 (VGN2). (Refer to SV006.) When not using, set to "0"	0 to 9999 (r/min)	_
	The hig	ther order 8bits and atting value of SV/03	lower order 8bits are used for different functions. 0" = (Icx*256) + IVC		
	Abl	prev. Parameter na	ame Explanation S	Setting range	Reference
SV030	IV (La ora (H	/C Voltage deac time der) compensatio	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. When "0" is set, a 100% compensation will be performed. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated. Set to "0" as a standard. Use this in combination with SV040 and the high order 8bits of	0 to 255 (%) 0 to 127	2-5-4
	ord	der)	SV045.		

No.	Abbrev.	Parameter name	Explanation Setting range	Reference
SV031	OVS1	Overshooting compensation 1	Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1/ovs) is selected. Type 1: When SV027 (SSF1)/ bitB, A (ovs)=01 Set the compensation amount based on the motor's stall current. Normally, use Type 3 as this is an old compatible type. Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10 Set the compensation amount based on the motor's stall current. Normally, use Type 3 as this is an old compatible type. Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10 Set the compensation amount based on the motor's stall current. Normally, use Type 3 as this is an old compatible type. Type 3: When SV027 (SSF1)/ bitB, A (ovs)=11 This is compatible with the standard specifications. The offset amount tas free from overshoot by adjusting the compensation gain (SV031, SV042) while increasing its value in increments of 1%. In the feed forward control mode, set "SV034(SSF3)/bit F to C" (ovsn), as well. -1 to 100 When SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, sV042: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	2-5-2
SV032	TOF	Torque offset	Set the unbalance torque of vertical axis and inclined axis. (Stall [rated] current %)	2-4-1 (1) 2-5-3 2-6-2
SV033	SSF2	Servo function selection 2	FEDCBA9876543210doshvxsvxnfd2nf3nfd1zckbitMeaning when "0" is setMeaning when "1" is set0zckZ phase check valid (Alarm 42)Z phase check invalid1Set the filter depth for Notch filter 1 (SV038).2Value00001011100101110111nfd1Depth (dB) Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.23Deep \leftarrow Shallow →4nf3Notch filter 3 stopNotch filter 3 start (1125Hz)5Set the operation frequency of Notch filter 2 (SV046).Value000001010011100101111nfd2Depth (dB) Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.2deepdeepdeepdeepdeepdeepdeepDeep \leftarrow Shallow →Start (deepdeepdeepdeep00:By current loop gain10:High gain mode selected9hvx01:MDS-B-Vx compatible mode11:High gain mode selectedABImage: Compatible depImage: Compatible depImage: Compatible depImage: Compatible depImage: Compatible depImage: Compatible depDigital signal output selection0:MP scale absolute position detection, offset demand signal output1:Specified speed signal outp	Reference – 2-2-4 (1) 2-2-4 (6) 2-2-4 (5) 2-2-4 (6) – –

r		,										
No.	Abbrev.	Parameter name	Explanation Setting range	Reference								
			F E D C B A 9 8 7 6 5 4 3 2 1 0 osvn <td></td>									
			bit Meaning when "0" is set Meaning when "1" is set	Reference								
			0 has1 HC) HAS control 1 valid (HC: High acceleration rate support)	_								
			1 has2 Setting for normal use (Except for HAS control 2 valid (HC)	_								
			2 mohn MDS-B-HR motor thermal valid MDS-B-HR motor thermal ignored									
SV034	SSF3	Servo function selection 3	5 zeg Z phase normal edge detection (Setting for normal use) Z phase reverse edge detection (Valid only when SV027/bit6=1)	_								
			6 os2 Setting for normal use Overspeed detection level changeover	_								
			9									
					CSet the non-sensitive band of the overshooting compensation type 3 in increments of 2μm at a time.EovsnIn the feed forward control, the non-sensitive band of the model position droop is set, and overshooting of the model is ignored. Set the standard 2μm (0001).	_						
			(Note) Set to "0" for bits with no particular description.									
			F E D C B A 9 8 7 6 5 4 3 2 1 0 clt clG1 cl2n clet cltq ckab iup tdt									
			bit Meaning when "0" is set Meaning when "1" is set	Reference								
			0 Td creation time setting 1 Set to "0". (For machine tool builder adjustment) 2 tdt 3 tdt	_								
			4									
			 *When using MDS-C1-Vx Series (200V type): 6 iup Set to "1" when using any of motors from HC152 to HC702 and from HC153 to HC453. 	_								
SV035	SSF4	Servo function selection 4	7 ckab Setting for normal use No signal 2 (Alarm 21) special detection	_								
			8 Set the retracting torque for collision detection in respect to the maximum torque of the motor.									
			00: 100% 01: 90% 10: 80% (Standard) 11: 70% A Clet Setting for normal use The disturbance torque peak of the latest two seconds is displayed in									
			B cl2n Collision detection method 2 valid invalid Collision detection method 2	050								
			C Collision detection method 1	2-0-3								
			D clG1 The G1 collision detection level=SV060*clG1.									
			E When clG1=0, the collision detection method 1 during cutting feed won't function.									
												F Setting for normal use The guide value of the SV059 setting value is displayed in MPOS of the servo monitor screen.
1												

No.	Abbrev.	Parameter name	Explanation Setting range R																									
			F i E D C B A 9 i 8 7 6 5 4 3 2 1 0 amp rtvp ptvp																									
			bit Explanation	supply are	Reference																							
			1 connected, setting below is necessary.	supply are																								
						2 To validate the external emergency stop function, add 40	h.																					
							3 Setting 0x 1x 2x 3x 4x 5x 6x . ptyp Not Image: Setting of the set of the s	<u>/x 8x</u>																				
					4																							
			5 x1 CV-110	CR-10																								
			7 X3 04220	CR-22	-																							
			x4 CV-37	CR-37																								
				x5 CV-150 CV-450 CV-550 x6 CV-55 CV-260	CR-55																							
		x7 CV-370																										
		ryp∗ Power supply type	x8 CV-75	CR-75																								
SV036	PTYP*		* Power supply type	Power supply type	Power supply type	Power supply type	Power supply type	Power supply type	x9 CV-185	CR-90																		
												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iype	iype	.)		type	51.5				,,			51 ·			
															*When using MDS-C1-Vx Series (200V type):	hae												
										Resistance																		
													9 rtyp Setting Regenerative resistor model name value	g Regenerative resistor model name value Capacity														
																A 0 MDS-C1-CV (Setting when using power supply reger	eration)											
																		B 1 GZG200W260HMJ 2602 2 GZG300W130HMJ × 2 2602	80vv 150W									
																									3 MR-RB30 13Ω	300W	-	
							4 MR-RB50 13Ω	500W																				
						5 GZG200W200HMJ x 3 6.7Ω	350W																					
			7 R-UNIT-1 300																									
				8 R-UNIT-2 15Ω	700W																							
			9 R-UNIT-3 15Ω	2100W																								
			A to F No setting	Sorios																								
			(Note) The Tryp setting is required only for MDS-A-CR C	261163.																								
			*When using MDS-CH-Vx Series (400V type)																									
			C Always set to "0".																									
					_																							
			Set "the motor inertia + motor axis conversion load inertia" in respect																									
SV037	JL	Load inertia	to the motor inertia. SV037 (II) = $\frac{JI + Jm}{m} *100$ Im · Motor inertia	0 to 5000	2-2-2																							
		Scale	$SV037 (JL) = \frac{3175111}{Jm} *100 \text{ Jm}: \text{Motor inertia}$ (%)																									
SV/020		Notch filter	Set the vibration frequency to suppress if machine vibration occurs.	0 to 9000																								
50038	FHZ1	frequency 1	(Valid at 36 or more) When not using, set to "0".	(Hz)	2-2-4																							
SV039	LMCD	Lost motion compensation	Set this when the lost motion compensation timing doest not match.	0 to 2000	_																							
		timing	Adjust by increasing the value by 10 at a time.	(ms)																								

No.	Abb	orev.	Pa	rameter name		Explanation	Setting range	Reference
	The	e higl	her o	order 8bits and	lowe	r order 8bits are used for different functions.		
	"Se	etting	valu	ue of SV040" =	(lcy*2	256) + LMCT	Catting range	Deference
SV040		LM((Lov	CT w er)	Lost motion compensation non-sensitive	me	Set the non-sensitive band of the lost motion compensation in the feed forward control. When "0" is set, the actual value that is set is 2µm. Adjust by	0 to 100 (µm)	Reference
		lc: (Hig orde	y gh er)	band Current bias 2	2	increasing by 1µm at a time. Normally, set to "40" if you use HC202 to HC902, HC203 to HC703. Use this in combination with SV030 and the high order 8bits of SV045.	0 to 127	-
SV041	LM	C2	Lost motion compensation 2 Se Se		Set com dire Set	this with SV016 (LMC1) only when you wish to set the lost motion pensation amount to be different depending on the command ctions. to "0" as a standard.	-1 to 200 (Stall [rated] current %)	_
SV042	ov	′S2	Ov cor	ershooting npensation 2	Set ove com Set	this with SV031 (OVS1) only when you wish to set the rshooting compensation amount to be different depending on the mand directions. to "0" as a standard.	-1 to 100 (Stall [rated] current %)	2-5-2
SV043	OB	S1	Disturbance Se observer filter Tc frequency (C		Set Set To u (OB	the disturbance observer filter band. to "100" as a standard. ise the disturbance observer, also set SV037 (JL) and SV044 S2). When not using, set to "0".	0 to 1000 (rad/s)	2-5-1
SV044	OB	S2	2 Disturbance observer gain		Disturbance observer gain Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using set to "0"		0 to 500 (%)	
	The	e higi	ner o	order 8bits and	lowe	r order 8bits are used for different functions.		
	"Se	Abb	vait rev.	Parameter na	(ICY [*] 2 ime	Explanation	Setting range	Reference
SV045	45 TRUB (Low Frictional torq order)		lue	When you use the collision detection function, set the frictional torque.	0 to 100 (Stall [rated] current %)	2-4-1 (1) 2-5-3		
		lb (Hig ord	1 gh er)	Current bias 3	3	Set to "0" as a standard. Use this in combination with SV030 and the high order 8bits of SV040.	0 to 127	_
SV046	Fŀ	lz2	No free	tch filter quency 2	Set (Val	the vibration frequency to suppress if machine vibration occurs. id at 36 or more) When not using, set to "0".	0 to 9000 (Hz)	2-2-4
SV047	E	с	Ind vol nsa	luctive tage compe- ation gain	Set star pea	the inductive voltage compensation gain. Set to "100" as a dard. If the current FB peak exceeds the current command k, lower the gain.	0 to 200 (%)	-
SV048	EM	Grt	Ve dro tim	rtical axis op prevention e	Inpu dela occi whe	t a length of time to prevent the vertical axis from dropping by aying Ready OFF until the brake works when the emergency stop urs. Increase the setting by 100ms at a time and set the value are the axis does not drop.	0 to 20000 (ms)	2-4-3
SV049	PGN	l1sp	Position loop (sy gain 1 in spindle synchronous loo control Wh		Set (syr Set loop Whe and	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp)		_
SV050	PGN	√2sp	Po gai syr cor	Position loop Set gain 2 in spindle per synchronous (synchronous volume)		this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to orm the SHG control in the spindle synchronous control achronous tapping, synchronous control with spindle/C axis). en not performing the SHG control, set to "0".	0 to 999 (rad/s)	
SV051	DF	BT	Du cor cor	al feed back htrol time hstant	Set Whe The cont	the control time constant in dual feed back. en "0" is set, the actual value that is set is 1ms. higher the time constant is, the closer it gets to the semi-closed trol, so the limit of the position loop gain is raised.	0 to 9999 (ms)	2-6-3
SV052	DF	BN	Du cor ser	al feedback htrol non- hsitive band	Set Set	the non-sensitive band in the dual feedback control. to "0" as a standard.	0 to 9999 (µm)	
SV053	OI	53	Exe det in s	cessive error ection width special control	Set cont If "0 serv	the excessive error detection width when servo ON in a special trol (initial absolute position setting, stopper control, etc.). " is set, excessive error detection won't be performed when to ON during a special control.	0 to 32767 (mm)	-

When SV035 (SSF4)/bit7 (kkab)=0 Explanation Setting rational explanation Overrun ORE Overrun detection width in closed loop control Set the overrun detection width in the full-closed loop contol. (machine end detector) exceeds the value set by this detected. -1 to 327 (mm) SV056 EXPLANENTIAL (kkab)=0 -1 to 327 (mm) -1 to 327 (mm) SV054 The higher order 8bits and lower order 8bits are used for different functions. -1 to 327 (mm) SV054 Overrun in closed loop order) Set the overrun is detected with a 2mm width. 0 to 255 (mm) SV054 Overrun in closed loop of executed. Set the overrun detection width in the full-closed loop control. (mm) 0 to 125 (mm) SV054 Max. gate off detection width in the salarm detector with a parameter, it in closed loop order is set, overrun is detected with a 15µm width. 0 to 127 (mm) SV055 EMGx Max. gate off detax imm earror is set, overrun is detected with a 15µm width. 0 to 127 (mm) SV055 EMGx Max. gate off detax imm earror is set, overrun is detected with a 15µm width. 0 to 2000 (ms) SV055 EMGx Max. gate off detax imm earror is detacted with or No signal 2 (klarer 31). 0 to 2000 (ms) SV055 EMGx Max. gate off detax imm earror is	No.	Abbr	ev.	Par	ameter name		Explanation	Setting range	Reference		
Abbrev Parameter name Explanation Satting rat ORE Detection width in the full-closed loop control. If the gap between the motor end detector and the linear scale parameter, it is judged to be overrun and Alarm 43 will be detected. -1 to 327 (mm) SV054 When SV035 (SSF4/) bit? (kkab)=1 (Note) This applies to only MDS-C1-Vx Series. The higher order 8bits and lower order 8bits are used for different functions. -2000 to 255 (mm) SV054 OPER OPER Setting value of SV054" (NKSP*256)+ORE Setting value of SV054" (NKSP*256)+ORE ORE OPER OPER Setting value of SV054" (NKSP*256)+ORE Setting value of SV054" (NKSP*256)+ORE 0 to 255 (mm) ORE OPER OPER Setting value of SV054" (NKSP*256)+ORE Setting value of SV054" (NKSP*256)+ORE 0 to 255 (mm) NEE Special detection (High width for No order) Set the overrun detection width in the full-closed loop control. If the special detection width in the special detection width in the special detection width in the special detection (High width for No order) 0 to 255 (mm) SV055 EMGX Max. gate off delay time after emergency stop Set a length of time from the point when the emergency stop is input to the point when REA Dorel's set, overrun is detected with a 15µm width. 0 to 2000 (ms) SV056 <td< td=""><td></td><td>Whe</td><td>en S</td><td>V03</td><td>5 (SSF4)/ bit7</td><td>(ckab</td><td>)=0</td><td></td><td></td></td<>		Whe	en S	V03	5 (SSF4)/ bit7	(ckab)=0				
Sv055 EMGx Set the overrun detection within the full-closed loop control. If the gap between the motor end detector and the incer scale (machine end detector) exceeds the value set by this in closed loop control -1 to 327. (mn) VVben Sv055 (SSF4)/ bit7 (ckab)=1 (Note) This applies to only MDS-C1-VX Series. The higher order 8bits and lower order 8bits are used for different functions. -1 to 327. (mn) Sv056 ENER Parameter name Explanation Setting rail ORE (Low Overrun detection width in closed loop control Set the overrun and Alarm 43 will be detected. Setting rail NSE Special detection width in desed loop control Set the overrun and Alarm 43 will be detected. 0 to 226 (mm) NSE Special detection width for No control Set the overrun is detected with a 15m width. 0 to 127 (mm) Sv055 EMGx Max. gate off delay time after emergency stop Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsionly executed. 0 to 200 (ms) Sv055 EMGx Max. gate off the decleration control at emergency stop is stop to the decleration control at emergency stop. Set a length of time that takes from rapid to the set by oth pacify to stopping. -20000 to (ms) Sv056 EMGx SHG control gain in spindle synchron			Abb	rev	Parameter na	ame	Explanation	Setting range	Reference		
When SV035 (SSF4) bit? (kkab)=1 (Note) This applies to only MDS-C1-Vx Series. The higher order 8bits and lower order 8bits are used for different functions. SV054 "Setting value of SV054" =(NSE*266)+ORE Explanation Setting rate Abbrev. Parameter name Explanation Setting rate Overrun detection width in closed loop order) Set the overrun detection width be full-closed loop control. If the gap between the motor and detector and the linear scale diachine end detectol exceeds the values set by this parameter, it is judged to be overrun and Alam 43 will be detected. (Incm) 0 to 255 (mm) NES Special detection width for No grader) Systel affection width for No grader) 0 to 127 (mm) SV055 EMGx Max. gate off delay time after emergency stop is input to the point when READY OFF is compulsorily executed. Normally, set the same value as the absolute value of SV056. In preventing the vertical axis from dropping, the gate of is delayed to the deceleration control at emergency stop is input to the deceleration control at emergency stop is and that of SV048. 0 to 2000 (ms) SV056 EMGt In the vertical axis from dropping, the gate set a length of time that takes from rapid traverse rate (rapid) to stopping. the deceleration ime constant. 0 to 120 (ms) SV056 EMGt SHG control gain in spindle spind in spindle spind in spindle spind in spindle SHG control gain in spindle spind in spindle			ORE Overrun detection wid in closed loop control		th D	Set the overrun detection width in the full-closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "-1" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	-1 to 32767 (mm)	2-6-1 (3)			
Abbrev. Parameter name Explanation Setting rail Abbrev. Overrun detection width Set the overrun detection width in the full- closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it unchaine end detector) exceeds the value set by this parameter, it when 70° is set, overrun and Alam 34 will be detected. 0 to 255 (machine end detector) exceeds the value set by this parameter, it unchaine end detector) exceeds the value set by this parameter, it when 70° is set, overrun and Alam 74. 0 to 127 (µm) SV055 EMGx Special detectorion when 70° is set, overrun is detected with a 15µm width. 0 to 127 (µm) SV055 EMGx Max. gate off delay time begint of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. 0 to 2000 (ms) SV056 EMGt Max. gate off delay time begint of time set by SV048 if SV055's value is smaller than that of SV048. 0 to 2000 (ms) SV056 EMGt Deceleration time constant at emergency stop derive the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. -20000 to (ms) SV057 SHGC SHG control gain When not performing the SHG control, set this with S003 (PGN1) and SV049 (PGN2). 0 to 120 (machine spectroming the SHG control, set to '0'. SV058	SV054	Whe Tł "S	When SV035 (SSF4)/ bit7 The higher order 8bits ar "Setting value of SV054"				ab)=1 (Note) This applies to only MDS-C1-Vx Series. lower order 8bits are used for different functions. NSE*256)+ORE				
Verrun Set the overrun detection width in the full-closed loop control. If the gap between the motor end detection detected. 0 to 255 (machine end detection) width in the full-closed loop control. When '255' is set, the alarm detected. 0 to 255 (machine end detection) width. NSE Special detection (High width for No order) Special detection (High width for No order) When '255' is set, the alarm detection won't be performed. When '255' is set, the alarm detected with a 2mm width. 0 to 127 (mm) SV055 EMGx Max. gate off delay time after emergency stop for the penty them READY OFF is computationly executed. 0 to 200 (ms) SV055 EMGx Max. gate off delay time after emergency stop for the length of time set by SV048 if SV055's value is smaller than that of SV048. 0 to 200 (ms) SV056 EMGt Deceleration time constant at emergency stop gain In the vertical axis from dropping, the gate off is delayed for the algoth of the secular parts repaid traverse acceleration/ deceleration time constant. 0 to 200 (ms) SV057 SHGC SHG control gain When performing the SHG control, set the immus sign to the settings of both of the master axis and slave axis. 0 to 120 (mac/s) SV057 SHGC control gain SHG control gain SHG control gain SHG control gain SHG control gain SHG control synchronous sapping, synchronous control with spinide/C axis).		Abl		rev.	Parameter na	ame	Explanation	Setting range	Reference		
NSE (High order) Special detection width for No signal 2 When SV035 (SSF4)/bit7 (ckab), this setting is valid. Set the special detection width for No signal 2 (Alarm 21). 0 to 127 (µm) SV055 EMGx Max. gate off delay time after emergency stop Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048. 0 to 2000 (ms) SV056 EMGt Deceleration time constant at emergency stop In the vertical axis drop prevention time control, set the ime constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/ deceleration time constant. -20000 to 2000 to the settings of both of the master axis and slave axis. SV057 SHGC SHG control gain in spindle synchronous control Set this with SV049 (PGN1sp) and SV004 (PGN2). 0 to 120 (rad/s) SV058 SHGcsp SHG control gain in spindle synchronous control Set the torque estimating gain when using the collision detection not perform the SHG control, set the 'o''. Set the torque estimating gain 0 to 120 (rad/s) SV059 TCNV Collision detection torque estimating gain Set the torque estimating gain when using the collision detection monitor screen. Set the 'orque estimating gain			ORE (Low order)		Overrun detection width in closed loop control		Set the overrun detection width in the full- closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "255" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	0 to 255 (mm)	2-6-1 (3)		
SV055 EMGx Max. gate off delay time after emergency stop Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. Normally, set the same value as the absolute value of SV056. In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048. 0 to 2000 (ms) SV056 EMGt Deceleration time constant at emergency stop In the vertical axis from prevention time control, set the time constant used for the deceleration control at emergency stop. Set a length of the estings of both of the master axis and slave axis. -20000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 the execution time constant. SV057 SHGC SHG control gain When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). 0 to 120 (rad/s) SV058 SHGCsp SHG control gain Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to control 0 to 120 (rad/s) SV059 TCNV Collision detection torque estimating gain Set the torque estimating gain when using the collision detection function. -32768 to 32767 SV050 TLMT Collision detection level state as No. Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to which the data will not be output to "-1". SV064 DA1NO D/A output ch. 1 data No. Se		NS (Hiç ord		SE gh er)	Special detec width for No signal 2	tion	When SV035 (SSF4)/ bit7 (ckab), this setting is valid. Set the special detection width for No signal 2 (Alarm 21). When "0" is set, overrun is detected with a 15µm width.	0 to 127 (μm)	-		
SV056 EMGt In the vertical axis drop prevention time control, set the time constant used for the deceleration control at emergency stop. -20000 tc SV056 EMGt Deceleration time constant at emergency stop. In the vertical axis drop prevention time control at emergency stop. -20000 tc SV057 SHGC SHG control gain Normally, set the same value as the rapid traverse acceleration/ deceleration time constant. 0 to 120 (ms) SV057 SHGC SHG control gain When performing the SHG control, set this with S003 (PGN1) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control with spindle/C axis). 0 to 120 (rad/s) SV058 SHGCsp SHG control gain in spindle synchronous tapping, synchronous control with spindle/C axis). 0 to 120 (rad/s) SV059 TCNV Collision detection torque estimating gain when using the collision detection function. Set the torque estimating gain when using the collision detection function. -32768 tc 32767 (stal [rate current 9] SV060 TLMT Collision detection level When not using the collision detection function. -32768 tc 32767 (stal [rate current 9] SV061 DA1NO D/A output ch. 1 data No. In the case of MDS-C1-V2, set the axis on the side to which the data current 9 -1 to 129 (stal [rate current 9]	SV055	ЕМС	Max. gate off delay time after emergency stop		Set a to th Norr In pr for th that	a length of time from the point when the emergency stop is input ne point when READY OFF is compulsorily executed. mally, set the same value as the absolute value of SV056. reventing the vertical axis from dropping, the gate off is delayed he length of time set by SV048 if SV055's value is smaller than of SV048.	0 to 20000 (ms)	2-4-3			
SV057SHGCSHG control gainWhen performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2).0 to 120 (rad/s)SV058SHGCspSHG control gain in spindle synchronous controlSet this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous control in the spindle synchronous control with spindle/C axis).0 to 120 (rad/s)SV058SHGCspSHG control gain in spindle synchronous controlSet this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous control with spindle/C axis).0 to 120 (rad/s)SV059TCNVCollision detection torque estimating gainSet the torque estimating gain when using the collision detection function.Set the torque estimating gain when using the collision detection deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function32768 to 32767SV060TLMTCollision detection levelWhen using the collision detection function.0 to 990 (Stall Irat current %SV061DA1NOD/A output ch. 1 data No.Input the data number you wish to output to D/A output ch. 2 will not be output to "-1"32768 to 32767SV063DA1MPYD/A output ch. 1 output scaleSet the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit32768 to 32768 to 32768SV064DA2MPYD/A output ch. 2 output scaleSet the spring constant of the tool end compensation. In the se	SV056	EM	Gt	Deceleration t time constant at emergency stop		In th used time Norr dece Whe	he vertical axis drop prevention time control, set the time constant d for the deceleration control at emergency stop. Set a length of that takes from rapid traverse rate (rapid) to stopping. mally, set the same value as the rapid traverse acceleration/ eleration time constant. en executing the synchronous operation, put the minus sign to	-20000 to 20000 (ms)	2-4-3		
SV058 SHGCsp SHG control gain in spindle synchronous control Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to gain in spindle synchronous control O to 120 (synchronous tapping, synchronous control with spindle/C axis). SV059 TCNV Collision detection torque estimating gain Set the torque estimating gain when using the collision detection function. Set the torque estimating gain when using the collision detection function. -32768 to 32767 SV059 TCNV Collision detection torque estimating gain Set the torque estimating as SV035/bitF(clt)=1 and performing acceleration/ deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function. -32768 to 32767 SV060 TLMT Collision detection level When using the collision detection function, set the collision detection for "i set, none of the collision detection function will work. 0 to 999 (Stall [rate current 9] SV061 DA1NO D/A output ch. 1 data No. Input the data number you wish to output to D/A output ch. 2 data No. Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit. -32768 to 32778 to 327	SV057	SHG	ЭС	SH gaii	IG control		When performing the SHG control, set to "0"		2-2-6 (4)		
SV059TCNVSet the torque estimating gain when using the collision detection function. After setting as SV035/bitF(clt)=1 and performing acceleration/ detection torque estimating gain-32768 to 32767SV059TLMTCollision detection levelSet the torque estimating gain when using the collision detection function. Set to "0" when not using the collision detection function. Set to "0" when not using the collision detection function32768 to 32767SV060TLMTCollision detection levelWhen using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.0 to 999 (Stall [rate current %]SV061DA1NOD/A output ch. 1 data No.Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to which the data will not be output to "-1"1 to 12"SV062DA2NOD/A output ch. 1 output scaleSet the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit32768 to 3270 (Unit: 1/25)SV064DA2MPYD/A output ch. 2 output scaleSet the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount-32768 to 3270	SV058	SHG	Csp	SH gaii syn cor	G control n in spindle chronous ntrol	Set perfe (syn	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis).		_		
SV060TLMTCollision detection levelWhen using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.0 to 999 (Stall [rate current 9]SV061DA1NOD/A output ch. 1 data No.Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to which the data will not be output to "-1"1 to 12SV062DA2NOD/A output ch. 2 data No.Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit32768 to 3276SV064DA2MPYD/A output ch. 2 output scaleSet the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount-32768	SV059	TCN	٩V	Col det esti	Illision After tection torque timating gain Set		Set to "0" when not using the collision detection function. After setting as SV035/bitF(clt)=1 and performing acceleration/ deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function		2-5-3		
SV061 DA1NO D/A output ch. 1 data No. Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to which the data will not be output to "-1". -1 to 12 SV062 DA2NO D/A output ch. 2 data No. Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit. -32768 to 3270 (Unit: 1/25) SV064 DA2MPY D/A output ch. 2 output scale Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount -32768 to 3270	SV060	TLN	/T	Col det	lision ection level	Whe leve If "0'	en using the collision detection function, set the collision detection I during the G0 feeding. " is set, none of the collision detection function will work.	0 to 999 (Stall [rated] current %)			
SV062 DA2NO D/A output ch. 2 data No. will not be output to "-1". will not be output to "-1". SV063 DA1MPY D/A output ch. 1 output scale Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit. -32768 to 3270 (Unit: 1/25) SV064 DA2MPY D/A output ch. 2 output scale Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount -32768 to 3270	SV061	DA1	NO	D/A data	output ch. 1 No.	Inpu In th	It the data number you wish to output to D/A output channel. The case of MDS-C1-V2, set the axis on the side to which the data	-1 to 127			
SV063 DA1MPY D/A output ch. 1 output scale Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit. -32768 to 3276 (Unit: 1/25) SV064 DA2MPY D/A output ch. 2 output scale Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount -32768 to 3276	SV062	DA2	NO	D/A data	a output ch. 2 will a No.		not be output to "-1".		1-1-3		
Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount	SV063			D/A outp D/A	A output ch. 1 tput scale A output ch. 2		the scale with a 1/256 unit. en "0" is set, output is done with the standard output unit.	-32768 to 32767			
Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount	31004		ai 1	outp	ut scale	0.1		(0111. 1/200)			
SV065TLCTool end compensation spring constantis calculated with the following equation. Figure 1000 and the following equation32768 to 32767SV065Compensation amount=F(mm/min)^2 *SV065 Compensation amount=-32768 to 32767F: Commanded speedR (mm) *10° R (mm) *10°-32768 to 32767	SV065	TL	С	Toc con spri	I end npensation ng constant F: C		the spring constant of the tool end compensation. the semi-closed loop control, the tool end compensation amount alculated with the following equation. $\frac{F(mm/min)^2 *SV065}{R (mm) *10^9} (\mu m)$ commanded speed R: Radius	-32768 to 32767	_		

3 MDS-B-SVJ2 ADJUSTMENT PROCEDURES

3-1	Se	etting Initial Parameters	3-3
3-1- 3-1- 3-1-	-1 -2 -3	Setting the gear ratio Initial settings of speed loop gain Confirming the machine specifications value	3-3 3-3 3-3
3-2	G	ain Adjustment	3-4
3-2· 3-2· 3-2· 3-2· 3-2· 3-2· 3-2· 3-2·	-1 -2 -3 -4 -5 -6 -7 -8	Preparation Before Operation Measuring the inertia rate Determining the standard speed loop gain Explanation of resonance suppression filter Adjusting the adaptive filter Explanation of notch filter Adjusting the speed loop gain Adjusting the position droop waveform	3-4 3-6 3-8 3-9 3-10 3-11 3-14 3-16
3-3	A	djusting Acceleration/Deceleration Time Constant	3-22
3-3- 3-3-	-1 -2	Rapid traverse feed (G0 feed) Cutting feed (G1)	3-22 3-24
3-4	In	itial Adjustment for the Servo Functions	3-25
3-4- 3-4- 3-4- 3-4-	-1 -2 -3 -4	Standard settings for the lost motion compensation Excessive error width detection Setting deceleration control time constant Adjustment procedures for vertical axis drop prevention control	3-25 3-27 3-27 3-28
3-5	Pr	rocedures for Adjusting Each Functions	3-29
3-5- 3-5- 3-5- 3-5- 3-5-	-1 -2 -3 -4 -5	Voltage non-sensitive zone (Td) compensation Disturbance observer function Overshooting compensation Collision detection function Vertical axis lifting control	3-29 3-30 3-32 3-36 3-40
3-6	Μ	DS-B-SVJ2 Parameter List	3-42

3 MDS-B-SVJ2 ADJUSTMENT PROCEDURES

Prepare the following manual when adjusting the servo parameters for MDS-B-SVJ2 in accordance with this manual.

SPECIFICATIONS AND INSTRUCTION MANUAL

Hereinafter referred to as "Instruction Manual"

"MDS-B-SVJ2 Series SPECIFICATIONS AND INSTRUCTION MANUAL" BNP-B3937

When adjusting the servo for the first time (primary adjustment), set and adjust the following items in order from 3-1 to 3-4.

"3-5 Procedures for adjusting each function" are set and adjusted only when required.

- 3-1 Setting initial parameters
- 3-2 Gain adjustment
- 3-3 Adjusting acceleration/deceleration time constant
- 3-4 Initial adjustment for the servo functions

As for the primary adjustment, set and adjust the items in order from 3-1 to 3-4.

In this manual, [Normal setting range] of parameters are shown instead of [Setting range]. [Normal setting range] means the range of the value used in actual parameter adjustment (though [Setting range] means the range of the values that does not cause an error).

<Example of parameter explanation>

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV008	VIA	Speed loop leading	"1364" is set as a standard. "1900" is set as standard during	700 to 2500
		compensation	SHG control. Adjust in increment of approx. 100 at a time.	

3-1 Setting Initial Parameters

Input the setting values shown in "4-3 Standard parameter list according to motor" in the instruction manual as for initial parameters before adjusting servo. If a wrong value is inputted, the initial parameter error (ALM37) will occur. In this case, the parameter number causing an error is displayed on the NC screen. Some parameters are determined by the machine specification and they are explained below.

3-1-1 Setting the gear ratio

Input the ratio of gear tooth. When initial parameter error (ALM37) -error parameter number 101 occurs, reconsider the specification as electric gear must be overflowing.

(Refer to "4.2.2 Limitations to electric gear setting value" in the specifications manual.)

When the machine specification is "rack and pinion" , $\boldsymbol{\pi}$

is included in the deceleration ratio. In this case, the

accurate positioning is impossible to be made. Express the π with a rough fractional number when calculating the gear ratio.

No.	Abbrev.	Parameter name	Explanation
SV001	PC1	Motor side gear ratio	Calculate the reducible number of each gear tooth and set the result.
			When PC1 < PC2, it is set as deceleration is set.
SV002	PC2	Machine side gear ratio	In case that π is included as well as "rack and pinion", the accurate positioning is
			impossible to be made as π is calculated into a rough fractional number when
			calculating the gear ratio.

3-1-2 Initial settings of speed loop gain

The standard value of speed loop gain (VGN1) is determined by load inertia. If the adjustment has not been done yet, set the standard value of JL=100% (motor only) to JL=200%. Do not set the too large value, or the vibration occurs. Set the value which does not cause a vibration but large enough to perform rapid traverse feed.

No.	Abbrev.	Parameter name	Explanation
SV005	VGN1	Speed loop gain	Set JL=100% (motor only) to JL=200% as a standard.
SV008	VIA	Speed loop leading compensation	Set 1364 as a standard.

3-1-3 Confirming the machine specifications value

Confirm the following machine specifications value to be set in axis specifications parameters.

M60S Series	Abbrev.	Parameter name	Explanation
#2001	rapid	Rapid traverse rate	Set the rapid traverse rate.
			Confirm the maximum rotation speed of the motor.
#2002	clamp	Cutting feed clamp	Specify the maximum speed of the cutting feedrate.
		speed	Even though the feedrate for G01 exceeds this value, clamped with this speed.
#2003	smgst	Acceleration/	Set in accordance with machine specifications. In machine tools, rapid traverse feed is
		deceleration mode	generally set to "Linear acceleration/deceleration" mode and cutting feed is generally set to
			"Exponent acceleration/deceleration" mode. S-pattern (soft) acceleration/deceleration
			function is occasionally used for the machine with a large inertia.

3 MDS-B-SVJ2 ADJUSTMENT PROCEDURES

3-2 Gain Adjustment

3-2-1 Preparation Before Operation

(1) Confirming the safety

The servo is ready to be operated when the initial parameter settings are completed. Confirm the safety by checking the following items before operation.

Cancel the emergency stop and make READY ON.	Is any alarm occurring?
$\int $	
Confirm the axis movement by using a manual pulse generator.	Are there any vibration or strange sound? Is the load too large? (Is the current too large?)
\bigcup	
Confirm the soft limit movement by using a manual pulse generator.	Does the axis stop before hitting the machine? Confirm the soft limit (over travel) protection.
\bigcup	
Make a program taking account of axis movement range.	Make a program taking account of soft limit position. (Refer to the sample program.)
\bigcup	
Specify the single block operation and set the rapid traverse override to less than 25%.	Move slowly at first confirming the program.
Move axis forward and backward by memory operation (program operation). If there is no problem, cancel the single block and raise the override up to 100% gradually.	If the acceleration current is too large, make acceleration/deceleration time constant longer. If there is more than 100% of acceleration current, that will be enough.

Do not fail to confirm the soft limit movement (over travel) to prevent collision. Be careful of the position of other axes and pay attention when the cutter has already mounted as the collision possibly occurs before the soft limit.
(2) Confirm the acceleration/deceleration waveform with a Hi-coder

Measure the speed FB waveform and current FB waveform during acceleration/deceleration after connecting a Hi-coder.

(Items to be checked)

- 1) Voltage output level (ch.1, ch.2)
- 2) Zero level (ch.1, ch.2)
- 3) Output polarity of the current FB

Make sure that the Hi-coder data is reliable as the rest of the servo adjustment procedures which will be done later depend on this Hi-coder data.

Output zero level can be adjusted on servo side. (Refer to [1-2-4 (4) Setting the offset amount] in this manual.)

When measuring repeatedly, set the trigger for starting Hi-coder measurement at the start of speed FB. When measuring the data later, change the data of ch.2 only and leave ch.1 at speed FB so that the measurement is always executed at the same timing.

Set the timing of the measurement, and the data can be compared easily in case that the operation conditions including parameters are changed.

The waveforms shown in this manual are measured at one acceleration/deceleration as the reciprocating operation includes the same waveform which has different polarity. In case of the waveform shown the right, the trigger level is set as follows;

Determine the measuring timing by setting the trigger

ch.1: 100	mV ↑dir	ection
-----------	---------	--------

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV061	DA1NO	D/A output channel 1 data No.	The data No. to be output each D/A output channel is	0 to 30
SV062	DA2NO	D/A output channel 2 data No.	output.	100 to 102
SV063	DA1MPY	D/A output channel 1 output scale	When "0" is set, the output will be made with the standard	-32768
SV064	DA2MPY	D/A output channel 1 output scale	output unit. To change the output unit, set a value other	to 32767
			than "0". The scale is set with a 1/256 unit.	

3-2-2 Measuring the inertia rate

Measure the load inertia by using a servo drive unit to determine the standard speed loop gain (standard VGN1). Set the measured load inertia rate in the servo parameter SV 037.

(1) Measuring the inertia with the disturbance observer

(2) Measuring the inertia with collision detection

The load inertia measured by a servo drive unit can be displayed in the NC monitoring screen.

([SERVO MONITOR]			AL	ARM/DIAGN 2. 1/6	١
l		<x></x>	<y></y>	<z></z>		
l	GAIN (1/sec)	33	0	0		
l	DROOP (i)	15151	0	0		
l	SPEED (rpm)	3000	0	0		
l	CURRENT (%)	25	-2	-48		
l	MAX CUR 1(%)	340 🗲	→ 288	290		
l	MAX CUR 2(%)	0	\ 3	50		
l	OVER LOAD(%)	15	12	27		
l	OVER REG(%)	30	\ 16	22		
l	AMP DISP `	D1	\ D2	D3		
l	ALARM		.\			
l			Load inertia ra	te is displayed h	ere. However, more	
l			than 1000% ca	annot be displaye	ed. (In this case,	
l			"***" will appea	r.) In case that th	ne load is too large,	
l			measure with a	a disturbance ob	server method.	
I	I SK mm ABS G40 G	54 MF	MORY			
I	MESSAGE SI	FRVO	SPINDI F	I/F DIAGI	N MENU	
			OF INDEE		NILINO	J

Screen of M64S when load inertia rate of X axis is set to be displayed

When measuring the load inertia with collision detection, the result of measurement will be changed if the setting valued of unbalance torque (SV032) or frictional torque (SV045) is changed. Set the exact frictional torque to measure the load inertia as precisely as possible.

3-2-3 Determining the standard speed loop gain

The standard speed loop gain (standard VGN) is determined referring to the respective load inertia rate in the following table. With most models, vibration will occur if the standard VGN is set, so at this point, use this as the target value for adjusting the gain.

3-2-4 Explanation of resonance suppression filter

Machine resonance occurs when the speed loop gain is increased to improve the control accuracy. The machine resonance is a phenomenon that occurs when the servo's speed loop control acts on the machine's specific frequency (characteristic resonance frequency), resulting in an increase of vibration. When adjusting the speed loop gain, a notch filter must be set to suppress this machine resonance (vibration). Always understand the methods of setting the notch filter before adjusting the speed loop gain.

(1) Resonance suppression filter specifications

The following three resonance suppression filters are used with the MDS-B-SVJ2 series.

	Frequency range	Frequency settings	Depth compensation settings		
Adaptive filter	Approx. 400Hz to 900Hz	Automatically set	Adjust filter sensitivity		
Notch filter 1	100Hz to 2250Hz	SV038	SV033.bit0 to 3		
Notch filter 2	750Hz to 2250Hz	SV033.bit4, 5	None		

MDS-B-SVJ2 resonance suppression filters

(2) Filter setting frequency

POINT

There may be several machine resonances, so three types of filters are used according to the resonance frequency. The adaptive filter automatically sets the resonance frequency, but since the resonance point is easily converged to approx. 600Hz, notch filters are used at the other frequencies. In other words, notch filter 1 is used for resonance at frequencies lower than the adaptive filter, and notch filter 2 is used for resonance at frequencies higher than the adaptive filter. This supports the entire range between 100 and 1200Hz where machine resonance occurs.

The adaptive filter is easily converged to somewhere between 500 and 700Hz, so use notch filters to remove the resonance at other areas.

3-2-5 Adjusting the adaptive filter

For the MDS-B-SVJ2, the machine resonance is first removed with the adaptive filter. The frequency does not need to be set for the adaptive filter, but the filter sensitivity must be adjusted. If the operation gain (filter depth) is not sufficient, raise the filter sensitivity, and carry out acceleration/deceleration to fully converge the filter coefficient. (Target filter gain 30% or less)

For MDS-B-SVJ2, adjust the adaptive filter first.

3-2-6 Explanation of notch filter

The resonance that cannot be removed with the adaptive filter is removed with the notch filters. The notch filter is set when the speed loop gain is adjusted. The methods for setting the notch filter are explained here first. The notch filter is set with the methods explained in "3-2-7 Adjusting the speed loop gain".

(1) Setting notch filter 1

Check the operation frequency of the adaptive filter adjusted before, and make sure that the filter frequencies are not overlapped.

The operating frequency parameter can be set in 1Hz increments, but the internal control will function at the frequency shown below which is the closest to the setting value. Set the setting frequency shown below in the parameter when adjusting the notch filter.

The depth compensation is a function that sets the notch filter at a low frequency. A stable notch filter can be set even at a low frequency. Usually, the standard value that matches the setting frequency is set as shown below.

Setting frequency	Standard filter depth	Setting frequency	Standard filter depth	Setting frequency	Standard filter depth
2250Hz	0	281Hz	4	150Hz	8
1125Hz	0	250Hz	4	141Hz	8
750Hz	0	225Hz	4	132Hz	8
563Hz	0	205Hz	4	125Hz	8
450 Hz	0	188Hz	8	118Hz	8
375Hz	4	173Hz	8	113Hz	8
321Hz	4	161Hz	8	107Hz	8

Setting frequency and standard filter depth for notch filter 1

(2) Setting notch filter 2

Notch filter 2 is set with two bits as shown below. There is no depth compensation. The function is the same as when using notch filter 1 with a filter depth of 0.

Setting frequency	for notch filter 2
-------------------	--------------------

Parameter setting	No filter	2250Hz	1125Hz	750Hz
SV033. bit4	0	1	0	1
SV033. bit5	0	0	1	1

	1.	If the notch filter is set to a low frequency of 400Hz or less, vibration could recur at a frequency lower than the lower frequency. In this case, use depth compensation so that the filter functions at a shallower (weaker) level and suppress the vibration
POINT	2. 3.	The adaptive filter functions rather gradually, so there may be cases when the resonance cannot be completely removed. Use the notch filter in this case. Jitter compensation is also effective for a shaft with large backlash. Note that this is effective only for vibration that occurs when the motor is stopped.

(3) Measuring the resonance frequency

The resonance frequency must be measured before setting the notch filter frequency. To measure, gradually increase the speed loop gain to generate vibration, and measure the current waveform with a Hi-corder.

It can be measured either the current command or the current feedback; the measured frequency will be the same. The scale setting (SV063, SV064) should be set higher than the standard level so that even minute vibrations can be measured.

Once the resonance frequency has been measured, immediately apply emergency stop and stop the vibration.

To calculate the vibration frequency, select an easy-to-view range in the Hi-corder grid, and calculate the number of waves generated in one second.

Measuring vibration frequency (233Hz) (Measure manually when vibration occurs.)

If a "squeak" is heard at the instant when acceleration/deceleration is started, the machine is vibrating at a high frequency exceeding 700Hz. The 750Hz or 1125Hz filter is effective in this case.

POINT

When generating resonance, make sure that the speed loop gain is not increased too far resulting in a large vibration. After measuring the resonance frequency, immediately apply emergency stop to stop the vibration. The machine or servo amplifier could fail if vibration is generated for a long time.

(4) Setting the notch filter frequency

After measuring the resonance frequency, refer to the "Setting frequency and standard filter depth for notch filter 1 and 2". Select the setting frequency larger than but closest to the resonance frequency, and set the parameter. Set the depth compensation parameter to the standard filter that matches the frequency.

In the example measured on the previous page, the measured resonance frequency is 233Hz. Thus, set the following:

Filter setting frequency = 250Hz, Filter depth = 4

The notch filter easily becomes unstable when a low frequency is set. Even when set, if the resonance frequency changes (the vibration tone changes), the resonance may not be completely removed. If the state is unstable, try using a higher frequency. Basically, all resonance can be removed by setting the notch filter. The MDS-C1/CH-Vx series has the following functions in addition to the notch filter. Use those as necessary.

Basically, all resonance can be removed with the notch filter settings. The MDS-B-SVJ2 has the following functions in addition to the notch filter and adaptive filter. Use those as necessary.

(5) Adjusting jitter compensation

Jitter compensation is effective to eliminate the vibration occurring when the axis motor whose backlash is comparatively large or whose liner movement object is heavy stops. Set (SV027.bit4, 5) from 1 pulse by turn and confirm how it works.

Jitter compensation is effective only in case that the vibration is occurred because of the backlash, thus, it does not work when the vibration is caused by other factors. (Even when set, only the vibration tone changes.) If the jitter compensation is not effective, remove the vibration with the notch filter.

No.	Abbrev.	Parameter name	Unit		Explanation							Normal setting range		
SV038	FHz	Notch filter frequency 1	Hz		Set the re or more).	Set the resonance frequency to be suppressed. (Valid at 72 or more). Set "0" when the filter is not used.						150 to 1125		
SV027	SSF1	Servo function selection 1	F E aflt zrn2 <start c<br="" jitter="">bit 4 5 vfct 5 start adapti</start>		D C ompensation No jit compens 0 0 ve compen Mea Stop adap	B / ovs on> El ter sation sation> ning wh otive sto	A 9 8 7 ovs Imc Imc Eliminate the vibration on pulse 1 Compensation pulse 1 1 0 cion> g when "0" is set		7 bratio tion	6 5 4 3 vfct 1 ion when a motor is stopp Compensation pulse 2 0 1			3 2 is stopp n Con when "1 start.	2 1 0 zup ing. mpensation pulse 3 1 1 1
SV033	SSF2	Servo function selection 2	F E D C B A 9 8 7 6 5 4 afs afs fhz2						3 2	2 1 0 nfd				
			0 to 3	nfd e freo	The more When "0" When set however, factor exc	the set is set, t ting the the con cept for	ting val he filter filter sh trol is s the filte	ue is r is set nallowe tabilize r frequ	aised the s er, the ed and iency	, the s hallov vibra d the <u>can b</u>	shallo west. ation i vibrat pe pre	wer t s not tion c	he filter l suppres aused by ed.	becomes. sed well, y other
			t	oit	No fil	ter	2	250Hz			1125	Hz		750Hz
			4	fhz2	0			1 0			0 1			1
			(Note)	Notch	filter 2 doe	s not ha	ave dep	th cor	npens	ation	funct	tion.		<u> </u>
			<comp< td=""><td colspan="5">ompensate the adaptive filter sensitiveness></td><td></td></comp<>	ompensate the adaptive filter sensitiveness>										
				oit I	Explanation									
			to B	afs	vinen "0" The more vibration e	the sett the sett lement	ie sens ing valu is raise	d.	s set aised,	the n	nore t	he se	ensitivity	to detect the

Parameter settings related to resonance removing filter

3-2-7 Adjusting the speed loop gain

After adjusting the adaptive filter, further raise the speed loop gain (SV005). When the machine starts resonating, set the notch filter to remove the resonance, and adjust the speed loop gain targeting the standard VGN determined from the load inertia. A 30% margin must be secured to ultimately set the standard VGN value, so set a standard VGN x 1.3 value and confirm that resonance does not occur. If the resonance cannot be eliminated even when the notch filter is set, the speed loop gain setting is limited. Set a value 30% lower than the maximum value at which resonance does not occur.

POINT

Set so that the adaptive filter's operation frequency and notch filter's set frequency are not overlapped.

Do not set the notch filters to the frequency that vibration does not occur as a means of insurance. Setting many notch filters is not a complete safety measure.

- The final SV005 (VGN1) setting value is 70% of the maximum value at which machine resonance does not occur. If the resonance is suppressed and the SV005 setting is increased by using a vibration suppression function, such as a notch filter, the servo can be adjusted easier later on.
- If the vibration is caused by resonance (mutual action of servo control and machine characteristics), the vibration can always be stopped by lowering SV005 (VGN1). If the vibration does not change even when SV005 is lowered, there may be a problem in the machine. The notch filter is not effective when there is a problem in the machine.

<<Reference material>>

POINT

Machine resonance is not the only vibration that occurs at the servo shaft. Types of vibration that occur at the servo shaft are listed below.

Types of vibration	Cause	Vibration frequency	Measures	Explanation	
Machine resonance	e Delay in servo control response 150Hz to 1kHz		Set the notch filterLower VGN1 (SV005)	There may be several resonance points. The vibration can always be stopped by lowering VGN1.	
Hunting	The speed loop PI gain (VGN, VIA) is unbalanced	Several Hz	 Lower VIA (SV008) Raise VGN1 (SV005) Use the disturbance observer 	Visually apparent that the shaft vibrates during acceleration, or the shaft trembles when stopped.	
Isolated machine vibration	Insufficient machine rigidity	10 to 20Hz	 Lower PGN1 (SV003) Use S-pattern (soft) acceleration/deceleration 	The machine vibrates due to impact during acceleration/deceleration. A "clonk" sound may be heard during acceleration.	

3-2-8 Adjusting the position droop waveform

After adjusting the filter and determining the optimal speed loop gain (VGN1), adjust the speed loop leading compensation (VIA) and position loop gain (PGN) observing the position droop waveform.

(1) Measuring the position droop

During rapid traverse feed, position droop takes a few millimeters. However, the unit of the waveform to be observed is μ m and the overflowing waveform is displayed on the Hi-coder. Before adjusting, make the waveform as shown the right display on the Hi-coder.

Smooth convergence is the most important thing about position droop waveform. The position droop have to converge smoothly when the speed becomes constant or when positioning is completed and position droop becomes "0". Both of the waveforms enclosed with circles can be used for gain adjustment, however, the waveform at when positioning is completed is normally used because it enables to confirm the overshooting at the same time when adjusting servo.

When the axis is used for a simple positioning as well as magazine or tool changer, all we have to confirm is the data number 12 (100μ m/V). However, it is necessary to confirm that the waveform of the positioning converges smoothly (approaches to "0") at the data number 13 (10μ m/V) in the feed axis of machine tools which requires precision.

SV062 = 13

Confirm the waveform when positioning is completed

(2) Adjusting speed loop leading compensation

POINT

There may be no problem when used at a normal load inertia scale. However, if used at a load inertia scale exceeding 500% with an insufficient speed loop gain (SV005) set, the position droop waveform may vibrate just before the motor stops. If the speed loop gain is small, and the shaft has relatively low wear, the motor may repeatedly reciprocate around the stop position resulting in hunting.

If vibration of the position droop is not improved much even when the position loop gain (SV003) is lowered, the leading compensation (SV008) value set for the proportional gain (SV005) is too large, so lower SV008 by approx. 100.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV008	VIA	Speed loop leading	1364 is set as a standard. 1900 is set as a standard during SHG control.	700 to 2500
		compensation	Adjust in increments of approx. 100.	

 The vibration can be eliminated by lowering VIA (SV008); however, VIA is only effective for balancing with proportion gain (VGN1) in this case. As long as SV005 (VGN1) is set lower than the standard value, high–accuracy control cannot be expected.

 Disturbance observer can also suppress the vibration. (Refer to "3-5-2 Disturbance observer.")

(3) Adjusting position loop gain

When raising the position loop gain, the responsiveness of the position and cutting accuracy is improved. Setting time is shortened and the cycle time can also be reduced. However, be aware of the limit value determined by the speed loop characteristics and machine characteristics.

The same position gain has to be set in both interpolation axes (the axes to perform synchronous control with). Set the position loop gain of the all axes to the lowest limit value of all.

No.	Abbrev.	Parameter name	Explanation	Normal setting range
SV003	PGN1	Position loop gain 1	Set 33 as a standard. Adjust in increments of approx. 3. If PGN is increased, cutting precision will be improved and the setting time will be shortened.	12 to 47

Limit of the	nocition	loon	anin
Limit of the	position	loop	gain

Limit of PGN	Phenomenon	Cause	Remedy
Limit of speed	Position droop waveform vibrates during	Insufficient speed	Suppress the resonance more and raise
loop	positioning.	loop gain (VGN1)	VGN. Use disturbance observer.
characteristics	Overshooting occurs during positioning.		
Limit of machine	Machine vibrates or makes strange noise during	Insufficient	Use SHG control function.
characteristics	acceleration/deceleration.	machine rigidity	Use S-pattern acceleration/deceleration
	When feeding with the maximum scale by a		function when vibration occurs in rapid
	pulse generator, machine vibrates or makes		traverse feed. (NC function)
	strange noise.		

Set the same position loop gain (PGN) to all the interpolation axes. (For the PGN of X, Y, Z axes, set the smallest value of the three to all of X, Y, Z axis.)

(4) SHG (Smooth High Gain) control

A high-response control and smooth control (reduced impact on machine) were conventionally conflicting elements; however, SHG control enables the two elements to function simultaneously by controlling the motor torque (current GB) with an ideal waveform during acceleration/deceleration.

Start the adjustment with PGN1=23 (hereinafter referred to as 23SHG) for the feed axis of a machine tool at first. Try to adjust the SHG value so that it become as close to 33SHG as possible. If more than 33SHG can be set, this machine tool is a precision machine. If more than 23SHG can be set, the machine tool precision is good enough. SHG control function is efficient for feed axes of machine tools (X axis, Y axis or Z axis of the machining center etc.) to meet the demand of high-speed and high-accuracy cutting.

When changing normal control to SHG control, start adjusting, by setting PGN1 to "1/2". SHG control is as effective as when PGN1 is doubled. SHG control also can shorten the cycle time as it reduces the setting time.

No.	Abbrev.	Parameter name	Setting ratio			Normal setting range								
SV003	PGN1	Position loop gain 1	1	12	15	18	21	23	26	33	38	47	12 to 47	
SV004	PGN2	Position loop gain 2	<u>8</u> 3	32	40	48	56	62	70	86	102	125	32 to 125	
SV057	SHGC	SHG control gain	6	72	90	108	126	140	160	187	225	281	72 to 281	
SV008	VIA	Speed loop leading compensation	Set 1900 a	Set 1900 as a standard for SHG control.										
SV015	FFC	Acceleration feed forward gain	Set 100 as	a stand	dard for	· SHG o	control.						0 to 300	

The SHG control is an optional function. Confirm if the option is set in the NC with a System Specification Order List.

(5) Confirming overshooting

Adjust to make overshooting amount become less than 1 μ m.

Cause and remedy of overshooting

If more than "100" is set in acceleration feed forward gain (SV015) during SHG control, overshooting will be caused easily.

(6) Adjusting the position droop waveform

3-3 Adjusting Acceleration/Deceleration Time Constant

3-3-1 Rapid traverse feed (G0 feed)

For rapid traverse feed, linear acceleration /deceleration function is normally used. Occasionally, S-pattern (soft) acceleration /deceleration function is used to ease the collision against machines.

(1) Confirm that the rapid traverse rate \leq max.

rotation speed

Fist of all, confirm that the rapid traverse rate is less than the maximum rotation speed of the servomotor. Although the maximum rotation speed is faster than the rated rotation speed in general-purpose motor, try not to exceed the rated rotation speed. If the maximum rotation speed exceeds the rated rotation speed when accelerating, the output torque will be limited.

(2) Adjust acceleration/deceleration time constant by the maximum current command value

Perform the rapid traverse reciprocating operation confirming in NC servo monitor screen and adjust acceleration/deceleration time constant so that the maximum current command value during

acceleration/deceleration becomes less than the range of the table shown below.

(Acceleration/deceleration time constant is not judged by current FB but by current command.)

(3) Confirm the rapid traverse feed

Confirm that; 1) the machine does not vibrate or make strange noise.

- 2) the waveforms during acceleration/ deceleration are not disturbed when observing current FB waveform and position droop waveform.
- 3) the friction torque is normal.
- 4) confirm 1) to 3) by changing override.

Max. current command value when adjusting acceleration/deceleration time constant (MDS-B-SVJ2)

Motor type	Max. current command value	Motor type	Max. current command value	Motor type	Max. current command value
HC52	Within 390%			HA40N	Within 420%
HC102	Within 340%	HA102*	Within 270%	HA80N	Within 370%
HC152	Within 380%	HA152*	Within 270%	HA100N	Within 270%
HC202	Within 275%	HA202*	Within 270%	HA200N*	Within 270%
HC352*	Within 270%			HA053N/13N	Within 240%
HC53	Within 265%	HA103R	Within 225%	HA23N/33N	Within 235%
HC103	Within 260%	HA153R	Within 225%	HA43N	Within 300%
HC153	Within 265%	HA203R	Within 225%	HA83N	Within 280%
HC203*	Within 270%			HA103N*	Within 270%

(Note 1) The asterisk "*" after the motor model refers to the combination with a one capacity smaller servo amplifier. (Note 2) Refer to the instruction manual "5-3-1 (1) Adjusting the rapid traverse feed" for other motors.

Waveforms during rapid traverse feed

(4) Confirm the current command and the current FB

If the current FB peak becomes larger than the current command peak (over compensation), an overcurrent (alarm 3A) will occur easily. In this case, lower the inductive voltage compensation gain. If the load inertia is large, an adjustment is definitely required.

<How to adjust>

- 1) Set "1" in SV034.mon and make current command and current FB to NC servo monitor screen.
- 2) Adjust the inductive voltage compensation gain (SV047) so that the current FB peak becomes smaller than current command peak by 3% during rapid traverse acceleration/deceleration.

No.	Abbrev.	Parameter name	Un	it		Explanation											Normal setting range				
SV047	EC	Inductive voltage compensation gain	%		Set pea	Set "100" as a standard. Lower the gain if the current FB peak exceeds the current command peak.												70	to ′	100	
SV034	SSF3	Servo function																			
		selection 3	F	Е	D	С	В	А	9	8	7	6	5	4	3	2		1	(0	
											daf2	daf1	dac2	dac1		r	nc	n			
			1	oit			MAX	curr	ent 1					MAX	(curr	ent 2	2				
				0	Max. whei	. curre 1 pow	ent co er is t	mma urne	nd va d ON	lue (9	%)	Max	. curr	ent va	lue (%) fc	for 1 second.				
				1	Max for 1	Max. current command				mmand value (%) Max. cu (%) for 1					omm nd.	nand	FB value				
				2	Max	curre er is tu	nt FB urned	valu ON.	e (%)	wher	ו	Max for 1	. curr seco	ent co nd.	mma	and v	/al	ue (%)		
			0	3	Load	l inerti e)	ia rate	e (SV	059 s	setting	9				_						
			to	4	Adap (Hz)	otive fi	ilter o	perat	ion fr	eque	ncy	Ada	otive	filter c	pera	tion	ga	in (9	%)		
			3	5	PN t	ous vo	ltage	(V)				Regenerative operation monitor (times/sec)					frequency				
				6		imum cond	estim	ated	torqu	e (%)) for	Max secc	. curr nd	ent FE	3 valı	ıe (%	6)	for '	1		
				7	Maxi 1 se	mum cond	estim	ated	torqu	e (%)) for	Max secc	. distu onds (urbano %)	ce toi	que	(%	6) fc	or 2		
				8toF	Set	ting pr	rohibi	ted.													

Screen of M64S when current FB peak of X axis is set to be displayed

3-3-2 Cutting feed (G1)

For cutting feed, exponent acceleration/deceleration function is normally used. S-pattern acceleration / deceleration cannot be used as it disables synchronous interpolation.

(1) Reciprocating operation without dwell

During cutting feed, no confirmation of in-position is made before going on to the next step. Adjust acceleration/deceleration time constant during acceleration/deceleration by performing reciprocating operation without dwell. Set the feedrate at the maximum (with "clamp": axis specification parameter) and confirm the maximum current command during the turn without dwell.

(Cutting feed reciprocating opera	ation Sample program)
G28 X0; N01 G90 G1 X-200. <u>F8000;</u> G1 X0; G4 X1.0; G0TO 01 feedrate	X axis zero return Move X axis to X=-200 with F5000 cutting feed by absolute position command. Turn without dwell and move to X=0 with F5000 cutting feed. Dwell for a second. (Pause for a second). Use "X" even for Y axis and Z axis. Go back to the line N01

(2) Adjust acceleration/deceleration time constant by max. current command value

Confirm the maximum current command value in the servo monitor and adjust acceleration/deceleration time constant so that the maximum current command value becomes less than the range of the table shown in the chapter "3-3-1 Rapid traverse feed (G0 feed) ".

(3) Set all the interpolation axes to the same value as the axis with the longest time constant

For example, set the same value for the cutting feed time constant of X axis, Y axis and Z axis in machining center because interpolation control is required.

(4) Confirm the cutting feed

Confirm:

1) if the machine does not vibrate or make strange noise.

- 2) if the waveforms during acceleration/deceleration are not disturbed when observing current FB waveform and position droop waveform.
- 3) 1) and 2) with the override changing.

Perform reciprocating operation without dwell when adjusting cutting feed (G1) time constant.

- 1. Set the same value for both the cutting feed time constant and the position loop gain (PGN) between the interpolation axes.
- 2. With the vertical axis, start with an upward direction from a stop in a downward position without using dwell, and check the current command.

3-4 Initial Adjustment for the Servo Functions

3-4-1 Standard settings for the lost motion compensation

(1) Unbalance torque and frictional torque

As for the initial adjustment of lost motion compensation, set the standard compensation amount. Measure the unbalance torque and the frictional torque to calculate the standard compensation amount. During a stop, the static frictional torque may effect. Feed slowly by about F1000, measure the load current in the servo monitor screen of NC and calculate by the following expression.

Unbalance torque = (+ Feed load current%) + (- Feed load current%)2 Frictional torque = (+ Feed load current%) - (- Feed load current%)2

	Horizontal axis	Unbalance axis					
	Lathe: Z axis	Lathe: X axis					
In machine tools	Vertical machining center: X axis, Y axis	Vertical machining center: Z axis					
	Horizontal machining center: X axis, Z axis etc.	Horizontal machining center: Y axis etc.					
		The average of the load torque when feeding to					
Unbalance lorque	0	both + and – direction by about F1000.					
	The load torque when feeding by about F1000.	The difference between load torque and unbalance					
Frictional torque		torque when feeding by about F1000.					

Unbalance torque and frictional torque

(2) Setting the standard compensation amount

As for lost motion compensation type, use type 2 (SV027.bit9). Set the unbalance torque in SV032 and set the doubled frictional torque in SV016 as a standard compensation amount. (Set SV041 to "0".) To adjust the compensation amount more accurately, determine the value to be set in SV016 and SV041 by measuring the roundness.

Setting item	Parameter setting							
(1) Start lost motion compensation type 2	SV027.bit9=1 (SV027.bit8=0)							
(2) Unbalance torque setting	SV032 = unbalance torque [%]							
(3) Lost motion compensation standard amount	SV016 = 2 x frictional torque [%] (SV041=0)							

When using the disturbance observer, further adjustment by roundness measurement is required because the lost motion compensation amount (SV016) calculated as mentioned above will become over compensation.

- (Example) ------

In case that the load current% is -25% in + direction and -65% in - direction when performing JOG feed by about F1000,

Unbalance torque = $\frac{-25+(-65)}{2}$ = -45% Frictional torque = $\left|\frac{-25-(-65)}{2}\right|$ = 20%

Therefore, set SV032 = -45, SV016 = 40.

No.	Abbrev	Parameter name		Explanation															
SV027	SSF1	Servo function selection1	No	lormally type2 is used for the lost motion compensation.															
				F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
				aflt	zrn2		ovs Imc					vfct					zup		
				bit Explanation 8 00: lost motion compensation stop 10: lost motion compensation tv									ype2						
				9 Imc 01: lost motion compensation type1 11: Setting prohibited															

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV032	TOF	Torque offset	Stall%	Set the unbalance torque amount.	-60 to 60
			(rated		
			current %)		
SV016	LMC1	Lost motion	Stall%	Set "2 x (frictional torque)" as an initial value.	0 to 60
		compensation 1	(rated	When using disturbance observer, further adjustment by	
			current %)	roundness measurement is required.	
SV041	LMC2	Lost motion	Stall%	Set "0" as a standard (initial adjustment value).	0 to 60
		compensation 2	(rated	When "0" is set, compensate the value set in SV016 in both +	
			current %)	and – direction.	

3-4-2 Excessive error width detection

In most cases, no problem will occur with the standard setting values.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV023	OD1	Excessive error detection width during servo ON	mm	Calculate as follows by using rapid traverse rate and position loop gain (PGN1). When "0" is set, the excessive error alarm will not be detected.	3 to 15
SV026	OD2	Excessive error detection width during servo OFF	mm	<standard setting="" value=""> OD1=OD2=</standard>	

3-4-3 Setting deceleration control time constant

Set the same value as the rapid traverse acceleration/deceleration time constant of each axis. For MDS-B-SVJ2, use the deceleration control as a standard stopping method when emergency stop is inputted.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV056	EMGt	Deceleration time	ms	Set the same value as the rapid traverse acceleration	0 to 300
		constant at		/deceleration time constant.	
		emergency stop			

If the deceleration control time constant (EMGt) is set longer than the acceleration/deceleration time constant, the over-travel point (stroke end point) could be exceeded. Note that the axis could collide with the machine end.

3-4-4 Adjustment procedures for vertical axis drop prevention control

Execute the following procedures to the unbalance axis which has a motor brake. Set the shortest required time by confirming the drop amount when the emergency stop is inputted.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV048	EMGrt	Vertical axis drop prevention type	ms	Increase the setting by 100ms at a time and set the value where the axis does not drop.	0 to 300

POINT

3-5 Procedures for Adjusting Each Functions

3-5-1 Voltage non-sensitive zone (Td) compensation

(1) When to use

1) When improving the cutting precision

Voltage non-sensitive zone compensation is effectual when the cutting accuracy is worsened before passing the quadrants during circle cutting or when the cutting accuracy while unbalance axis is lowering is worse than while it is rising. In short, voltage non-sensitive zone compensation improves the control precision when the control speed is slow and the output torque is controlled with nearly "0".

(2) Precautions

1) Vibration (resonance) easily occurs

Vibration can be inducted as voltage non-sensitive zone compensation can make the same effect as when the current loop gain is raised.

2) The drive sound during the motor rotation becomes noisier

If setting 100% (as a standard), the sound during the motor rotation will be noisier. However, the cutting precision is improved as long as vibration does not occur.

(3) Adjustment procedures

Set the value from 0 to 100% observing the vibration or noise occurrence.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV030	IVC1	Voltage non- sensitive band compensation	%	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated.	0 to 100

3-5-2 Disturbance observer function

(1) When to use

1) When improving cutting precision

Disturbance observer function is efficient to improve the cutting accuracy. For roundness measurement, cutting accuracy can be improved especially at around 45 degrees.

2) When suppressing the vibration of position droop waveform

Disturbance observer function can suppress the vibration of position droop waveform caused by the insufficient speed loop gain (VGN) without lowering the speed loop leading compensation (VIA).

3) When suppressing the collision sound during lost motion compensation

When the lost motion compensation amount is increased, the collision sound is occasionally caused. The compensation amount can be made smaller by using disturbance observer function, and it also suppresses the collision sound.

(2) Other precautions

1) Vibration (resonance) is easily caused

Disturbance observer is hardly used for some machine characteristics.

2) Lost motion compensation has to be adjusted again

When changing observer filter pole (SV043) and gain (SV044), the optimal lost motion amount (SV016, SV041) is also changed.

CAUTION When starting disturbance observer, lost motion compensation has to be adjusted again.

(3) Procedures for disturbance observer adjustment

No	ltom					S	etting lev	el				
INO.	item	0	1	2	3	4	5	6	7	8	9	10
SV043	Filter frequency	100	200	200	300	300	200	200	300	200	300	300
SV044	Observer gain	100	100	150	100	150	200	250	200	300	250	300

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV037	JL	Load inertia scale	%	Set the value calculated in the way explained in "3-2-2 Measuring the inertia rate".	150 to 600
SV043	OBS1	Disturbance observer filter frequency	rad/s/2π	Set the disturbance observer filter band. Set "300" as a standard. If any vibration occurs, lower by 100 at a time. If the setting value is lowered, the compensation will be less effective.	200 to 300
SV044	OBS2	Disturbance observer gain	%	Set the disturbance observer gain. Set "100" to "300" as a standard, and lower the setting if vibration occurs.	100 to 300

3-5-3 Overshooting compensation

(1) When to use

1) When compensating overshooting

Both overshooting during rapid traverse positioning and during pulse feed can be improved.

Overshooting during rapid traverse positioning

Overshooting during pulse feed

(2) Precautions

- Do not use overshooting compensation function to solve the problem caused by gain adjustment Overshooting can occur when position loop gain (SV003) and acceleration feed forward gain (SV015) is too high. Adjust the gain at first whenever overshooting is found. In case that the overshooting cannot be solved by gain adjustment, use overshooting compensation function as it seems to be caused by machine-side factors including torsion and friction. The overshooting can be suppressed with overshooting compensation by 1% to 3%.
- 2) If the compensation amount is too much, the roundness precision will be deteriorated

When the overshooting compensation amount is too much, the roundness precision is occasionally deteriorated. Be careful when setting the value which is more than 5% in SV031 (compensation amount).

3) The overshooting which is more than 1µm has to be suppressed Normally the overshooting which is more than 1µm is considered as a problem. If it is less than 1µm is hardly suppressed due to the control resolution.

(3) Details of overshooting compensation method

1) Overshooting compensation type 1

This is compatible with the standard specifications. The offset amount is set based on the motor's stall current. Determine the amount that is free from overshoot by adjusting the compensation gain (SV031, SV042) while increasing its value in increments of 1%. This adjustment is usually made within the range from 1% to 3%.

Compensation will not be performed if the next feed command has been issued before the motor completes positioning (before position droop becomes "0"). Therefore, no compensation will be performed during circle cutting, and this prevents the precision of the roundness from being deteriorated. Also, compensation will not be performed in the high-speed high-accuracy control (the feed forward control) mode.

2) Overshooting compensation type 2 (Equivalent to the type 3 of MDS-C1-Vx)

This is used when overshooting compensation is required even during the feed forward control (the high-speed high-accuracy control). During the feed forward control (the high-speed high-accuracy control), an overshoot may be occurred due to inappropriate adjustment of the feed forward gain. So, when adjusting the compensation gain (SV031, SV042), stop the feed forward control, or set "fwd_g" to "0". If overshoot occurs in the feed forward control mode only (no overshoot occurs in the normal control mode), adjust the feed forward gain (fwd_g).

When using overshooting compensation type 1,

- 1. Compensation will not be performed if the next feed command has been issued before the motor completes positioning (or stops). (Therefore, no compensation will be performed during circle cutting.)
- 2. Compensation is not made when performing the feed forward control (the high-speed high-accuracy control).

(4) Procedures for overshooting compensation adjustment

Check a linear guide, oil pressure and ball screw etc.

No.	Abbrev	Parameter name		Explanation															
SV027	SSF1	Servo function selection1	Th	The overshooting compensation starts with the following parameter.															
				F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
				aflt	zm2			0	VS	In	nc			v	fct				zup
			F	h	oit							Fxpla	natio	า					
				A B	OVS	00: 0 9 01: 0	Overs stop Overs	hooti hoot	ng co comp	mpen ensat	isatio	n /pe 1	10: (11: §	Dvers Settin	shoot g pro	comp hibite	ensa d	tion t <u>y</u>	ype 2

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV031	OVS1	Overshooting compensation 1	Stall% (rated current%)	Increase the value by 1% at a time and find the value where overshooting dose not occur. When OVS2=0, the setting value will be applied in both the + and – directions.	-1 to 3
SV042	OVS2	Overshooting compensation 2	Stall% (rated current%)	Set "0" as a standard. Set this when the compensation amount is to be changed according to the direction.	-1 to 3

- 1. When either parameter SV031:OVS1 or SV042:OVS2 is set to "0", the same amount of compensation is carried out in both + and direction, using the setting value of the other parameter (the parameter not set to "0").
- 2. To compensate in only one direction, set -1 in the parameter (OVS1 or OVS2) for the direction in which compensation is prohibited.

3-5-4 Collision detection function

(1) When to use

1) To ease an impact when a machine collides

Collision detection function can ease the impact to the machine by detecting the alarm as soon as possible when collision occurs and by causing the pullback torque.

To keep the alarm history separating collision alarms from over load alarms
 Collision alarms are conventionally detected as over load alarms. Collision detection function enables to keep the collision alarm history with special alarm numbers only for collision alarms.

(2) Precautions

1) Collision detection function does not guarantee the machine precision

Prevent the machine collision when operating a machine as before.

2) Alarm can be detected incorrectly

Collision is detected by detecting the disturbance torque, therefore, frictional torque or cutting torque can be incorrectly taken for a collision depending on condition of the machine or operation.

(3) Details of collision detection method 1

The required torque is estimated by considering the position command issued by the NC. The disturbance torque is calculated by the difference from the actual torque. When this disturbance torque exceeds the collision detection level set by the parameters, a collision is detected.

As soon as a collision is detected, pullback torque is commanded at 80% of the maximum motor torque and the impact is eased. After the motor has stopped, alarm 58 (during G0 command) or 59 (during G1 command) occurs, and the system is stopped.

	Collision detection level setting parameter	Detection alarm
During rapid traverse (during G0 feed)	SV060	Alarm 58
During cutting feed (during G1 feed)	SV060 x clG1 (SV035.bitC to E)	Alarm 59

(4) Details of collision detection method 2

When the current command reaches the motor's maximum current, collision is detected. As soon as the collision is detected, pullback torque is commanded at 80% of the maximum motor torque. After the motor has stopped, the alarm 5A occurs and the system stops. If the acceleration/deceleration time constant is short, and if detections are easily made incorrectly during normal operation, make the acceleration/deceleration time constant longer and adjust so that the current during acceleration is not saturated (so that the current does not reached the maximum value). Or, turn the parameter SV035.bitF "ON" and ignore the collision detection method 2.

(5) Torque estimated gain (SV059)

With MDS-B-SVJ2, the torque estimated gain (SV059) is the same value as the load inertia scale (SV037). Set the load inertia measured at [3-2-2 Measuring the inertia rate] in SV059.

(6) Collision detection level (SV060)

Collision detection level during G0/G1 feed

Feed	Detection level setting	How to adjust
G0	SV060	First, set "SV060: TLEV=100", and carry out no-load operation at the maximum rapid traverse feed rate. If an alarm does not occur, lower the setting by "10", and if an alarm occurs, raise the setting by "20". Set the value which is in increment of the limit value at which the alarm does not occur by 1.5 times. If "SV034.bit0 to 3 (mon)=7" is set, the maximum disturbance torque will appear on the NC servo monitor. Refer to this value.
G1	SV060 x clG1 (SV035)	The detection level during G1 feed is set as an inter-fold of the detection level during G0 feed. Calculate the maximum cutting load, and adjust the SV035.bitC to E (clG1) setting value so that the detection level becomes larger than the maximum cutting load.

(7) Confirm the parameter settings

Calculate the estimated torque abstracting acceleration factors from position command to detect the collision. It is required to obtain the following items to detect collision correctly.

1) Torque estimated gain	(SV059)
--------------------------	---------

Frictional torque	(SV045)
-------------------------------------	---------

3) Unbalance torque (SV032)

When confirming the setting values of above-mentioned parameters, output current FB and collision detection estimated torque at the same time as shown the right and adjust so that they both forms the same waveform.

How to confirm collision detection parameters

(8) Procedures for detecting collision adjustment

No.	Abbrev.	Parameter name	Explanation																	
SV034	SSF3	Servo function	The data concerning with the collision detection function is set with following parameters																	
			F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0		
											daf	2 daf1	dac2	dac1		m	on			
			bit MAX cu						urrent 1				MAX current 2							
				0	Max. wher	ax. current command value (%) Max. current command ien power is turned ON. for 1 second.						nd va	d value (%)							
				1	Max. current command value					alue ('	%)	Max. current FB value (%) for 1								
					for 1 second.						seco	second.								
				2	powe	Max current FB value (%) when ower is turned ON. Max. current FB value (%) for second. oad inertia rate) TOP 1	1							
			0	3	Load															
			to	4	Adaptive filter operation frequency (Hz)						Ada	Adaptive filter operation gain (%)								
			3	5	PN b	N bus voltage (V) Regenerative operation free monitor (times/sec)							equei	псу						
				6	Estin for 1	Estimated maximum torque (%) for 1 second				Max. current FB value (%) for 1 second										
				7	Estimated maximum torque (%) for 1 second					Max. disturbance torque for 2 seconds (%)										
				8toF Setting prohibited.																
SV035	SSF4	Special servo	The fol	lowin	g para	meter	's are	use	d for t	the co	ollisio	n dete	ection	functi	on.					
		TUTICIION SELECTION 4	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0		
			cl2n		clG1	-	-						-		-					
			t	pit	Meaning when "0" is set.							Meaning when "1" is set.								
				Set the collision detec						stection level for the collision detection method 1										
to clG1 G1 collision detection lev									level will be SV060 × clG1											
			E		When "clG1 = 0" is set, the collision detection method 1 will not ful during cutting feed									t func	tion					
				F cl2n available Collision detection method 2 is available							s not									

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range
SV032	TOF	Torque offset	Stall% (Rated current %)	Set the unbalance torque amount. The amount is the same as the value set when lost motion compensation was adjusted.	-60 to 60
SV045	TRUB	Frictional torque	Stall% (Rated current%)	Set the frictional torque amount. Refer to "3-4-1 (1) Unbalance torque and frictional torque".	10 to 30
SV059	TCNV	Collision detection torque estimating gain (load inertia rate)	%	Set the torque estimated gain. In MDS-B-SVJ2, the value is the same as the load inertia rate including the motor inertia (SV037). Refer to [3-2-2 Measuring the inertia rate] of this manual.	150 to 600
SV060	TLMT	Collision detection level	Stall% (Rated current%)	Set the collision detection level of method 1 G0 feed when using the collision detection function. When "0" is set, all collision detection function will not function.	70 to 150

- 1. SHG control has to be enabled for using the collision detection function.
- 2. Set the detection level with an allowance to avoid incorrect detections.

POINT 3.

- 3. When "SV060=0" is set, all collision detection functions will be disabled.
- 4. Collision detection method 2 is enabled when the value except for "0" is set. Set the parameter (SV035.bitF) to ignore the collision.

3-5-5 Vertical axis lifting control

(1) When to use

1) This function is used for preventing the workpiece from being damaged when emergency stop is inputted during cutting feed or during power failure.

The drop amount as much as the brake lash (a few μ m to ten-odd μ m), which could not be compensated by the conventional vertical axis drop prevention control function, can be compensated.

(2) Precautions

1) This function is available only for a vertical machining center only

If this function is used for a lathe or a horizontal machining center, the workpiece and tool will be damaged.

(3) Details of vertical axis lifting control function

Even though using the vertical axis drop prevention control function, the vertical axis drops by a few μ m due to the mechanical backlash of the motor brake. This function enables to make a vertical axis move upward during emergency stop or power failure by lifting the axis by 1.44deg (motor degrees) before braking.

Operation sequence of the vertical axis lifting control
(4) Procedures for the vertical axis lifting control

- 1) Adjust the vertical axis drop prevention control referring to "3-4-4 Vertical axis drop prevention control" in this manual.
- 2) Add 100ms to the vertical axis drop prevention time (SV048) which is adjusted in 1.
- 3) Turn SV027.bit0 ON.
- 4) Set the unbalance torque. (Set the same value as when lost motion compensation is adjusted.) Confirm the coordinate position when emergency stop is inputted in NC screen.

No.	Abbrev.	Parameter name	Unit	Explanation	Normal setting range							
SV027	SSF1	Servo function selection1	The following para	meters are used for starting the vertical axis lifting control	l.							
			F E D aflt zrn2	C B A 9 8 7 6 5 4 3 2 ovs Imc vfct <td>1 0 zup</td>	1 0 zup							
			bit 0 zup Stop	bit Meaning when "0" is set. Meaning when "1" 0 zup Stop the vertical axis lifting control. Start the vertical axis lifting control.								
SV032	TOF	Torque offset	Stall% (Rated current %)	Set the unbalance torque amount. The compensation direction is determined by the + or – of this parameter. When "0" is set, the vertical axis lifting control is not performed.	-60 to 60							
SV048	EMGrt	Vertical axis drop prevention time	ms	Set the value which is more than 200ms as the brake delays by 100ms comparing with the normal operation.	0 to 400							

- This function is available for Z axis of the vertical machining center, however, not available for Y axis of the horizontal machining center and X axis of the lathe etc. as the collision will occur. Confirm the working condition of the machine before using this function.
 In case that the motor brake is controlled by the external sequence make it
 - In case that the motor brake is controlled by the external sequence, make it output in 100ms after emergency stop is inputted as well as servo drive unit output signal (MBR).

3-6 MDS-B-SVJ2 Parameter List

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)	Reference
SV001	PC1*	Motor side gear ratio	Set the motor side and machine side gear ratio. For the rotary axis, set the total deceleration (acceleration) ratio.	1 to 32767	3-1-1
SV002	PC2*	Machine side gear ratio	Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767	5-1-1
SV003	PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).	1 to 200 (rad/s)	3-2-8 (3) 3-2-8 (4)
SV004	PGN2	Position loop gain 2	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".	0 to 999 (rad/s)	
SV005	VGN1	Speed loop gain	Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 999	3-2-3 3-2-7
SV006			Not used. Set to "0".	0	
SV007			Not used. Set to "0".	0	
SV008	VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999	3-2-8 (2) 3-2-8 (4)
SV009	IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics,	1 to 20480	
SV010	IDA	Current loop d axis lead compensation	the setting is fixed for each type of motor. Set the standard values for all the parameters depending on each motor	1 to 20480	
SV011	IQG	Current loop q axis gain	type.	1 to 2560	_
SV012	IDG	Current loop d axis gain		1 to 2560	
SV013	ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 500 (Stall [rated] current %)	_
SV014	ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 500 (Stall [rated] current %)	-
SV015	FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.	0 to 999 (%)	3-2-8 (4)

				Setting						
No.	Abbrev.	Parameter name	Explanation	range (Unit)	Reference					
SV016	LMC1	Lost motion compensation 1	Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/ Imc)) is selected. Type 1: When SV027 (SSF1)/ bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount is zero. Normally, use Type 2. Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero. When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction							
SV017	SPEC*	Servo specification selection	15 14 13 12 11 10 9 8 7 6 5 4 3 2 bit Meaning when "0" is set Meaning when "1 0 dmk Deceleration control stop (SVJ2 standard) Dynamic brake stop 1	1 0 dmk	Reference – – –					
SV018	PIT*	Ball screw pitch	Set the ball screw pitch. Set to "360" for the rotary axis.	1 to 32767 (mm/rev)	_					

No.	Abbrev.	Parameter name	Explanation Setting range (Unit)										
			For both parameters, set the number of pulse motor detector.	For both parameters, set the number of pulses per one revolution of the motor detector.									
SV/010	DNC1*	Position detector resolution	Motor model nome	ing value	8 to 100	_							
30019	RINGT		Motor model name	SV019	SV020	(kp/rev)	_						
			HC*-E42/A42/A47, HC*R-E42/A42/A47 HA*N-E42/A42	100	100								
			HC*-E33/A33, HC*R-E33/A33 HA*N-E33/A33	25	25								
SV020	RNG2*	Speed detector	HC-SF, HC-RF	16	16	8 to 100	_						
		resolution	HA-FF, HC-MF	8	8	(kp/rev)							
SV021	OLT	Overload detection time constant	Set the detection time constant of Overload 1 Set to "60" as a standard. (For machine too	Set the detection time constant of Overload 1 (Alarm 50).									
SV022	OLL	Overload detection level	Set the current detection level of Overload 1 the stall (rated) current. Set to "150" as a st tool builder adjustment.)	(Alarm 50 andard.) in respect to (For machine	50 to 180 (Stall [rated] current %)	_						
SV023	OD1	Excessive error detection width during servo ON	Set the excessive error detection width when <standard rapid="" setting="" tr<br="">value> OD1=OD2= (min) 60' When "0" is set, the excessive error detection</standard>	servo ON averse ra m/min) *PGN1 n will not b	I. te /2 (mm) e performed.	0 to 32767 (mm)	3-4-2						
SV024	INP	In-position detection width	Set the in-position detection width. Set the accuracy required for the machine. The lower the setting is, the higher the position however, the cycle time (setting time) become setting is "50".	0 to 32767 (μm)	_								

No	Abbrev	Parameter name							Evol	anati	on							Rofe	ronce
INU.	ADDIEV.	Falameter hame							Схрі	anau	UII							Reie	Tence
			15	14	13	12	11 10	9	8	7	6	5	4	3	2	1	0		
				pe	en		er	nt		mtyp									
			0	bit	Sot	tho m	otor type			Ex	plana	ation						Refe	rence
			1		5001	Setting	0x	1x	2x	Зx	4x	5x	6x	7	x	8>	(
			2			x0	HA40N							HA-F	F43	HA43N	١		
			3	mtyp		x1	HA80N	ļ						HA-F	F63		N N		
			5			 x3	HA200N									11/100			
		6	1		x4														
		7]		x5														
					 x7														
					x8		ļ												
						x9										НЛОЗ			
						xB		l								114931	N		
						xC		ļ						HA-F	F053	HA053	BN		
						xD								HA-F	F13	HA13	۱ ۱		
						x⊏ xF								HA-F	F23 F33	HA33	N N		
							0			D.:	-					- 	E 11		
					5	etting	9x HC-MF43	AX	HC5	Bx 2 or	НС	53 or		Dx		EX	FX		
						x0		ļ	HC-S	SF52	НС	SF5	3						
		Motor/Detector				x1	HC-MF73		HC1	02 or SE102	HC	2103 0 2-SE1	or 03		HC1 HC-I	03R or			
SV025	MTYP*	type				v2			HC1	52 or	НС	C153 c	or		HC1	53R or			_
						~ <u>~</u>			HC-S	SF152	2 HC	-SF1	53	-	HC-I	RF153			
						x3			HC2 HC-S	02 or SF202	2 HC	203 0 S-SF2	or 03		HC2 HC-I	03R or RF203			
						x4			НСЗ	52 or	нс	-SF3	53						
						ν5			HC-9	SF352	2								
						x6													
						x7													
						x8 v0		ļ											
						xA		<u> </u>						1					
						хB													
						xC xD	HC-MF053	ļ						1					
						xE	HC-MF23	İ						1					
						хF													
			8	1	Set	the e	need data	tor t	vne										
			9		Set	to "2"			ype.										
			10	ent															
			11																
			12		Set	the p	osition det	ecto	r type) .									
				pen	Set	10 Z	•												
		15																	
																		-	

No.	Abbrev.	Parameter name	Explanation Setting range (Unit)										
SV026	OD2	Excessive error detection width during servo OFF	Set the excessive error detection width when servo ON. For the standard setting, refer to the explanation of SV023 (OD1). When "0" is set, the excessive error detection will not be performed.	0 to 32767 (mm)	3-4-2								
			15 14 13 12 11 10 9 8 7 6 5 4 3 2 aflt zm2 ovs imc vfct	2 1 0 zup									
			bit Meaning when "0" is set Meaning when "1	" is set	Reference								
			0 zup Vertical axis lift-up control stop Vertical axis lift-up cont	rol start	3-5-5								
			1										
			3 4 4 Vfct 5 00: Jitter compensation invalid 10: Jitter compensation invalid	sation.	3-2-6 (5)								
			01: Jitter compensation 1 pulse 11: Jitter compensation	3 puises									
01/007	0054	Servo function	7										
SV027	SSF1	selection 1	8 Set the compensation amount with SV016 (LMC1) and SV0)41 (LMC2).									
			9 Imc 00: Lost motion compensation stop 10: Lost motion compe	nsation									
			01: Lost motion compensation 11: Setting prohibited type 1		3-4-1								
			10 Set the compensation amount with SV031 (OVS1) and SV0)42 (OVS2).									
			11 ovs 00: Overshooting compensation 10: Overshooting compensation										
			stop type 2 01: Overshooting compensation 11: Setting prohibited type 1 11: Setting prohibited										
			12										
			13										
			14 zrn2 Set to "1".		-								
			(Note) Set to "0" for bits with no particular description.		3-2-5								
SV028			Not used. Set to "0".	0									
SV029			Not used. Set to "0".	0									
			When 100% is set, the voltage equivalent to the logical non-energized time will be compared										
SV030	IVC	Voltage dead time	Adjust in increments of 10% from the default value 100%.	0 to 200	3-5-1								
		compensation	If increased too much, vibration or vibration noise may be generated.	(%)									
			When not using, set to "0".										
			the motor torque during positioning.										
			This is valid only when the overshooting compensation SV027 (SSF1/										
			ovs) is selected. Type 1: When SV027 (SSE1)/ bit11_10 (ovs)=01	-									
			Set the compensation amount based on the motor's stall (rated)										
			current.										
			overshooting.										
			Compensation will not be performed in the feed forward control mode										
			rshooting during circular cutting. Type 2: When SV027 (SSF1)/ bit11, 10 (ovs)=10 Use this to perform the overshooting compensation in the feed (Stall Irated										
SV031	OVS1	Overshooting											
		compensation 1	forward control mode during circular cutting. The setting method is	current %)									
			the same in Type 1.	-									
			direction										
			When SV042 (OVS2) is "0", compensate with the value of SV031										
			(UVS1) In both of the + and -directions.										
			command direction, set this and SV042 (OVS2). (SV031: + direction,										
			SV042: - direction. However, the directions may be opposite										
			aepenaing on other settings.) When "-1" is set, the compensation won't be performed in the										
		direction of the command.											

Ne	A b b n e v c	Devenuetor	1					F								Sett	ing	Deferrer
INO.	Abbrev.	Parameter name						Exp	lanat	ion						range	(Unit)	Reference
SV032	TOF	Torque offset	Set the	e unba	lan	ice torq	ue of	vertio	al ax	is an	d incli	ined :	axis.			-100 to (Stall [r currer	o 100 ated] nt %)	3-2-2 (2) 3-4-1 3-5-4 3-5-5
			15	14	1:	3 12	11	10 a	9 fs	8	7	6	5 fh	4 z2	3	2 1 nfd	0]
				bit		Mea	aning	when	"0" is	s set			Меа	aning	when "	1" is set		Reference
			0		Se	et the fil	ter de	epth f	or No	tch fil	ter (S	SV03	B: FH	z1).				
			2	·	l I Va	ne contr alue	iol is : 0	stabili	zed b 2	y ma 4	king t	the fi	ter sr 8	nallow A	er. C	F		
				nfd	nfd Depth Infntly -18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2									3-2-6 (1)				
			3		(d	B)	dee	р								→ Sha	llow	
SV033	SSF2	Servo function	4	fhz2	Se	et the op	oerati	ion fre	equen	icy of	Notc	h filte	er 2.	47	11.7	50Hz		3-2-6 (2)
		Selection 2	6		00	. NO OF			01.	2250	1 12	10.	11201	12	11.7	50112		
					-							1						
			8 9 10	afs	S∉ If t vit	et the vi the filter pration	bratic r dep canno	on ser th is r ot be	nsitivi not de suffici	ty of t ep er iently	the ac nough elimi	daptiv n (gei nateo	/e filte nerall d, rais	er. y 70% se the	o or mo value.	re) and	the	3-2-5
			12															
			13															
			14	14 15														
			(Nc	(Note) Set to "0" for bits with no particular description.														
			15	14	1:	3 12	11	10	9	8	7 daf2	6 daf1	5 dac2	4 dac1	3	2 1 mon	0]
					bit		Mea	aning	when	"0" is	s set			Mea	aning	when "	1" is set	
			0	0 NC servo monitor MAX current display data changeover								7						
			2	mon		0	Max	. curre	ent cor	nman	l d value	e l	Max. c	urrent	commai	z nd value		
							After Max	r turnir curre	ng the	powe nman	r ON (d value	%) 1 e	or one Max. c	e secor	nd (%) FB valu	e for one	-	
			3	-		1	for c	one se	cond (%)	-4		secon	d (%)				
						2	turni	ing the	ent FB powe	value er ON	aner (%)	:	viax. c secono	d (%)	FB valu	e for one		
						3	Loa	d inerti	a rate	(%)			Adapti	vo filto			-	3-2-2 (2) 3-2-5
						4	freq	uency	(Hz)	peratio	n	ĺ	чаарті (%)	ve filte	r operat	ion gain		3-3-1 (4)
SV034	SSF3	Servo function selection 3				5	PN	bus vo	ltage ((V)		1	Regen reque numbe	erative ncy mo er of tin	operati onitor (T nes/sec)	ion he		3-5-4
						6	Estin	mated	max.	torque	e for or	ne l	Max. c	urrent	FB valu	e for one		
						7	Esti	mated	max.	torque	e for or	ne l	Max. d	listurba	ance tor	que for	-	
						8~F	seco Sett	ond (% ting pro	») ohibite	ed		[1	wo se	conds	(%)			
									4			D (4					_	
			4	dac1 dac2	D/	A outpu A outpu	it ch. it ch.	1 ove 2 ove	rflow	settin settin	ig ia	D/A	outpu	ut ch.1 ut ch.2	clamp	setting setting		-
			6	daf1	D/	A outpu	ıt ch.	1 no f	ilter		.y	D/A	outpu	ut ch.1	filter s	setting		_
			7 9	daf2	D/	A outpu	ut ch.:	2 no f	ilter			D/A	outpu	ut ch.2	2 filter s	setting		
			9									<u> </u>						
			10		[ļ						
			11															
			13									[
			14									ļ						
			(Nc	l te) Se	L t to	"0" for	hits v	vith n	n nart	icula	r desc	l crintio	n					<u> </u>

No.	Abbrev.	Parameter name		Explanation									Refe	erence																							
			15	14	13 clG	3 12	11	10	9	8	7	6	5	4	3	2	1	()																		
SV035	SSF4	Servo function selection 4	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (No	clG1 cl2n tte) Se	Co Se Th Wr fur Co	Mea Illision of the co e G1 co net co co co net co net co co co co co co co co co co co co co c	detec bllisic ollisic detec bllisic	ction n con det , the c ction n with n	"0" is	d 1 leve n leve d 2 v icula	el dur bl=S\ tectio alid_ r des	ing cu /060* n me [Coll	Mea utting clG1. thod ision on.	feed feed detec	(G1). ng cu	n "1	g feed	d wor	n't 3	-5-4																	
		Regenerative resistor type	15 0 1 2	14 an bit	13 np Alv	3 12 Mea ways se	11 ning et to	10 rty when "0(000	9 /p "0" is)0)".	8 set	7	6 en	5 ngx Mea	4	3 when	2 1 "1"	is se	t C	Refe	erence																	
SV036	PTYP*		PTYP* Regenerative resistor type 8 9 10 rtyp 0 External emergenerative resistor 9 10 rtyp 0 Drive unit stand built-in resistor) 11 1 Setting prohibit 0 Drive unit stand built-in resistor) 11 5 MR-RB32 or Gi 3 MR-RB32 or Gi 5 MR-RB30 or Gi 5 MR-RB30 or Gi 6 MR-RB50 or Gi 7 to F	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	Regenerative resistor type	3 4 5 6 7	emgx	Se val	t the ex lues with Setting 0 4	ktern th nc Exte	al emo o desci ernal e ernal e	ergen ription merge merge	cy st i.) ncy s ncy s	op fu E top in top va	nctio xplana valid alid	n. (S	Settin	g is p	proh	ibited	for		_
SV036				e resis standa istor) ohibited or G or GZ or GZ or GZ or GZ	tor ty rd bu d ZG200 G200 G200 G300 d	ype. E iilt-in r 00W39 W120 W390 W390	xplana resisto 20HMI 20HMI 20HMK:	ation r (SV. K C: 3 ur 3 unit	J2-01 d nits con ts conr	doesn	't ha ed in d in j	paralle	lel I		_																						
			12 13 14 15	amp	Alv	ways se	et to	"1(000	00)".											-																	

				Cattler	i
No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)	Reference
SV037	JL	Load inertia scale	Set "the motor inertia + motor axis conversion load inertia" in respect to the motor inertia. $SV037 (JL) = \frac{JI + Jm}{Jm} *100$ Jm: Motor inertia JI : Motor axis conversion load inertia	0 to 5000 (%)	3-2-2 (1) 3-5-2
SV038	FHz1	Notch filter frequency 1	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 72 or more) When not using, set to "0".	0 to 3000 (Hz)	3-2-6 (1)
SV039	LMCD	Lost motion compensation timing	Set this when the lost motion compensation timing doest not match. Adjust by increasing the value by 10 at a time.	0 to 2000 (ms)	_
SV040	LMCT	Non-sensitive band in feed forward control	Set the non-sensitive bad of the lost motion compensation and overshooting compensation during the feed forward control. When "0" is set, the actual value that will be set is $2\mu m$. Adjust by increasing by $1\mu m$.	0 to 100 (µm)	_
SV041	LMC2	Lost motion compensation 2	Set this with SV016 (LMC1) only when you wish to set the lost motion compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 200 (Stall [rated] current %)	_
SV042	OVS2	Overshooting compensation 2	Set this with SV031 (OVS1) only when you wish to set the overshooting compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 100 (Stall [rated] current %)	3-5-3
SV043	OBS1	Disturbance observer filter frequency	Set the disturbance observer filter band. The standard setting is "300". Lower the setting by 50 at a time if vibration occurs. To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). When not using, set to "0".	0 to 1000 (rad/s)	3-5-2
SV044	OBS2	Disturbance observer gain	Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using, set to "0".	0 to 1000 (%)	
SV045	TRUB	Frictional torque	Set the frictional torque when using the collision detection function.	0 to 100 (Stall [rated] current %)	3-2-2 (2) 3-4-1 (1) 3-5-4
SV046			Not used. Set to "0".	0	
SV047	EC	Inductive voltage compensation gain	Set the inductive voltage compensation gain. Set to "100" as a standard. If the current FB peak exceeds the current command peak, lower the gain.	0 to 200 (%)	3-3-1 (4)
SV048	EMGrt	Vertical axis drop prevention time	Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs. Increase the setting by 100ms at a time and set the value where the axis does not drop.	0 to 2000 (ms)	3-4-4 3-5-5
SV049	PGN1sp	Position loop gain 1 in spindle synchronous control	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp) and SV058 (SHGCsp).	1 to 200 (rad/s)	_
SV050	PGN2sp	Position loop gain 2 in spindle synchronous control	Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)	
SV051			Not used. Set to "0".	0	
SV052			Not used. Set to "0".	0	
SV053	OD3	Excessive error detection width in special control	Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.). If "0" is set, excessive error detection won't be performed when servo ON during a special control.	0 to 32767 (mm)	_
SV054			Not used. Set to "0".	0	
SV055	1		Not used. Set to "0".	0	

	i			i	
No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)	Reference
SV056	EMGt	Deceleration time constant at emergency stop	Set the time constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/ deceleration time constant.	0 to 5000 (ms)	3-4-3
SV057	SHGC	SHG control gain	When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). When not performing the SHG control, set to "0".	0 to 999 (rad/s)	3-2-8 (4)
SV058	SHGCsp	SHG control gain in spindle synchronous control	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)	
SV059	TCNV	Collision detection torque estimating gain	To use the collision detection function, set the torque estimating gain. In the case of MDS-B-SVJ2, the value is the same as the load inertia ratio that includes the motor inertia. (=SV037:JL) If acceleration/deceleration is performed after setting SV034.mon=3 and SV060=0, the load inertia ratio will be displayed on the NC monitor screen.	0 to 5000 (%)	3-5-4
SV060	TLMT	Collision detection level	When using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.	0 to 200 (Stall [rated] current %)	
SV061	DA1NO	D/A output ch. 1 data No.	Input the data number you wish to output to D/A output channel.	0 to 102	
SV062	DA2NO	D/A output ch. 2 data No.		010102	1-1-4
SV063	DA1MPY	D/A output ch. 1 output scale	When "0" is set, output is done with the standard output unit. Set other than "0" when you wish to change the unit.	-32768 to	
SV064	DA2MPY	D/A output ch. 2 output scale	Set the scale with a 1/256 unit. When "256" is set, the output unit will be the same as the standard output unit.	(Unit: 1/256)	
SV065			Not used. Set to "0".	0	

Revision History

Printing Date	Manual No.		Revision details
Jul. 2002	BNP-B2334A(ENG)	First Edition	
Feb.,2004	BNP-B2334B(ENG)	Explanation on the M	DS-CH-Vx series was added.
,		Font size of explanati	ions and inserted drawings was increased.
		Chapter 2	Modified MDS-C1/CH-Vx series adjustment procedures.
		Chapter 2 (beginning) MDS-CH manual was added.
		Section 2-1-3	Parameter numbers were added.
		Section 2-2-3	Explanations were changed. MDS-CH-Vx series standard
		.	VNG graph was added.
		Section 2-2-4	Title was changed from "Adjusting the notch filter" to
			"Explanation of notch filter".
			was deleted.
			Changed Hi-corder measurement data for measuring the
			vibration frequency to U-phase and V-phase current FB.
		Section 2.2 5	Explanation on the adaptive filter was deleted.
		Section 2-2-5	reviewed.
			Explanation of types of vibration was added for reference.
		Section 2-2-6 (2)	Explanations were completely reviewed. Points were revised.
		Section 2-2-6 (4)	Explanation was added. SHG control measurement
		Section 2-3-1	waverorm was added. Method of current value indication was changed in table of
			maximum current command values for adjustment
		Section 2-4-3 (3)	Items 5 and 6 were deleted since vertical axis required
			converter control.
		Section 2-5-2	Overshooting compensation type 3 was changed to be complied with the standard specifications
			Non-sensitive zone setting is added
			Explanation of SV034 is added.
		Section 2-7	MDS-CH-Vx was added, and explanations were changed
			to unified specifications.
		Section 3-1-3	Parameter numbers were added.
		Section 3-2-3	Standard VGN1 for combination with one rank smaller servo amplifier was added.
		Section 3-2-4	Items were added.
		Section 3-2-5	Flow chart for the adaptive filter adjustment was changed.
		Section 3-2-6	Explanations were completely reviewed. Adjustment flow was deleted.
		Section 3-2-7	Explanations and adjustment flows were completely reviewed.
		Section 3-2-8 (4)	Explanation of types of vibration was added for reference. Explanation was added. SHG control measurement waveform was added
		Section 3-3-1	Maximum current command value for combination with one
		Section 2 5 2	rank smaller servo amplifier was added.
		Section 3-6	Explanations for compensation methods were modified. Explanations were changed to unified specifications.

HEAD OFFICE : MITSUBISHI DENKI BLDG., 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

MODELAC SERVOMODEL
CODE008-201Manual No.BNP-B2334B(ENG)