

Numerical Control (CNC)

Specifications Manual MDS-DM2 Series

Introduction

Thank you for selecting the Mitsubishi numerical control unit. This instruction manual describes the handling and caution points for using this AC servo/spindle.Incorrect handling may lead to unforeseen accidents, so always read this instruction manual thoroughly to ensure correct usage.

In order to confirm if all function specifications described in this manual are applicable, refer to the specifications for each CNC.

Notes on Reading This Manual

- (1) Since the description of this specification manual deals with NC in general, for the specifications of individual machine tools, refer to the manuals issued by the respective machine tool builders. The "restrictions" and "available functions" described in the manuals issued by the machine tool builders have precedence to those in this manual.
- (2) This manual describes as many special operations as possible, but it should be kept in mind that items not mentioned in this manual cannot be performed.
- (3) The characteristic values and numerical values without tolerances mentioned in this manual are representative values.

In this manual, the following abbreviations might be used.

MTB: Machine tool builder

Precautions for Safety

Please read this manual and auxiliary documents before starting installation, operation, maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation.

The safety precautions in this instruction manual are ranked as "WARNING" and "CAUTION".

⚠ DANGER

When there is a potential risk of fatal or serious injuries if handling is mistaken.

When a dangerous situation, or fatal or serious injuries may occur if handling is mistaken.

⚠ CAUTION

When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as "ACAUTION" may lead to major results depending on the situation. In any case, important information that must be observed is described.

The signs indicating prohibited and mandatory matters are explained below.

Indicates a prohibited matter. For example, "Fire Prohibited" is indicated as (%).

Indicates a mandatory matter. For example, grounding is indicated as

The meaning of each pictorial sign is as follows.

\triangle	\triangle		A	Δ
CAUTION	CAUTION rotated object	CAUTION HOT	Danger Electric shock risk	Danger explosive
\Diamond	8	®	0	
Prohibited	Disassembly is prohibited	KEEP FIRE AWAY	General instruction	Earth ground

After reading this specifications and instructions manual, store it where the user can access it easily for reference.

The numeric control unit is configured of the control unit, operation board, servo drive unit, spindle drive unit, power supply, servo motor and spindle motor, etc.

In this section "Precautions for safety", the following items are generically called the "motor".

- Servo motor
- · Linear servo motor
- Spindle motor
- · Direct-drive motor

In this section "Precautions for safety", the following items are generically called the "unit".

- · Servo drive unit
- · Spindle drive unit
- · Power supply unit
- · Scale interface unit
- · Magnetic pole detection unit

POINT

Important matters that should be understood for operation of this machine are indicated as a POINT in this manual.

⚠ WARNING

1. Electric shock prevention

- Make sure the power is shut OFF before connecting a unit and a motor to the power.
- Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.
- Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and can cause electric shocks.
- Do not remove the front cover and connector even when the power is OFF unless carrying out wiring work or periodic inspections. The inside of the units is charged, and can cause electric shocks.
- Since the high voltage is supplied to the main circuit connector while the power is ON or during operation, do not touch the main circuit connector with an adjustment screwdriver or the pen tip. Failure to observe this could lead to electric shocks.
- Wait at least 15 minutes after turning the power OFF, confirm that the CHARGE lamp has gone out, and check the voltage between P and N terminals with a tester, etc., before starting wiring, maintenance or inspections. Failure to observe this could lead to electric shocks.
- Ground the unit and motor. For the motor, ground it via the drive unit.
- Miring, maintenance and inspection work must be done by a qualified technician.
- Wire the servo drive unit and servo motor after installation. Failure to observe this could lead to electric shocks.
- ⚠ Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.
- Do not damage, apply forcible stress, place heavy items on the cables or get them caught. Failure to observe this could lead to electric shocks.
- Always insulate the power terminal connection section. Failure to observe this could lead to electric shocks.
- After assembling the built-in IPM spindle motor, if the rotor is rotated by hand etc., voltage occurs between the terminals of lead. Take care not to get electric shocks.

⚠ WARNING

2. Injury prevention

When handling a motor, perform operations in safe clothing.

In the system where the optical communication with CNC is executed, do not see directly the light generated from CN1A/CN1B connector of drive unit or the end of cable. When the light gets into eye, you may feel something is wrong for eye.

(The light source of optical communication corresponds to class1 defined in JISC6802 or IEC60825-1.)

The linear servo motor, direct-drive motor and built-in IPM spindle motor uses permanent magnets in the rotor, so observe the following precautions.

(1)Handling

- The linear servo motor, direct-drive motor and built-in IPM spindle motor could adversely affect medical electronics such as pacemakers, etc., therefore, do not approach the rotor.
- · Do not place magnetic materials as iron.
- When a magnetic material as iron is placed, take safety measure not to pinch fingers or hands due to the magnetic attraction force.
- Remove metal items such as watch, piercing jewelry, necklace, etc.
- Do not place portable items that could malfunction or fail due to the influence of the magnetic force.
- When the rotor is not securely fixed to the machine or device, do not leave it unattended but store it in the package properly.
- When installing the motor to the machine, take it out from the package one by one, and then install it.
- It is highly dangerous to lay out the motor or magnetic plates together on the table or pallet, therefore never do so.

(2)Transportation and storage

- Correctly store the rotor in the package to transport and store.
- During transportation and storage, draw people's attention by applying a notice saying "Strong magnet-Handle with care" to the package or storage shelf.
- Do not use a damaged package.

(3)Installation

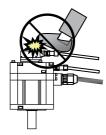
• Take special care not to pinch fingers, etc., when installing (and unpacking) the linear servo motor.

Incorrect wiring could lead to smoke or fire in the unit and the reactor, resulting in faults. Be careful when wiring.

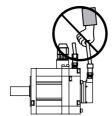
CAUTION

1. Fire prevention

- Install the units, motors and regenerative resistor on non-combustible material. Direct installation on combustible material or near combustible materials could lead to fires.
- Always install a circuit protector and contactor on the servo drive unit power input as explained in this manual. Refer to this manual and select the correct circuit protector and contactor. An incorrect selection could result in fire.
- ⚠ Shut off the power on the unit side if a fault occurs in the units. Fires could be caused if a large current continues to flow.
- When using a regenerative resistor, provide a sequence that shuts off the power with the regenerative resistor's error signal. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.
- The battery unit could heat up, ignite or rupture if submerged in water, or if the poles are incorrectly wired.
- ⚠ Cut off the main circuit power with the contactor when an alarm or emergency stop occurs.


2. Injury prevention

- Do not apply a voltage other than that specified in this manual, on each terminal. Failure to observe this item could lead to ruptures or damage, etc.
- Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.
- △ Do not mistake the polarity (+,-). Failure to observe this item could lead to ruptures or damage, etc.
- Do not touch the radiation fin on unit back face, regenerative resistor or motor, etc., or place parts (cables, etc.) while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns or part damage.
- Structure the cooling fan on the unit back face, etc., etc so that it cannot be touched after installation.
 Touching the cooling fan during operation could lead to injuries.
- A Take care not to suck hair, clothes, etc. into the cooling fan.


3. Various precautions

Observe the following precautions. Incorrect handling of the unit could lead to faults, injuries and electric shocks, etc.

- (1) Transportation and installation
- ! Correctly transport the product according to its weight.
- Use the motor's hanging bolts only when transporting the motor itself. Do not use the motor's hanging bolts to transport a motor with other parts installed, or to transport a machine with a motor installed.
- ♠ Do not stack the products above the tolerable number.
- Follow this manual and install the unit or motor securely in a place where it can be borne and noncombustible. Insufficient fixing could lead to the unit or the motor slipping off during operation.
- Do not get on top of or place heavy objects on the unit.

⚠ Do not hold the cables, axis or encoder when transporting the motor.

- ♠ Do not hold the connected wires or cables when transporting the units.
- ♠ Do not hold the front cover when transporting the unit. The unit could drop.
- Always observe the installation directions of the units or motors.
- Secure the specified distance between the units and control panel, or between the servo drive unit and other devices.
- ♠ Do not install or run a unit or motor that is damaged or missing parts.
- ⚠ Do not block the intake or exhaust ports of the motor provided with a cooling fan.
- Do not let foreign objects enter the units or motors. In particular, if conductive objects such as screws or metal chips, etc., or combustible materials such as oil enter, rupture or breakage could occur.
- Provide adequate protection using a material such as connector for conduit to prevent screws, metallic detritus, water and other conductive matter or oil and other combustible matter from entering the motor through the power line lead-out port.
- The units, motors and encoders are precision devices, so do not drop them or apply strong impacts to them.
- Always operate the motor, which has a shaft with keyway, with the key attached.

⚠ Store and use the units under the following environment conditions.

Environment	Unit	Servo motor	Spindle motor				
	Operation: 0 to +55°C	Operation: 0 to +40°C	Operation: 0 to +40°C				
Ambient	(with no freezing),	(with no freezing),	(with no freezing),				
temperature	Storage / Transportation: -15°C to +70°C	Storage: -15°C to +70°C	Storage: -20°C to +65°C				
	(with no freezing)	(with no freezing)	(with no freezing)				
	Operation: 90%RH or less	Operation: 80%RH or less	Operation: 90%RH or less				
Ambient	(with no dew condensation)	(with no dew condensation),	(with no dew condensation)				
humidity	Storage / Transportation: 90%RH or less	Storage: 90%RH or less	Storage: 90%RH or less				
	(with no dew condensation)	(with no dew condensation)	(with no dew condensation)				
Atmoonhore		ndoors (no direct sunlight)					
Atmosphere	With no corrosive gas, inflar	nmable gas, oil mist, dust or condu	ctive fine particles				
	Operation/Storage:	Operation/	Storage:				
Altitude	1000 meters or less above sea level,	1000 meters or less	s above sea level,				
Aititude	Transportation:	Transpo	ortation:				
	s above sea level						
Vibration/impact	According	to each unit or motor specification					

(Note) For details, confirm each unit or motor specifications in addition.

When disinfectants or insecticides must be used to treat wood packaging materials, always use methods other than fumigation (for example, apply heat treatment at the minimum wood core temperature of 56 °C for a minimum duration of 30 minutes (ISPM No. 15 (2009))).

If products such as units are directly fumigated or packed with fumigated wooden materials, halogen substances (including fluorine, chlorine, bromine and iodine) contained in fumes may contribute to the erosion of the capacitors.

When exporting the products, make sure to comply with the laws and regulations of each country.

- Do not use the products in conjunction with any components that contain halogenated flame retardants (bromine, etc). Failure to observe this may cause the erosion of the capacitors.
- Securely fix the servo motor to the machine. Insufficient fixing could lead to the servo motor slipping off during operation.
- Always install the servo motor with reduction gear in the designated direction. Failure to do so could lead to oil leaks.
- Structure the rotary sections of the motor so that it can never be touched during operation. Install a cover, etc., on the shaft.
- Mhen installing a coupling to a servo motor shaft end, do not apply an impact by hammering, etc. The encoder could be damaged.
- Do not apply a load exceeding the tolerable load onto the servo motor shaft. The shaft could break.
- !\text{Store the motor in the package box.}
- When inserting the shaft into the built-in IPM spindle motor, do not heat the rotor higher than 130°C. The magnet could be demagnetized, and the specifications characteristics will not be ensured.
- Always use a nonmagnetic tool (explosion-proof beryllium copper alloy safety tool: NGK Insulators, etc.) when installing the built-in IPM spindle motor, direct-drive motor and linear servo motor.
- Always provide a mechanical stopper on the end of the linear servo motor's travel path.
- If the unit has been stored for a long time, always check the operation before starting actual operation. Please contact the Service Center, Sales Office or dealer.
- Install the heavy peripheral devices to the lower part in the panel and securely fix it not to be moved due to vibration.

⚠ Correctly and securely perform the wiring. Failure to do so could lead to abnormal operation of the motor.

Do not install a condensing capacitor, surge absorber or radio noise filter on the output side of the drive unit.

Correctly connect the output side of the drive unit (terminals U, V, W). Failure to do so could lead to abnormal operation of the motor.

Mhen using a power regenerative power supply unit, always install an AC reactor for each power supply unit.

In the main circuit power supply side of the unit, always install an appropriate circuit protector or contactor for each unit. Circuit protector or contactor cannot be shared by several units.

Always connect the motor to the drive unit's output terminals (U, V, W).

Do not directly connect a commercial power supply to the servo motor. Failure to observe this could result in a fault.

Mhen using an inductive load such as a relay, always connect a diode as a noise measure parallel to the load.

Mhen using a capacitance load such as a lamp, always connect a protective resistor as a noise measure serial to the load.

Do not reverse the direction of a diode which connect to a DC relay for the control output signals such as contractor and motor brake output, etc. to suppress a surge. Connecting it backwards could cause the drive unit to malfunction so that signals are not output, and emergency stop and other safety circuits are inoperable.

Servo drive unit

Control output signal

24G

Servo drive unit

Control output signal

24G

RA

24G

⚠ Do not connect/disconnect the cables connected between the units while the power is ON.

Securely tighten the cable connector fixing screw or fixing mechanism. An insecure fixing could cause the cable to fall off while the power is ON.

Mhen using a shielded cable instructed in the instruction manual, always ground the cable with a cable clamp, etc. (Refer to "EMC Installation Guidelines")

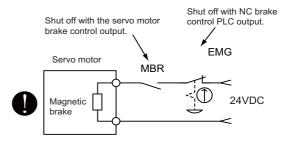
Always separate the signals wires from the power line.

⚠ Use wires and cables that have a wire diameter, heat resistance and flexibility that conforms to the system.

(3) Trial operation and adjustment

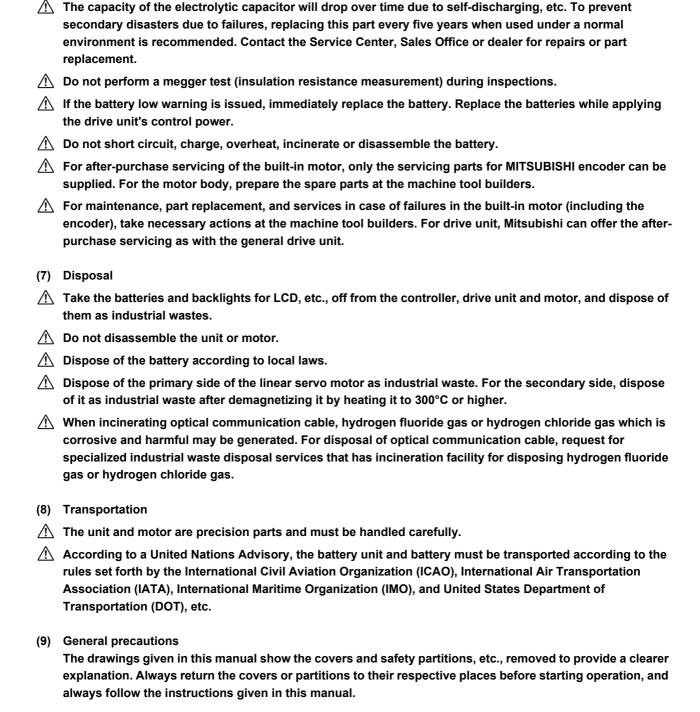
Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.

Do not make remarkable adjustments and changes of parameter as the operation could become unstable.


The usable motor and unit combination is predetermined. Always check the combinations and parameters before starting trial operation.

The direct-drive motor and linear servo motor do not have a stopping device such as magnetic brakes. Install a stopping device on the machine side.

When using the linear servo motor for an unbalance axis, adjust the unbalance weight to 0 by installing an air cylinder, etc. on the machine side. The unbalance weight disables the initial magnetic pole adjustment.


CAUTION

- (4) Usage methods
- In abnormal state, install an external emergency stop circuit so that the operation can be stopped and power shut off immediately.
- ⚠ Turn the power OFF immediately if smoke, abnormal noise or odors are generated from the unit or motor.
- Do not disassemble or repair this product.
- Never make modifications.
- When an alarm occurs, the machine will start suddenly if an alarm reset (RST) is carried out while an operation start signal (ST) is being input. Always confirm that the operation signal is OFF before carrying out an alarm reset. Failure to do so could lead to accidents or injuries.
- Reduce magnetic damage by installing a noise filter. The electronic devices used near the unit could be affected by magnetic noise. Install a line noise filter, etc., if there is a risk of magnetic noise.
- Use the unit, motor and regenerative resistor with the designated combination. Failure to do so could lead to fires or trouble.
- The brake (magnetic brake) of the servo motor are for holding, and must not be used for normal braking.
- There may be cases when holding is not possible due to the magnetic brake's life, the machine construction (when ball screw and servo motor are coupled via a timing belt, etc.) or the magnetic brake's failure. Install a stop device to ensure safety on the machine side.
- After changing the programs/parameters or after maintenance and inspection, always test the operation before starting actual operation.
- <u>One of the Machine Do not enter the movable range of the machine during automatic operation. Never place body parts near or touch the spindle during rotation.</u>
- Follow the power supply specification conditions given in each specification for the power (input voltage, input frequency, etc.).
- Set all bits to "0" if they are indicated as not used or empty in the explanation on the bits.
- Do not use the dynamic brakes except during the emergency stop. Continued use of the dynamic brakes could result in brake damage.
- If a circuit protector for the main circuit power supply is shared by several units, the circuit protector may not activate when a short-circuit fault occurs in a small capacity unit. This is dangerous, so never share the circuit protector.
- Mitsubishi spindle motor is dedicated to machine tools. Do not use for other purposes.
- This unit is not intended for use in low voltage public networks that supply power to households. Using this unit in such networks may cause radio frequency interference.
- Do not use this unit in residential areas.
- (5) Troubleshooting
- If a hazardous situation is predicted during power failure or product trouble, use a servo motor with magnetic brakes or install an external brake mechanism.
- Use a double circuit configuration that allows the operation circuit for the magnetic brakes to be operated even by the external emergency stop signal.
- Always turn the main circuit power of the motor OFF when an alarm occurs.
- If an alarm occurs, remove the cause, and secure the safety before resetting the alarm.

Always backup the programs and parameters before starting maintenance or inspections.

(6) Maintenance, inspection and part replacement

Treatment of waste

The following two laws will apply when disposing of this product. Considerations must be made to each law. The following laws are in effect in Japan. Thus, when using this product overseas, the local laws will have a priority. If necessary, indicate or notify these laws to the final user of the product.

- (1) Requirements for "Law for Promotion of Effective Utilization of Resources"
 - (a) Recycle as much of this product as possible when finished with use.
 - (b) When recycling, often parts are sorted into steel scraps and electric parts, etc., and sold to scrap contractors. Mitsubishi Electric recommends sorting the product and selling the members to appropriate contractors.
- (2) Requirements for "Law for Treatment of Waste and Cleaning"
 - (a) Mitsubishi Electric recommends recycling and selling the product when no longer needed according to item (1) above. The user should make an effort to reduce waste in this manner.
 - (b) When disposing a product that cannot be resold, it shall be treated as a waste product.
 - (c) The treatment of industrial waste must be commissioned to a licensed industrial waste treatment contractor, and appropriate measures, including a manifest control, must be taken.
 - (d) Batteries correspond to "primary batteries", and must be disposed of according to local disposal laws.

Disposal

(Note) This symbol mark is for EU countries only.

This symbol mark is according to the directive 2006/66/EC Article 20 Information for end-users and Appex II

Your MITSUBISHI ELECTRIC product is designed and manufactured with high quality materials and components which can be recycled and/or reused.

This symbol means that batteries and accumulators, at their end-of-life, should be disposed of separately from your household waste.

If a chemical symbol is printed beneath the symbol shown above, this chemical symbol means that the battery or accumulator contains a heavy metal at a certain concentration. This will be indicated as follows:

Hg: mercury (0,0005%), Cd: cadmium (0,002%), Pb: lead (0,004%)

In the European Union there are separate collection systems for used batteries and accumulators.

Please, dispose of batteries and accumulators correctly at your local community waste collection/recycling centre.

Please, help us to conserve the environment we live in!

Trademarks

MELDAS, MELSEC, EZSocket, EZMotion, iQ Platform, MELSOFT, GOT, CC-Link, CC-Link/LT and CC-Link IE are either trademarks or registered trademarks of Mitsubishi Electric Corporation in Japan and/or other countries.

Other company and product names that appear in this manual are trademarks or registered trademarks of the respective companies.

本製品の取扱いについて

(日本語/Japanese)

本製品は工業用 (クラス A) 電磁環境適合機器です。販売者あるいは使用者はこの点に注意し、住商業環境以外での使用をお願いいたします。

Handling of our product

(English)

This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

본 제품의 취급에 대해서

(한국어 /Korean)

이 기기는 업무용 (A 급) 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며 가정외의 지역에 서 사용하는 것을 목적으로 합니다 .

WARRANTY

Please confirm the following product warranty details before using Mitsubishi Electric CNC.

1. Warranty Period and Coverage

Should any fault or defect (hereafter called "failure") for which we are liable occur in this product during the warranty period, repair services shall be provided at no cost through the distributor from which the product was purchased or through a Mitsubishi Electric service provider. Note, however, that this does not apply if the customer was informed prior to purchasing the product that the product is not covered under warranty. Also note that we are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit is replaced.

[Warranty Term]

The term of warranty for this product shall be twenty-four (24) months from the date of delivery of the product to the end user, provided the product purchased from Mitsubishi Electric or a distributor in Japan is installed in Japan (but in no event longer than thirty (30) months, including distribution time after shipment from Mitsubishi Electric or a distributor).

Note that, in the case where the product purchased from Mitsubishi Electric or a distributor in or outside Japan is exported and installed in any country other than where it was purchased, please refer to "2. Service in Overseas Countries" below.

[Limitations]

- (1) The machine tool builder is requested to conduct an initial failure diagnosis, as a general rule. The diagnosis may also be carried out by Mitsubishi Electric or our service provider for a fee at the machine tool builder's request.
- (2) This warranty applies only when the conditions, method, environment, etc., of use are in compliance with the terms, conditions and instructions that are set forth in the instruction manual, user's manual, and the caution label affixed to the product, etc.
- (3) Even during the term of warranty, repair costs will be charged to the customer in the following cases:
 - (a) a failure caused by improper storage or handling, carelessness or negligence, etc., or a failure caused by a problem with the customer's hardware or software
 - (b) a failure caused by any alteration, etc., to the product made by the customer without Mitsubishi Electric's approval
 - (c) a failure which may be regarded as avoidable, if the customer's equipment in which this product is incorporated is equipped with a safety device required by applicable laws or has any function or structure considered to be indispensable in the light of common sense in the industry
 - (d) a failure which could have been avoided if consumable parts designated in the instruction manual, etc. had been duly maintained and replaced
 - (e) any replacement of consumable parts (including the battery, relay and fuse)
 - (f) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquakes, lightning, and natural disasters
 - (g) a failure which could not have been foreseen under technologies available at the time of shipment of this product from Mitsubishi Electric
 - (h) any other failures which are not attributable to Mitsubishi Electric or which the customer acknowledges are not attributable to Mitsubishi Electric

2. Service in Overseas Countries

If the customer installs a product purchased from Mitsubishi Electric in a machine or equipment and exports it to any country other than where it was purchased, the customer may sign a paid warranty contract with our local FA center.

This applies in the case where the product purchased from us in or outside Japan is exported and installed in any country other than where it was purchased.

For details please contact the distributor from which the product was purchased.

3. Exclusion of Responsibility for Compensation against Loss of Opportunity, Secondary Loss, etc.

Regardless of the gratis warranty term, Mitsubishi Electric shall not be liable for compensation for:

- (1) Damage arising from any cause found not to be the responsibility of Mitsubishi Electric.
- (2) Lost opportunity or lost profit incurred by the user due to a failure of a Mitsubishi Electric product.
- (3) Special damage or secondary damage, whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

4. Changes in Product Specifications

Specifications shown in our catalogs, manuals or technical documents are subject to change without notice.

5. Product Application

- (1) For use of this product, applications should be those that will not result in a serious damage even if a failure or malfunction occurs in the product, and a backup or failsafe function should operate on an external system when any failure or malfunction occurs to the product.
- (2) Mitsubishi Electric CNC is designed and manufactured solely for applications to machine tools for industrial purposes. Do not use this product in applications other than those specified above, especially those which have substantial influence on public interest or which are expected to have significant influence on human lives or properties.

Contents

1	Introduction	
	1.1 Servo/Spindle Drive System Configuration	
	1.1.1 System Configuration	
	1.2 Explanation of Type	
	1.2.1 Servo Motor Type	
	1.2.2 Drive Unit Type	
	1.2.3 Spindle Motor Type	
	1.2.4 AC Reactor Type	6
2	Specifications	7
_	2.1 Servo Motor	
	2.1.1 Specifications List	
	2.1.2 Torque Characteristics	
	2.2 Spindle Motor	
	2.2.1 Specifications	
	2.2.2 Output Characteristics	
	2.3 Drive Unit	
	2.3.1 Installation Environment Conditions	
	2.3.2 Multi Axis Drive Unit	
	2.3.3 Unit Outline Dimension Drawing	24
	2.3.4 AC Reactor	
	2.3.5 Explanation of Each Part	25
2	Eunation Specifications	07
J	Function Specifications Function Specifications List	
	3.1 Base Control Functions	
	3.1.1 Full Closed Loop Control	
	3.1.3 Speed Command Synchronous Control	
	3.1.4 Distance-coded Reference Position Control	
	3.1.5 Spindle's Continuous Position Loop Control	
	3.1.6 Coil Changeover Control	
	3.1.7 Gear Changeover Control	
	3.1.8 Orientation Control	
	3.1.9 Indexing Control	
	3.1.10 Synchronous Tapping Control	
	3.1.11 Spindle Synchronous Control	
	3.1.12 Spindle/C Axis Control	
	3.1.13 Proximity Switch Orientation Control	
	3.1.14 Power Regeneration Control	
	3.1.15 Resistor Regeneration Control	
	3.2 Servo/Spindle Control Functions	
	3.2.1 Torque Limit Function	
	3.2.2 Variable Speed Loop Gain Control	
	3.2.3 Gain Changeover for Synchronous Tapping Control	
	3.2.4 Speed Loop PID Changeover Control	
	3.2.5 Disturbance Torque Observer	
	3.2.6 Smooth High Gain Control (SHG Control)	37
	3.2.7 High-speed Synchronous Tapping Control (OMR-DD Control)	
	3.2.8 Dual Feedback Control	
	3.2.9 HAS Control	
	3.2.10 OMR-FF Control	
	3.2.11 Control Loop Gain Changeover	
	3.2.12 Spindle Output Stabilizing Control	39
	3.2.13 High-response Spindle Acceleration/Deceleration Function	
	3.3 Compensation Control Function	
	3.3.1 Jitter Compensation	
	3.3.2 Notch Filter	
	3.3.3 Adaptive Tracking-type Notch Filter	
	3.3.4 Overshooting Compensation	
	3.3.5 Machine End Compensation Control	Δ1

3.3.6 Lost Motion Compensation Type 2	42
3.3.7 Lost Motion Compensation Type 3	
3.3.8 Spindle Motor Temperature Compensation Function	
3.4 Protection Function	
3.4.1 Deceleration Control at Emergency Stop	
3.4.2 Vertical Axis Drop Prevention/Pull-up Control	
3.4.3 Earth Fault Detection	
3.4.4 Collision Detection Function	
3.4.5 SLS (Safely Limited Speed) Function	
3.4.6 Fan Stop Detection	
·	
3.4.7 Open-phase Detection	
3.4.8 Contactor Weld Detection	
3.4.9 STO (Safe Torque Off) Function	
3.4.10 Deceleration and Stop Function at Power Failure	
3.4.11 Retraction Function at Power Failure	
3.5 Sequence Functions	
3.5.1 Contactor Control Function	
3.5.2 Motor Brake Control Function	
3.5.3 External Emergency Stop Function	
3.5.4 Specified Speed Output	
3.5.5 Quick READY ON Sequence	
3.6 Diagnosis Function	
3.6.1 Monitor Output Function	
3.6.2 Machine Resonance Frequency Display Function	
3.6.3 Machine Inertia Display Function	
3.6.4 Motor Temperature Display Function	50
3.6.5 Load Monitor Output Function	
3.6.6 Power Supply Diagnosis Display Function	50
4 Characteristics	51
4.1 Servo Motor	
4.1.1 Environmental Conditions	
4.1.2 Quakeproof Level	
4.1.3 Shaft Characteristics	
4.1.4 Machine Accuracy	
4.1.5 Oil / Water Standards	
4.1.6 Installation of Servo Motor	
4.1.7 Overload Protection Characteristics	
4.1.8 Magnetic Brake	
4.1.9 Dynamic Brake Characteristics	
4.1.9 Dynamic Brake Characteristics	
·	
4.2.1 Environmental Conditions	
4.2.2 Shaft Characteristics	
4.2.3 Machine Accuracy	
4.2.4 Installation of Spindle Motor	
4.3 Drive Unit	
4.3.1 Environmental Conditions	
4.3.2 Heating Value	64
,, , , _ ,	
5 Dedicated Options	65
5.1 Servo Options	66
5.1.1 Battery Option (ER6V-C119B, A6BAT, MDS-BTBOX-36)	69
5.1.2 Ball Screw Side Encoder (OSA105ET2A)	80
5.1.3 Machine Side Encoder	
5.1.4 Twin-head Magnetic Encoder (MBA Series)	
5.2 Spindle Options	
5.2.1 Spindle Side ABZ Pulse Output Encoder (OSE-1024 Series)	92
5.2.2 Spindle Side PLG Serial Output Encoder (TS5690, MU1606 Series)	
5.2.3 Twin-head Magnetic Encoder (MBE Series)	
5.2.4 Spindle Side Accuracy Serial Output Encoder (ERM280, MPCI Series)	
(Other Manufacturer's Product)	102
5.3 Encoder Interface Unit	
5.3.1 Serial Output Interface Unit for ABZ Analog Encoder MDS-B-HR	
5.3.2 Serial Output Interface Unit for ABZ Analog Encoder EIB192M	
(Other Manufacturer's Product)	106
(

5.3.3 Serial Output Interface Unit for ABZ Analog Encoder EIB392M	
(Other Manufacturer's Product)	107
5.3.4 Serial Output Interface Unit for ABZ Analog Encoder ADB-20J Series	
(Other Manufacturer's Product)	
5.4 Drive Unit Option	
5.4.1 Optical Communication Repeater Unit (FCU7-EX022)	
5.5 Cables and Connectors	
5.5.1 Cable Connection Diagram	
5.5.2 List of Cables and Connectors	
5.5.3 Optical Communication Cable Specifications	120
6 Specifications of Peripheral Devices	123
6.1 Selection of Wire	124
6.1.1 Example of Wires by Unit	124
6.2 Selection of Circuit Protector and Contactor	126
6.2.1 Selection of Circuit Protector	126
6.2.2 Selection of Contactor	127
6.3 Selection of Earth Leakage Breaker	128
6.4 Noise Filter	129
6.5 Surge Absorber	130
6.6 Relay	131
7 Selection	133
7.1 Selection of the Servo Motor	
7.1.1 Outline	
7.1.1 Oddine	
ı ,	
7.1.3 Motor Shaft Conversion Load Torque	
7.1.4 Expressions for Load Inertia Calculation	143 144
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable	143 144 145
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable Appendix 1.2.2 Optical Communication Repeater Unit Cable	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable Appendix 1.2.2 Optical Communication Repeater Unit Cable Appendix 1.2.3 STO Cable	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.1.1 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable Appendix 1.2.2 Optical Communication Repeater Unit Cable Appendix 1.2.3 STO Cable Appendix 1.2.4 Servo Encoder Cable	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.2 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable Appendix 1.2.2 Optical Communication Repeater Unit Cable Appendix 1.2.3 STO Cable Appendix 1.2.4 Servo Encoder Cable Appendix 1.2.5 Spindle Encoder Cable Appendix 1.2.6 Twin-head Magnetic Encoder Cable Appendix 1.3 Main Circuit Cable Connection Diagram Appendix 1.4 Connector Outline Dimension Drawings Appendix 1.4.1 Connector for Drive Unit Appendix 1.4.2 Connector for Servo Appendix 1.4.3 Connector for Spindle	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor Appendix 1 Cable and Connector Specifications Appendix 1.1 Selection of Cable Appendix 1.2 Cable Wire and Assembly Appendix 1.2 Cable Connection Diagram Appendix 1.2.1 Battery Cable Appendix 1.2.2 Optical Communication Repeater Unit Cable Appendix 1.2.3 STO Cable Appendix 1.2.4 Servo Encoder Cable Appendix 1.2.5 Spindle Encoder Cable Appendix 1.2.6 Twin-head Magnetic Encoder Cable Appendix 1.3 Main Circuit Cable Connection Diagram Appendix 1.4 Connector Outline Dimension Drawings Appendix 1.4.1 Connector for Drive Unit Appendix 1.4.2 Connector for Servo Appendix 1.4.3 Connector for Spindle Appendix 2 Restrictions for Lithium Batteries Appendix 2 Restriction for Packing	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	143 144
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation	
7.1.4 Expressions for Load Inertia Calculation	
7.1.4 Expressions for Load Inertia Calculation	
7.1.4 Expressions for Load Inertia Calculation	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	
7.1.4 Expressions for Load Inertia Calculation 7.2 Selection of the Spindle Motor	

Outline for MDS-DM2 Series Instruction Manual (IB-1501139-B)

1 Installation

- 1.1 Installation of Servo Motor
 - 1.1.1 Environmental Conditions
 - 1.1.2 Quakeproof Level
 - 1.1.3 Cautions for Mounting Load (Prevention of Impact on Shaft)
 - 1.1.4 Installation Direction
 - 1.1.5 Shaft Characteristics
 - 1.1.6 Machine Accuracy
 - 1.1.7 Coupling with the Load
 - 1.1.8 Oil / Water Standards
 - 1.1.9 Installation of Servo Motor
 - 1.1.10 Cable Stress
- 1.2 Installation of Spindle Motor
 - 1.2.1 Environmental Conditions
 - 1.2.2 Balancing the Spindle Motor (Unit)
 - 1.2.3 Shaft Characteristics
 - 1.2.4 Machine Accuracy
 - 1.2.5 Coupling with the Fittings
 - 1.2.6 Ambient Environment
 - 1.2.7 Installation of Spindle Motor
 - 1.2.8 Connection
 - 1.2.9 Cable
- 1.3 Installation of the Drive Unit
 - 1.3.1 Environmental Conditions
 - 1.3.2 Installation direction and clearance
 - 1.3.3 Prevention of Entering of Foreign Matter
 - 1.3.4 Panel installation hole work drawings (Panel cut drawings)
 - 1.3.5 Heating Value
 - 1.3.6 Heat Radiation Countermeasures
- 1.4 Installation of the Machine End Encoder
 - 1.4.1 Spindle Side ABZ Pulse Output Encoder (OSE-1024 Series)
 - 1.4.2 Spindle Side PLG Serial Output Encoder (TS5690, MU1606 Series)
 - 1.4.3 Twin-head Magnetic Encoder (MBA405W, MBE405W Series)
- 1.5 Noise Measures

2 Wiring and Connection

- 2.1 Part system connection diagram
- 2.2 Main circuit terminal block/control circuit connector
 - 2.2.1 Names and applications of main circuit terminal block signals and control circuit connectors
 - 2.2.2 Connector pin assignment
- 2.3 NC and drive unit connection
- 2.4 Connecting with Optical Communication Repeater Unit
- 2.5 Motor and encoder connection
 - 2.5.1 Connection of the servo motor
 - 2.5.2 Connection of the full-closed loop system
 - 2.5.3 Connection of the spindle motor
- 2.6 Connection of power supply
 - 2.6.1 Power supply input connection

- 2.6.2 Connecting the grounding cable
- 2.7 Wiring of the motor brake
 - 2.7.1 Wiring of the motor magnetic brake
- 2.8 Peripheral control wiring
 - 2.8.1 Input/output circuit wiring
 - 2.8.2 Specified speed output
 - 2.8.3 Spindle Coil Changeover
 - 2.8.4 Proximity switch orientation

3 Safety Function

- 3.1 Safety Function
 - 3.1.1 Harmonized Standard
 - 3.1.2 Outline of Safety Function
- 3.2 Emergency Stop Observation
- 3.3 SLS (Safely Limited Speed) function
- 3.4 STO (Safe Torque Off) Function

4 Setup

- 4.1 Initial setup
 - 4.1.1 Setting the rotary switch
 - 4.1.2 Transition of LED display after power is turned ON
- 4.2 Setting the initial parameters for the servo drive unit
 - 4.2.1 Setting of Servo Specification Parameters
 - 4.2.2 Setting of machine side encoder
 - 4.2.3 Setting of Distance-coded Reference Scale
 - 4.2.4 List of standard parameters for each servo motor
 - 4.2.5 Servo Parameters
- 4.3 Setting the Initial Parameters for the Spindle Drive Unit
 - 4.3.1 Setting of Parameters Related to the Spin-
 - 4.3.2 List of standard parameters for each spindle motor
 - 4.3.3 Spindle Parameters

5 Servo Adjustment

- 5.1 Servo Adjustment Procedure
- 5.2 Gain Adjustment
 - 5.2.1 Current Loop Gain
 - 5.2.2 Speed Loop Gain
 - 5.2.3 Position Loop Gain
 - 5.2.4 OMR-FF Function
- 5.3 Characteristics Improvement
 - 5.3.1 Optimal Adjustment of Cycle Time
 - 5.3.2 Vibration Suppression Measures
 - 5.3.3 Improving the Cutting Surface Precision
 - 5.3.4 Improvement of Characteristics during Acceleration/Deceleration
 - 5.3.5 Improvement of Protrusion at Quadrant Changeover
 - 5.3.6 Improvement of Overshooting
 - 5.3.7 Improvement of the Interpolation Control Path
- 5.4 Adjustment during Full Closed Loop Control 5.4.1 Outline
 - 5.4.2 Speed Loop Delay Compensation
 - 5.4.3 Dual Feedback Control
- 5.5 Settings for Emergency Stop
 - 5.5.1 Deceleration Control

- 5.5.2 Vertical Axis Drop Prevention Control
- 5.5.3 Vertical Axis Pull-up Control
- 5.6 Protective Functions
 - 5.6.1 Overload Detection
 - 5.6.2 Excessive Error Detection
 - 5.6.3 Collision Detection Function
- 5.7 Servo Control Signal
 - 5.7.1 Servo Control Input (NC to Servo)
 - 5.7.2 Servo Control Output (Servo to NC)

6 Spindle Adjustment

- 6.1 Adjustment Procedures for Each Control
 - 6.1.1 Basic Adjustments
 - 6.1.2 Gain Adjustment
 - 6.1.3 Adjusting the Acceleration/Deceleration Operation
 - 6.1.4 Orientation Adjustment
 - 6.1.5 Synchronous Tapping Adjustment
 - 6.1.6 High-speed Synchronous Tapping
 - 6.1.7 Spindle C Axis Adjustment (For Lathe System)
 - 6.1.8 Spindle Synchronization Adjustment (For Lathe System)
 - 6.1.9 Deceleration Coil Changeover Valid Function by Emergency Stop
 - 6.1.10 High-response Acceleration/Deceleration Function
 - 6.1.11 Spindle Cutting Withstand Level Improvement
 - 6.1.12 Spindle Motor Temperature Compensation Function
- 6.2 Settings for Emergency Stop
 - 6.2.1 Deceleration Control
- 6.3 Spindle Control Signal
 - 6.3.1 Spindle Control Input (NC to Spindle)
 - 6.3.2 Spindle Control Output (Spindle to NC)

7 Troubleshooting

- 7.1 Points of Caution and Confirmation
 - 7.1.1 LED display when alarm or warning occurs
- 7.2 Protective Functions List of Units
 - 7.2.1 List of Alarms
 - 7.2.2 List of Warnings
- 7.3 Troubleshooting
 - 7.3.1 Troubleshooting at Power ON
 - 7.3.2 Troubleshooting for Each Alarm No.
 - 7.3.3 Troubleshooting for Each Warning No.
 - 7.3.4 Parameter Numbers during Initial Parameter Error
 - 7.3.5 Troubleshooting the Spindle System When There Is No Alarm or Warning

8 Maintenance

- 8.1 Periodic Inspections
 - 8.1.1 Inspections
 - 8.1.2 Cleaning of Spindle Motor
- 8.2 Service Parts
- 8.3 Adding and Replacing Units and Parts
 - 8.3.1 Replacing the Drive Unit
 - 8.3.2 Replacing the unit fan
 - 8.3.3 Replacing the battery

Appendix 1 Cable and Connector Assembly

Appendix 1.1 CMV1-xPxxS-xx Plug Connector

Appendix 1.2 1747464-1 Plug Connector

Appendix 1.2.1 Applicable Products

Appendix 1.2.2 Applicable Cable

Appendix 1.2.3 Related Documents

Appendix 1.2.4 Assembly Procedure

Appendix 2 D/A Output Specifications for Drive Unit

Appendix 2.1 D/A Output Specifications

Appendix 2.2 Output Data Settings

Appendix 2.2.1 Servo Drive Unit Settings

Appendix 2.2.2 Spindle Drive Unit Settings

Appendix 2.3 Setting the Output Magnification

Appendix 2.3.1 Servo Drive Unit Settings

Appendix 2.3.2 Spindle Drive Unit Settings

Appendix 3 EMC Installation Guidelines

Appendix 3.1 Introduction

Appendix 3.2 EMC Directives/Electromagnetic Compatibility Regulations

Appendix 3.3 EMC Measures

Appendix 3.4 Measures for Panel Structure

Appendix 3.4.1 Measures for Control Panel Unit

Appendix 3.4.2 Measures for Door

Appendix 3.4.3 Measures for Operation Board Panel

Appendix 3.4.4 Shielding of the Power Supply Input Section

Appendix 3.5 Measures for Various Cables

Appendix 3.5.1 Measures for Wiring in Panel

Appendix 3.5.2 Measures for Shield Treatment

Appendix 3.5.3 Servo/Spindle Motor Power Cable

Appendix 3.5.4 Servo/Spindle Motor Encoder Cable

Appendix 3.6 EMC Countermeasure Parts

Appendix 3.6.1 Shield Clamp Fitting

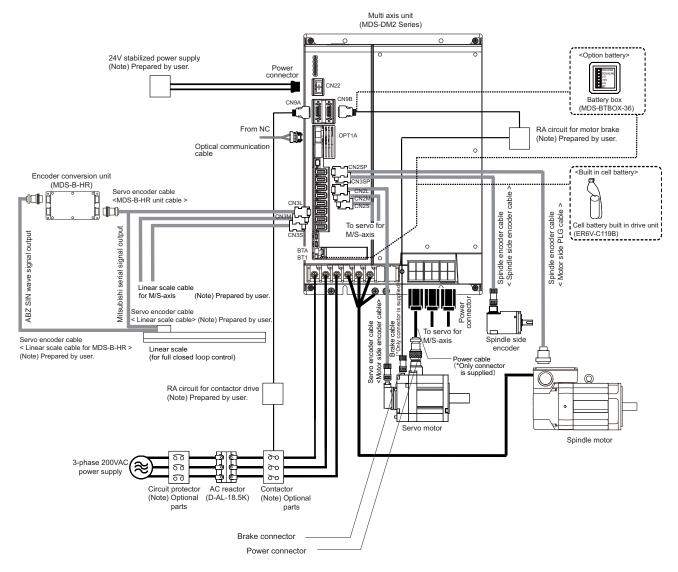
Appendix 3.6.2 Ferrite Core

Appendix 3.6.3 Power Line Filter

Appendix 3.6.4 Surge Absorber

Appendix 4 Higher Harmonic Suppression Measure Guidelines

Appendix 4.1 Higher Harmonic Suppression Measure Guidelines

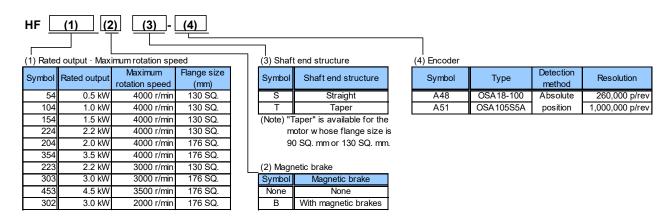

Appendix 4.1.1 Calculating the Equivalent Capacity of the Higher Harmonic Generator

1

Introduction

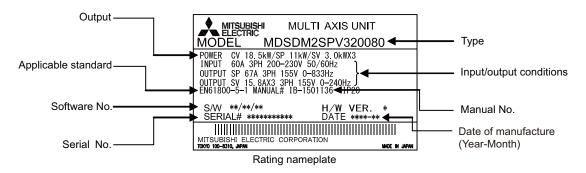
1.1 Servo/Spindle Drive System Configuration

1.1.1 System Configuration


(Note) For details of cables and connectors, refer to "List of Cables and Connectors" later in this manual.

1.2 Explanation of Type

1.2.1 Servo Motor Type


< HF Series >

3

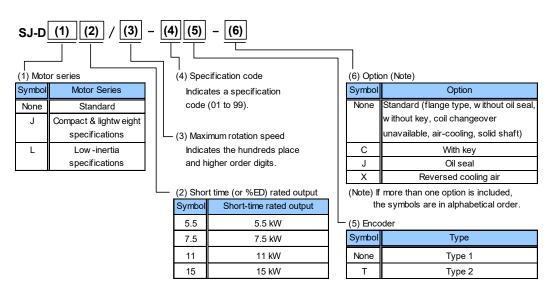
1.2.2 Drive Unit Type

(1) Multi axis integrated servo drive unit

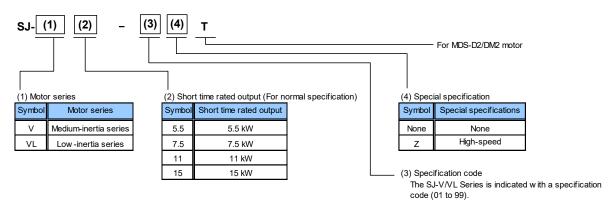
MDS-DM2-	(1)												
			•										
(1) Unit Type			Compatible					HF					
MDS-DM2-			motor type	54	104	154	224	204	354	223	303	453	302
	Unit width	Unit nominal maximum current	Stall torque (N·m) Axis		5.9	9.0	12.0	13.7	22.5	12.0	22.5	37.2	20.0
SPV3-10080		80+80+80A	LMS	•	•	•	•	•		•	•		•
SPV3-16080		80+80+80A	LMS	•	•	•	•	•		•	•		•
SPV3-20080		80+80+80A	LMS	•	•	•	•	•		•	•		•
SPV3-200120	260mm	120+120+120A	LMS			•	•	•	•		•	•	
SPV2-10080		80+80A	LM	•	•	•	•	•		•	•		•
SPV2-16080		80+80A	LM	•	•	•	•	•		•	•		•
SPV2-20080		80+80A	LM	•	•	•	•	•		•	•		•

Indicates the compatible motor for each servo drive unit.

MDS-DM2-	(1)												
(1) Unit Type			Compatible					HF					
MDS-DM2-			motor type	54	104	154	224	204	354	223	303	453	302
	Unit width	Unit nominal maximum current	Stall torque (N·m) Axis		5.9	9.0	12.0	13.7	22.5	12.0	22.5	37.2	20.0
SPHV3-20080	260mm	80+80+80A	LMS	•	•	•	•	•		•	•		•

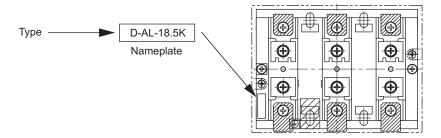

Indicates the compatible motor for each servo drive unit.

1.2.3 Spindle Motor Type


Rating nameplate

< SJ-D Series >

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.


< SJ-V/VL Series >

5

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

1.2.4 AC Reactor Type

Top surface of AC reactor

Туре	Capacity	Compatible pow er supply unit
D-AL-18.5K	18.5kW	MDS-DM2-SPV Series

Specifications

2.1 Servo Motor

2.1.1 Specifications List

< HF Series >

		HF Series								
Sc	ervo Motor type	ABS specifications: HF □ -A51 / -A48								
		HF54	HF104	HF154	HF224	HF204				
Compatible	MDS-DM2-SPV3-	xxx80	xxx80	xxx80 200120	xxx80 200120	xxx80 200120				
drive unit type MDS-DM2-SPHV3-		xxx80	xxx80	xxx80	xxx80	xxx80				
	MDS-DM2-SPV2-	xxx80	xxx80	xxx80	xxx80	xxx80				
	Rated output [kW]	0.5	1.0	1.5	2.2	2.0				
Oti	Rated current [A]	2.0	3.9	5.6	8.6	6.8				
Continuous characteristics	Rated torque [N•m]	1.6	3.2	4.8	7.0	6.4				
Cilaracteristics	Stall current [A]	3.2	6.6	11	15	15				
	Stall torque [N•m] (Note 5)	2.9	5.9	9.0	12.0	13.7				
Power facility ca	apacity [kVA]	1.1	2.0	2.8	4.1	3.7				
Rated rotation s				3000		· ·				
Maximum rotati	on speed [r/min]			4000						
Maximum curre	nt [A]	16.8	29.0	52.0	57.0	57.0				
Maximum torqu	e [N•m]	13.0	23.3	42.0	46.5	47.0				
Power rate at co	ontinuous rated torque [kW/s]	4.1	8.4	12.7	20.7	10.6				
Motor inertia [×	10 ⁻⁴ kg•m ²]	6.1	11.9	17.8	23.7	38.3				
Motor inertia wi	th brake [×10 ⁻⁴ kg•m ²]	8.3	14.1	20.0	25.9	48.0				
Maximum motor ratio	r shaft conversion load inertia	Ge	eneral machine tool (in eneral machine (non-in	racy machine: 3 times terpolation axis): 5 time terpolation axis): 7 time	es or less of motor in es or less of motor in	nertia				
Motor side enco	oder	Resolution per motor revolution A51: 1,000,000 pulse/rev, A48: 260,000 pulse/rev								
Degree of prote	ction		IP67 (The	shaft-through portion is	excluded.)					
	Ambient temperature		Storage:	on: 0 to 40°C (with no f -15°C to 70°C (with no	freezing)					
	Ambient humidity	Operation: 80%RH or less (with no dew condensation), Storage: 90%RH or less (with no dew condensation)								
Environment	Atmosphere	Indoo	(),	no corrosive gas, infla	U ,	t, or dust				
	Altitude		- 1	000 meters or less abo 000 meters or less abo	,					
	Vibration		X,Y:24.5n	n/s ² (2.5G)		X:24.5m/s ² (2.5G) Y:29.4m/s ² (3G)				
Flange size [mm	וֹי	130 SQ.	130 SQ.	130 SQ.	130 SQ.	176 SQ.				
Total length (ex	cluding shaft) [mm] (Note 3)	118.5	140.5	162.5	184.5	143.5				
Flange fitting di		Ф110	Ф110	Ф110	Ф110	Ф114.3				
Shaft diameter [[mm]	Ф24	Ф24	Ф24	Ф24	Ф35				
Mass Without	with brake [kg]	4.8/ 6.8	6.5/ 8.5	8.3/ 10.3	10.0/ 12.0	12.0/ 18.0				
Heat-resistant c	lace	155 (F)								

- (Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.
- (Note 2) Use the HF motor in combination with the MDS-DM2 Series drive unit compatible with the 200VAC input.
- (Note 3) The total length will be 3.5mm longer when using an A51 encoder.
- (Note 4) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 5) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

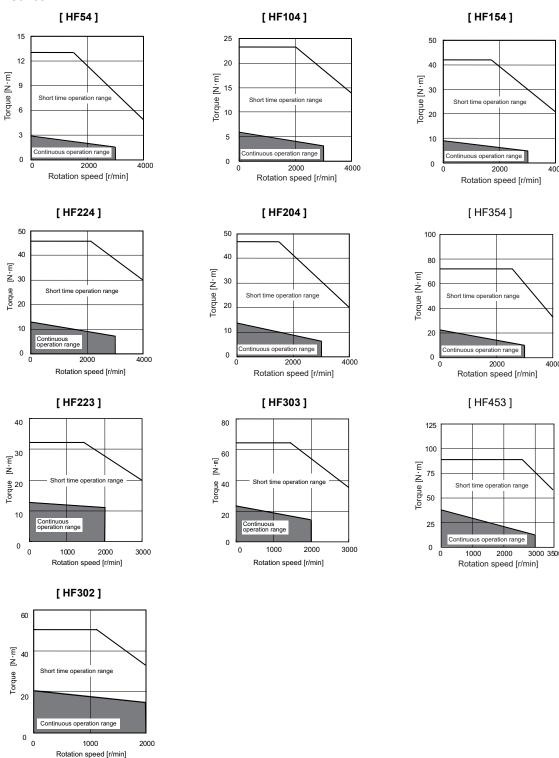
For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

8

< HF Series >

				HF Series				
Se	ervo Motor type		ABS spe	cifications: HF 🗆 -A	51 / -A48			
		HF354	HF223	HF303	HF453	HF302		
Compatible	MDS-DM2-SPV3-	200120	2		200120	xxx80		
drive unit type	MDS-DM2-SPHV3-	-	xxx80	xxx80	-	xxx80		
	MDS-DM2-SPV2-	-	xxx80	xxx80	-	xxx80		
	Rated output [kW]	3.5	2.2	3.0	4.5	3.0		
Continuous	Rated current [A]	12	9.0	11	19	11		
characteristics	Rated torque [N•m]	11.1	10.5	14.3	14.3	14.3		
	Stall current [A]	22	11	16	28	11		
	Stall torque [N•m] (Note 5)	22.5	12.0	22.5	37.2	20.0		
Power facility ca		6.4	4.1	5.5	8.1	5.5		
Rated rotation s		3000	20		3000	2000		
	on speed [r/min]	4000	30		3500	2000		
Maximum curre	• •	79.6	29.0	48.0	79.6	29.0		
Maximum torqu		75.0	32.0	64.0	90.0	50.0		
Power rate at co	ontinuous rated torque [kW/s]	16.5	46.5	27.3	18.3	27.3		
Motor inertia [×	10 ⁻⁴ kg•m ²]	75.0	23.7	75.0	112.0	75.0		
Motor inertia wi	th brake [×10 ⁻⁴ kg•m ²]	84.7	25.9	84.7	121.7	84.7		
Maximum motor	shaft conversion load inertia	G	High-speed, high-accul eneral machine tool (int eneral machine (non-int Resc	erpolation axis): 5 tim	nes or less of motor in nes or less of motor in	ertia		
		A51: 1,000,000 pulse/rev, A48: 260,000 pulse/rev						
Degree of prote	ction		,	shaft-through portion i	,			
	Ambient temperature		Storage: -	n: 0 to 40°C (with no 15°C to 70°C (with no	o freezing)			
	Ambient humidity		Storage: 90%R	RH or less (with no de H or less (with no dev	v condensation)			
Environment	Atmosphere	Indoo	ors (no direct sunlight); r	•	•	, or dust		
	Altitude			000 meters or less ab 000 meters or less ab	,			
Vibration		X:24.5m/s ² (2.5G) Y:29.4m/s ² (3G)	X,Y:24.5m/s ² (2.5G)		/s ² (2.5G) n/s ² (3G)	X:24.5m/s ² (2.5G) Y:29.4m/s ² (3G)		
Flange size [mn	1	176 SQ.	130 SQ.	176 SQ.	176 SQ.	176 SQ.		
	cluding shaft) [mm] (Note 3)	176 SQ. 183.5	130 SQ. 184.5	183.5	223.5	176 SQ.		
Flange fitting di	, , , ,	Ф114.3	Ф110	Ф114.3	Ф114.3	Ф114.3		
Shaft diameter l	<u> </u>	Ф35	Ф24	Ф35	Ф114.3	Φ114.3		
Jilait ulailleter	,,,,,,	19.0/	10.0/	19.0/	25/	19.0/		
	/ with brake [kg]	25.0	12.0	25.0	31	25.0		
Heat-resistant c	lass			155 (F)				

- (Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.
- (Note 2) Use the HF motor in combination with the MDS-DM2 Series drive unit compatible with the 200VAC input.
- (Note 3) The total length will be 3.5mm longer when using an A51 encoder.
- (Note 4) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 5) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.



For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

9

2.1.2 Torque Characteristics

< HF Series >

(Note1) The above graphs show the data when applied the input voltage of 200VAC. When the input voltage is 200VAC or less, the short time operation range is limited.

2.2 Spindle Motor

2.2.1 Specifications

< SJ-D Series (Normal) >

Spindle motor t	type[SJ-D5.5/ 100-01	SJ-D5.5/ 120-01	SJ-D5.5/ 120-02	SJ-D7.5/ 100-01	SJ-D7.5/ 120-01	SJ-D11/ 80-01	SJ-D11/ 100-01	
Compatible driv		10080	10080	10080 16080 20080	10080	10080	16080	16080	
	Continuous rating [kW]	3.7	3.7	3.7	5.5	5.5	7.5	7.5	
Output capacity	Short time rating [kW]	5.5 (30-minute rating)	5.5 (30-minute rating)	5.5 (25%ED rating)	7.5 (30-minute rating)	7.5 (30-minute rating)	11 (30-minute rating)	11 (30-minute rating)	
Power facility of	apacity [kVA]	9.9	9.9	9.9	13.4	13.4	19.6	19.6	
Base rotation s	peed [r/min]	1500	1500	2800	1500	1500	1500	1500	
Maximum rotat	ion speed [r/min]	10000	12000	12000	10000	12000	8000	10000	
Frame No.		D90	D90	B90	A112	A112	B112	B112	
Continuous rat	ed torque [N·m]	23.6	23.6	12.6	35.0	35.0	47.7	47.7	
GD ² [kg•m ²]		0.053	0.053	0.030	0.094	0.094	0.122	0.122	
Motor inertia [k	g•m²]	0.013	0.013	0.0074	0.023	0.023	0.031	0.031	
Tolerable radia	l load [N]	1470	1470	980	1960	1960	1960	1960	
Cooling fan	Input voltage				3-phase 200V				
	Ambient temperature	Operation: 0 to 40°C (with no freezing), Storage: -20°C to 65°C (with no freezing)							
	Ambient humidity	Operation: 90%RH or less (with no dew condensation), Storage: 90%RH or less (with no dew condensation)							
Environment	Atmosphere	Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust							
	Altitude	Operation: 1000 meters or less above sea level, Storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level							
Degree of prote	ection			IP54 (The sha	aft-through portio	n is excluded.)			
Flange size [mr	-	174 SQ.	174 SQ.	174 SQ.	204 SQ.	204 SQ.	204 SQ.	204 SQ.	
• ,	ccluding shaft) [mm]	417	417	327	439	439	489	489	
Flange fitting d	• •	Ф150	Ф150	Ф150	Ф180	Ф180	Ф180	Ф180	
Shaft diameter	[mm]	Ф28	Ф28	Ф28	Ф32	Ф32	Ф48	Ф48	
Mass [kg]		39	39	26	53	53	64	64	
Heat-resistant	class				155 (F)				

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) For SJ-D5.5/120-02, output characteristics at acceleration/deceleration vary depending on the connected drive unit. Refer to "output characteristics" for details.
- (Note 4) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

11

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

< SJ-DJ Series (Compact & lightweight) >

Spindle motor type[SJ-DJ5.5/ 100-01	SJ-DJ5.5/ 120-01	SJ-DJ5.5/ 120-02	SJ-DJ7.5/ 100-01	SJ-DJ11/ 100-01	SJ-DJ15/ 80-01
Compatible drive unit type MDS-DM2-SPV2/SPV3-		10080	10080	10080	10080	16080	20080
Output capacity	Continuous rating [kW]	3.7	3.7	3.7	5.5	7.5	11
	Short time rating [kW]	5.5 (25%ED rating)	5.5 (25%ED rating)	5.5 (25%ED rating)	7.5 (15-minute rating)	11 (15-minute rating)	15 (15-minute rating) (15%ED rating)
Power facility capacity [kVA]		9.9	9.9	9.9	13.4	19.6	26.7
Base rotation speed	Continuous rating [r/min]	2000	2000	2000	2000	2000	2000
	Short time rating[r/min]	1500	1500	1500	1500	1500	1500
Maximum rotation speed [r/min]		10000	12000	12000	10000	10000	8000
Frame No.		B90	B90	B90	D90	A112	B112
Continuous rated torque [N·m]		17.7	17.7	17.7	26.3	35.8	52.5
GD ² [kg•m ²]		0.030	0.030	0.030	0.053	0.094	0.122
Motor inertia [kg•m²]		0.0074	0.0074	0.0074	0.013	0.023	0.031
Tolerable radial load [N]		980	980	980	1470	1960	1960
Cooling fan	Input voltage	3-phase 200V					
Environment	Ambient temperature	Operation: 0 to 40°C (with no freezing), Storage: -20°C to 65°C (with no freezing)					
	Ambient humidity	Operation: 90%RH or less (with no dew condensation), Storage: 90%RH or less (with no dew condensation)					
	Atmosphere	Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust					
	Altitude	Operation: 1000 meters or less above sea level, Storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level					
Degree of protection		IP54 (The shaft-through portion is excluded.)					
Flange size [mm]		174 SQ.	174 SQ.	174 SQ.	174 SQ.	204 SQ.	204 SQ.
Total length (excluding shaft) [mm]		327	327	327	417	439	489
Flange fitting diameter [mm]		Ф150	Ф150	Ф150	Ф150	Ф180	Ф180
Shaft diameter [mm]		Ф28	Ф28	Ф28	Ф28	Ф32	Ф48
Mass [kg]		26	26	26	39	53	64
Heat-resistant class		155 (F)					

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

< SJ-DL Series (Low-inertia) >

Spindle motor type		SJ-DL5.5/150-01T	SJ-DL7.5/150-01T			
Compatible drive unit type MDS-DM2-SPV2/SPV3-		16080	16080			
Output	Continuous rating [kW]	3.7	5.5			
capacity	Short time rating [kW]	5.5 (15-minute rating)	7.5 (30-minute rating)			
Power facility capacity [kVA]		9.9	13.4			
Base rotation speed [r/min]		2500	1500			
Maximum rotation speed [r/min]		15000	15000			
Frame No.		C90	B112			
Continuous rated torque [N•m]		14.1	35.0			
GD ² [kg•m ²]		0.018	0.063			
Inertia [kg•m²]		0.0046	0.016			
Tolerable radial load [N]		245	980			
Cooling fan	Input voltage	3-phase 200V				
	Ambient temperature	Operation: 0 to 40°C (with no freezing), Storage: -20°C to 65°C (with no freezing)				
Environment	Ambient humidity	Operation: 90%RH or less (with no dew condensation), Storage: 90%RH or less (with no dew condensation)				
	Atmosphere	Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust				
	Altitude	Operation: 1000 meters or less above sea level, Storage: 1000 meters or less above sea level Transportation: 10000 meters or less above sea level				
Degree of protection		IP54 (The shaft-through portion is excluded.)				
Flange size [mm]		174 SQ.	204 SQ.			
Total length (excluding shaft) [mm]		377	489			
Flange fitting diameter [mm]		Ф150	Ф180			
Shaft diameter [mm]		Ф28	Ф32			
Mass [kg]		30	56			
Heat-resistant class		155 (F)				

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) The motor cannot be driven when a pulley or gear is directly installed on the shaft.
- (Note 4) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

< SJ-V Series (Normal) >

Spindle motor t	уре	SJ-V5.5- 01ZT	SJ-V7.5- 01ZT	SJ-V7.5- 03ZT	SJ-V11-01ZT	SJ-V11-13ZT	SJ-V15-01ZT	SJ-V15-09ZT			
Compatible	MDS-DM2-SPV2/SPV3-	10080	10080	16080	16080	20080	20080	-			
Compatible drive unit type	-	20080									
	Continuous rating [kW]	3.7	5.5	5.5	7.5	7.5	11	11			
Output		5.5	7.5	7.5	11	11	15	15			
capacity	Short time rating [kW]	(30-minute	(30-minute	(30-minute	(30-minute	(30-minute	(30-minute	(30-minute			
		rating)	rating)	rating)	rating)	rating)	rating)	rating)			
Power facility ca	apacity [kVA]	9.9	13.4	13.4	19.6	19.6	26.7	26.7			
Base rotation sp	peed [r/min]	1500	1500	1500	1500	1500	1500	1500			
Maximum rotati	on speed [r/min]	12000	12000	12000	8000	8000	8000	8000			
Frame No.		D90	A112	A112	B112	B112	A160	A160			
Continuous rate	ed torque [N·m]	23.6	35	35	47.7	47.7	70	70			
GD²[kg·m²] 0.059 0.098				0.098	0.12	0.12	0.23	0.23			
Inertia [kg•m²]		0.0148	0.0245	0.0245	0.03	0.03	0.0575	0.0575			
Tolerable radial	load [N]	980	980	980	1960	1960	2940	2940			
Cooling for	Innut voltage	Single-phase	3-phase	3-phase	3-phase	3-phase	3-phase	3-phase			
Cooling lan	input voitage	200V	200V	200V	200V	200	200V	200V			
	Ambient temperature	Operation: 0 to 40°C (with no freezing), Storage: -20°C to 65°C (with no freezing)									
	Ambient humidity	Operation: 90	%RH or less (w	ith no dew cond	ensation), Storag	e: 90%RH or les	s (with no dew o	ondensation)			
Environment	Atmosphere		Indoors (no dir	ect sunlight); no	corrosive gas, in	flammable gas,	oil mist, or dust				
	Altitudo	Opera	tion: 1000 meter	s or less above	sea level, Storag	e: 1000 meters o	or less above sea	a level,			
	Ailliude		Transportation: 10000 meters or less above sea level								
Degree of prote	ction				IP44						
Flange size [mn	n]	174 SQ.	204 SQ.	204 SQ.	204 SQ.	204 SQ.	250 SQ.	250 SQ.			
Total length (excluding shaft) [mm]		425	440	440	490	490	469.5	469.5			
Flange fitting diameter [mm]		Ф150	Ф180	Ф180	Ф180	Ф180	Ф230	Ф230			
Shaft diameter	[mm]	Ф28	Ф32	Ф32	Ф48	Ф48	Ф48	Ф48			
Mass [kg]		49	60	60	70	70	110	110			
Heat-resistant c	lass				155 (F)	I.	I.				

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

< SJ-V Series (High-speed) >

Spindle motor t	уре	SJ-V11-06ZT	SJ-V11-08ZT			
Compatible	MDS-DM2-SPV2/SPV3-	20080	-			
drive unit type	MDS-DM2-SPHV3-	-	20080			
Output	Continuous rating [kW]	5.5	7.5			
capacity	Short time rating [kW]	7.5	11			
capacity	Short time rating [KW]	(30-minute rating)	(30-minute rating)			
Power facility c	apacity [kVA]	13.4	19.6			
Base rotation s	peed [r/min]	3000	1500			
Maximum rotati	on speed [r/min]	12000	8000			
Frame No.		A112	B112			
Continuous rate	ed torque [N•m]	35.0	47.7			
GD ² [kg•m ²]		0.098	0.12			
Inertia [kg•m²]		0.025	0.03			
Tolerable radial	load [N]	980	1470			
Cooling fan	Input voltage	3-phase 200V	3-phase 200V			
	Ambient temperature	Operation: 0 to 40°C (with no freezing), Storage: -20°C to 65°C (with no freezing)			
	Ambient humidity	Operation: 90%RH or less (with no dew condensation	on), Storage: 90%RH or less (with no dew condensation)			
Environment	Atmosphere	Indoors (no direct sunlight); no corros	sive gas, inflammable gas, oil mist, or dust			
	Altitude	•	vel, Storage: 1000 meters or less above sea level neters or less above sea level			
Degree of prote	ction		IP44			
Flange size [mr	n]	204 SQ.	204 SQ.			
Total length (ex	cluding shaft) [mm]	440	490			
Flange fitting d	iameter [mm]	Ф180	Ф180			
Shaft diameter	[mm]	Ф32	Ф48			
Mass [kg]		60	70			
Heat-resistant of	class	1	55 (F)			

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

< SJ-V Series (Wide range constant output) >

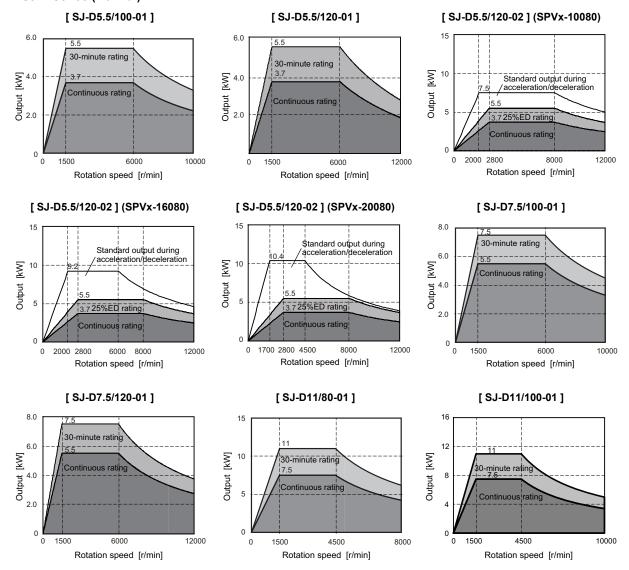
Spindle motor t	уре	SJ-V11-01T	SJ-V11-09T	SJ-V15-03T
Compatible	MDS-DM2-SPV2/SPV3-	16080	16080	-
drive unit type	MDS-DM2-SPHV3-	-	-	20080
Output	Continuous rating [kW]	3.7	5.5	7.5
capacity	Short time rating [kW]	5.5	7.5	9
capacity	Short time rating [kw]	(30-minute rating)	(30-minute rating)	(30-minute rating)
Power facility c	apacity [kVA]	9.9	13.4	16.1
Base rotation s	peed [r/min]	750	750	750
Maximum rotati	on speed [r/min]	6000	6000	6000
Frame No.		B112	A160	A160
Continuous rate	ed torque [N·m]	47.1	70.0	95.5
GD ² [kg·m ²]		0.12	0.23	0.23
Inertia [kg•m²]		0.03	0.06	0.06
Tolerable radial	load [N]	1960	2940	2940
Cooling fan	Input voltage	3-phase 200V	3-phase 200V	3-phase200V
	Ambient temperature	Operation: 0 to 40°C	(with no freezing), Storage: -20°C to 6	5°C (with no freezing)
	Ambient humidity	Operation: 90%RH or less (with no	dew condensation), Storage: 90%RH	or less (with no dew condensation)
Environment	Atmosphere	Indoors (no direct s	unlight); no corrosive gas, inflammable	gas, oil mist, or dust
	Altitude	Operation: 1000 meters or I	ess above sea level, Storage: 1000 m	eters or less above sea level
	Aititude	Transp	ortation: 10000 meters or less above s	sea level
Degree of prote	ction		IP44	
Flange size [mn	n]	204 SQ.	250 SQ.	250 SQ.
Total length (ex	cluding shaft) [mm]	490	469.5	469.5
Flange fitting di	ameter [mm]	Ф180	Ф230	Ф230
Shaft diameter	[mm]	Ф48	Ф48	Ф48
Mass [kg]		70	110	110
Heat-resistant of	lass		155 (F)	

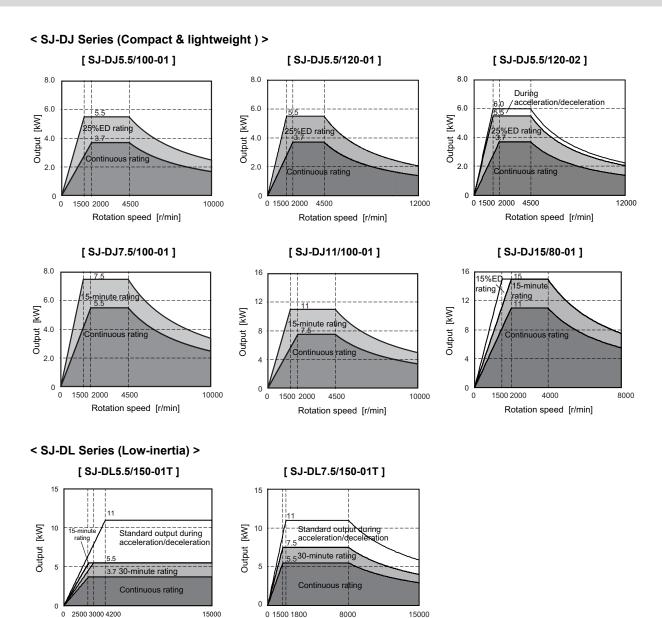
- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

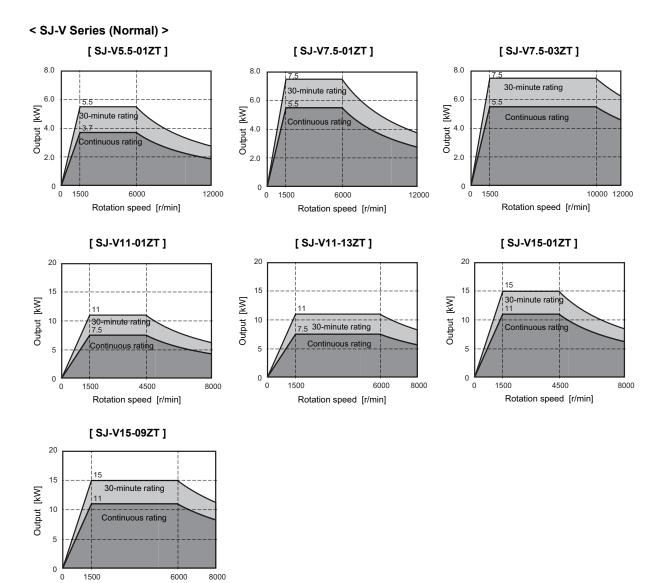
< SJ-VL Series (Low-inertia) >

Spindle motor	type	SJ-VL11-05FZT-S01	SJ-VL11-10FZT	SJ-VL11-10FZT	SJ-VL11-07ZT	SJ-VL11-07ZT		
Compatible dri MDS-DM2-SPV	J.	16080	16080	16080	16080	16080		
Output	Continuous rating [kW]	1.5	2.2	3.7	5.5	7.5		
capacity	Short time rating [kW]	3	1.5	11				
cupacity	Short time rating [KW]	(10-minute rating)	(15-minute rating)	(15-minute rating)	(30-minute rating)	(15-minute rating)		
Power facility of	capacity [kVA]	5.5	6.7	9.9	13.4	19.6		
Base rotation s	speed [r/min]	5000	1700 (10-minute rating:		1500	2200		
Maximum rotat	ion speed [r/min]	15000	15000	15000	12000	12000		
Frame No.		B71	D90	D90	B112 B112			
Continuous rat	ed torque [N·m]	2.8	12.4	11.8	35 32.6			
GD ² [kg·m ²]		0.0096	0.021	0.021	0.072 0.072			
Inertia [kg•m²]		0.0024	0.00525	0.00525	0.018	0.018		
Tolerable radia	I load [N]	980	245	245	980	980		
Cooling fan	Input voltage	Single-phase 200V	Single-phase 200V	Single-phase 200V	3-phase 200V	3-phase 200V		
	Ambient temperature	Operati	on: 0 to 40°C (with no	freezing), Storage: -20°	°C to 65°C (with no free	ezing)		
	Ambient humidity	Operation: 90%RH o	r less (with no dew con	densation), Storage: 9	0%RH or less (with no	dew condensation)		
Environment	Atmosphere	Indoor	s (no direct sunlight); n	o corrosive gas, inflam	mable gas, oil mist, or	dust		
	Altitude	Operation: 10		, ,		ve sea level		
Degree of prote	ection			IP44				
Flange size [mi	m]	130 SQ.	174 SQ.	174 SQ.	204 SQ.	204 SQ.		
Total length (ex	gth (excluding shaft) [mm] 335 441 441 490			490				
Flange fitting d	e fitting diameter [mm] Φ110 Φ150 Φ150 Φ180			Ф180				
Shaft diameter	[mm]	Ф22	Ф28	Ф28	Ф32	Ф32		
Mass [kg]		20	40	40	70	70		
Heat-resistant	class			155 (F)				

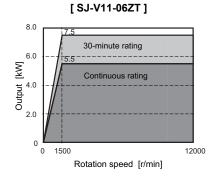

- (Note 1) The tolerable radial load is the value calculated at the center of output shaft.
- (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

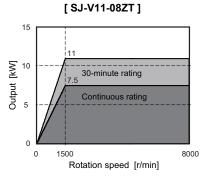

For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

2.2.2 Output Characteristics

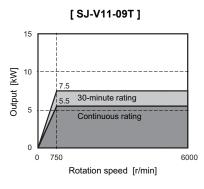

< SJ-D Series (Normal) >

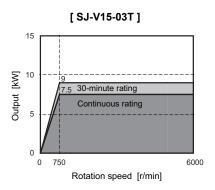
Rotation speed [r/min]




Rotation speed [r/min]

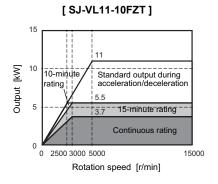
< SJ-V Series (High-speed) >

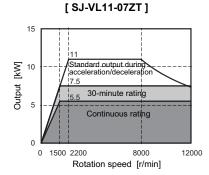

Rotation speed [r/min]

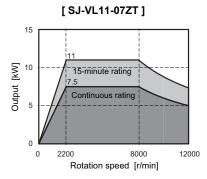


< SJ-V Series (Wide range constant output) >

< SJ-VL Series (Low-inertia) >




Rotation speed [r/min]


18000 20000

[SJ-VL11-05FZT-S01]

2.3 Drive Unit

2.3.1 Installation Environment Conditions

Common installation environment conditions for servo and spindle are shown below.

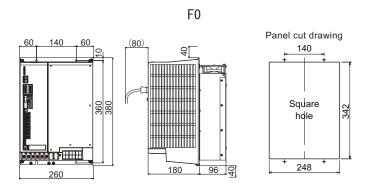
	Ambient temperature	Operation: 0 to 55°C (with no freezing), Storage / Transportation: -15°C to 70°C (with no freezing)
	Ambient humidity	Operation: 90%RH or less (with no dew condensation) Storage / Transportation: 90%RH or less (with no dew condensation)
Environment	Atmosphere	Indoors (no direct sunlight) With no corrosive gas, inflammable gas, oil mist, dust or conductive fine particles
	Altitude	Operation/Storage: 1000 meters or less above sea level, Transportation: 13000 meters or less above sea level
	Vibration/impact	4.9m/s ² (0.5G) / 49m/s ² (5G)

2.3.2 Multi Axis Drive Unit

(1) Multi axis integrated drive unit

			Multi ax	is integrated	drive unit N	/IDS-DM2-SP	V Series	
Drive unit type			SPV2-			SP	V3-	
MDS-DM2-		10080	16080	20080	10080	16080	20080	200120
Nominal maxim	num current (at peak of spindle section) [A]	100	160	200	100	160	200	200
Nominal maxim	num current (at peak of servo section) [A]		80×2			80×3	·	120×3
Power facility c	apacity [kVA]	14.7	19.3	24.6	17.1	21.7	27	28.2
	Rated voltage [V]				AC155		·	
Output	Rated current (spindle axis) [A]	26	37	67	26	37	67	67
	Rated current (servo) [A]		15.8×2			15.8×3	20080 200 27 67 etween +10% 60 ad -3% re braking for	28×3
Input	Rated voltage [V]	AC200 (5	0Hz) /AC200	to 230 (60Hz)	Tolerable	160 200 80×3 21.7 27 37 67 15.8×3 fluctuation between +10% 48 60 veen +3% and -3% ol method y regenerative braking for size adjustments) 200 (terminal block [TE1]) ling 15	6 and -15%	
прис	Rated current [A]	33	43	55	38	48	60	65
Control	Voltage [V]	DC24±10%						
	Frequency [Hz]	50/60 Tolerable fluctuation: between +3% and -3%						
power	Maximum current [A]				4.0			
power	Maximum rush current [A]				10			
	Maximum rush conductivity time [ms]				100			
Maximum earth	leakage current [mA]				21			
Control method	I			Sine wave	PWM contr	ol method		
Dualsina		Regene	erative brakin	g and dynamic	brakes (onl	y regenerativ	e braking for	spindle)
Braking	Dynamic brakes				Built-in		27 67 etween +10% 60 d -3% e braking for ts) block [TE1])	
External analog	output		0	to +5V,2ch (da	ata for variou	us adjustment	is)	
Degree of prote	ection		IP20 (exclud	ding terminal b	lock [TE1])/I	P00 (terminal	block [TE1])	
Cooling method	d			Ford	ed wind coo	ling		
Mass [kg]			14.5			1	5	
Heat radiated a	t rated output [W]	630	700	895	730	800	990	1260
Unit outline din	nension drawing			1	F0	1	ı	

		Multi axis integrated di	rive unit MDS-DM2-SPHV Series			
Drive unit type			SPHV3-			
MDS-DM2-			20080			
Nominal maxim	um current (at peak of spindle section) [A]		200			
Nominal maxim	um current (at peak of servo section) [A]		80×3			
Power facility c	apacity [kVA]		27			
Rated voltage [V]			AC155			
Output	Rated current (spindle axis) [A]	63				
	Rated current (servo) [A]		15.8×3			
Input	Rated voltage [V]	AC200 (50Hz) /AC200 to 230 (60Hz)	Tolerable fluctuation between +10% and -15%			
iliput	Rated current [A]		60			
Control	Voltage [V]	DC24±10%				
	Frequency [Hz]	50/60 Tolerable fluctuation: between +3% and -3%				
power	Maximum current [A]	Section) [A] AC200 (50Hz) /AC200 to 230 (60Hz) 50/60 Tolerable flux All All All All All All All	4.0			
polito.	Maximum rush current [A]		10			
	Maximum rush conductivity time [ms]		100			
Maximum earth	leakage current [mA]		21			
Control method		Sine wave	PWM control method			
Braking		Regenerative braking and dynamic	brakes (only regenerative braking for spindle)			
Diaking	Dynamic brakes		Built-in			
External analog	output	0 to +5V,2ch (da	ta for various adjustments)			
Degree of prote	ction	IP20 (excluding terminal blo	ock [TE1])/IP00 (terminal block [TE1])			
Cooling method	1	Forced wind cooling				
Mass [kg]		15				
Heat radiated at	t rated output [W]		990			
Unit outline dim	nension drawing		F0			

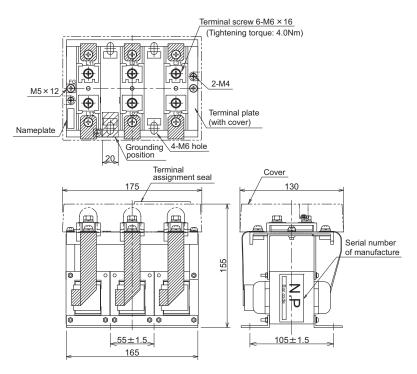


For outline dimension drawings, refer to "DRIVE SYSTEM DATA BOOK" (IB-1501142(ENG)).

2.3.3 Unit Outline Dimension Drawing

- < MDS-DM2-SPV2-10080 to 20080 >
- < MDS-DM2-SPV3-10080 to 200120 >
- < MDS-DM2-SPHV3-20080 >

Unit:[mm]



2.3.4 AC Reactor

		AC reactor
AC reactor mo	odel	18.5K
Rated capacity	y [kW]	18.5
Rated voltage	[V]	200 to 240AC Tolerable fluctuation : between +10% and -15%
Rated current	[A]	66
Frequency [Hz]		50/60 Tolerable fluctuation between +3% and -3%
	Ambient temperature	Operation: -10°C to 60°C (with no freezing), Storage/Transportation: -10°C to 60°C (with no freezing)
	Ambient humidity	Operation: 80%RH or less (with no dew condensation), Storage/Transportation: 80%RH or less (with no dew condensation)
Environment	Atmosphere	Indoors (no direct sunlight) With no corrosive gas, inflammable gas, oil mist or dust
	Altitude	Operation/Storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level
	Vibration / impact	9.8m/s ² (1G) / 98m/s ² (10G)
Mass [kg]		5.3

Outline dimension drawing


Unit:[mm]

D-AL-18.5K

2.3.5 Explanation of Each Part

- (1) Explanation of each multi axis integrated servo drive unit part
- < MDS-DM2-SPV2-10080 to 20080 >
- < MDS-DM2-SPV3-10080 to 200120 >
- < MDS-DM2-SPHV3-20080 >

The connector and terminal block layout may differ according to the unit being used. Refer to each unit outline drawing for details.

<Each part name>

		Name	9	Description			
(1)		POWER		24V power supply status indication LED			
(2)		SP1, SP2,SV1,SV2		Unit status indication LED			
(3)		CN22		Control power input terminal (DC24V) input connector			
(4)		CN9A		Connector for DIO/analog output (spindle)			
(5)		CN9B		Connector for DIO/analog output (servo)			
(6)		OPT1A		NC optical communication connector			
(7)		CN8		External STO input connector (Insert the provided STO short-circuit connector when not using external STO input.)			
(8)		CN2SP		Spindle motor side encoder connection connector 5V power supply capacity:0.35A			
(9)	Control	CN3SP		Spindle side encoder connection connector 5V power supply capacity:0.35A			
(10)	circuit	CN2L		Servo motor side encoder connection connector (L-axis)			
(11)		CN2M		Servo motor side encoder connection connector (M-axis)			
(12)		CN2S		Servo motor side encoder connection connector (S-axis)			
(13)		CN3L		Machine side encoder connection connector (L-axis) 5V power supply capacity:0.35A			
(14)		CN3M		Machine side encoder connection connector (M-axis) 5V power supply capacity:0.35A			
(15)		CN3S		Machine side encoder connection connector (S-axis) 5V power supply capacity:0.35A			
(16)		CN5A		USB maintenance connector (spindle) usually not used			
(17)		CN5B		USB maintenance connector (servo) usually not used			
(18)		BTA		For connecting converged battery unit			
(19)		BT1		For connecting battery built-in drive unit ER6V-C119B			
(20)		CHARGE LAMP		Converter voltage output charge-discharge status indication LED			
			L1, L2, L3	Power supply input terminal (3-phase AC output)			
(21)		TE1	U, V, W	Motor power output terminal (spindle, 3-phase AC output)			
(21)		121	P+, N-	DC output for unit stopped caused by power failure *Do not wiring during unused state.			
(22)	Main	CN31L	U, V, W,	Motor power supply output connector (L-axis, 3-phase AC output)			
(23)	circuit	CN31M	U, V, W,	Motor power supply output connector (M-axis, 3-phase AC output)			
(24)		CN31S	U, V, W,	Motor power supply output connector (S-axis, 3-phase AC output)			
(25)		PE	(Grounding terminal (also including grounding of the spindle motor)			

2 Specifications

<Screw size>

		Multi axis integrated drive unit MDS-DM2-							
Time	SPV3-				SPHV3-		SPV2-		
Туре	10080	16080	20080	200120	20080	10080	16080	20080	
Unit width (mm)				26	60				
(21)TE1		M5 × 12							
(25) 🖨				M5	× 8				

Function Specifications

Function Specifications List

< Power supply specification >

	Item	MDS-D2-CV	MDS-DH2-CV	MDS-DM2- SPV2/3,SPHV3 built-in converter	MDS-DJ-V1/V2 built-in converter	MDS-DJ- SP/SP2 built-in converter
1	1.14 Power regeneration control	•	•	•	-	-
Base control functions	1.15 Resistor regeneration control	-	-	-	•	•
	4.6 Fan stop detection	•	•	•	•	•
	4.7 Open-phase detection	•	•	•	-	-
4	4.8 Contactor weld detection	•	•	•	•	•
Protection function	4.10 Deceleration and stop function at power failure (Note 1)	•	•	-	-	-
	4.11 Retraction function at power failure (Note 2)	•	•	-	-	-
5	5.1 Contactor control function	•	•	•	•	•
Sequence	5.3 External emergency stop function	•	•	•	•	•
function	5.5 High-speed READY ON sequence	•	•	•	-	-
6 Diagnosis function	6.7 Power supply diagnosis display function	•	•	•	-	-

⁽Note 1) The power backup unit and resistor unit option are required.

⁽Note 2) The power backup unit and capacitor unit option are required.

< Servo specification >

	Item	MDS-D2-V1/ V2/V3	MDS-DH2-V1/ V2	MDS-DM2- SPV2/3, SPHV3	MDS-DJ-V1	MDS-DJ-V2
	1.1 Full closed loop control	•	•	•	•	-
1 Base	1.2 Position command synchronous control	•	•	•	•	•
control	1.3 Speed command synchronous control	● (Note 2)	•		-	-
functions	1.4 Distance-coded reference position control	•	•	•	•	-
	2.1 Torque limit function (stopper function)	•	•	•	•	•
	2.2 Variable speed loop gain control	•	•	•	•	•
	2.3 Gain changeover for synchronous tapping control	•	•	•	•	•
	2.4 Speed loop PID changeover control	•	•	•	•	•
2 Servo	2.5 Disturbance torque observer	•	•	•	•	•
control function	2.6 Smooth High Gain control (SHG control)	•	•	•	•	•
	2.7 High-speed synchronous tapping control (OMR-DD control)	•	•	•	•	•
	2.8 Dual feedback control	•	•	•	•	-
	2.9 HAS control	•	•	•	•	•
	2.10 OMR-FF control	•	•	•	•	•
	3.1 Jitter compensation	•	•	•	•	•
3 Compensation	3.2 Notch filter	Variable frequency: 4 Fixed frequency: 1				
control	3.3 Adaptive tracking-type notch filter	•	•	•	•	•
function	3.4 Overshooting compensation	•	•	•	•	•
	3.5 Machine end compensation control	•	•	•	•	•
	3.6 Lost motion compensation type 2	•	•	•	•	•
	3.7 Lost motion compensation type 3	•	•	•	Variable frequency: 4 Fixed frequency: 1	•
	4.1 Deceleration control at emergency stop	•	•	•	•	•
4	4.2 Vertical axis drop prevention/pull-up control	•	•	•	Variable frequency: 4 Fixed frequency: 1	•
Protection	4.3 Earth fault detection	•	•	•	•	•
function	4.4 Collision detection function	•	•	•	•	•
	4.5 SLS (Safely Limited Speed) function	•	•	•	•	•
	4.6 Fan stop detection	•	•	•	•	•
	4.9 STO (Safe Torque Off) function	•	•	•	•	•
5	5.2 Motor brake control function (Note 1)	•	•	•	•	•
Sequence	5.4 Specified speed output	•	•	•	-	-
function	5.5 Quick READY ON sequence	•	•	•	-	-
6	6.1 Monitor output function	•	•	•	•	•
Diagnosis function	6.2 Machine resonance frequency display function	•	•	•	•	•
	6.3 Machine inertia display function	•	•	•	•	•

(Note 1) For the multiaxis drive unit, a control by each axis is not available.

It is required to turn the servo of all axes OFF in the drive unit in order to enable a motor brake output.

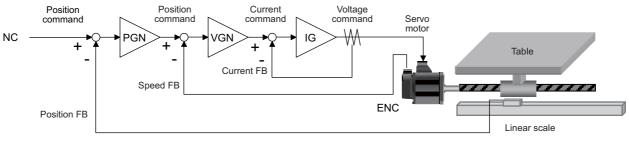
(Note 2) Always set L-axis as primary axis and M-axis as secondary axis for the speed command synchronous control using MDS-D2-V3. Other settings cause the initial parameter error alarm.

< Spindle specifications >

	Item	MDS-D2-SP	MDS-DH2- SP	MDS-D2- SP2	MDS-DM2- SPV2/3, SPHV3	MDS-DJ-SP	MDS-DJ- SP2
1 Base control functions	1.1 Full closed loop control	•	•	•	•	•	-
	1.5 Spindle's continuous position loop control	•	•	•	•	•	•
	1.6 Coil changeover control	•	•	-	•	-	-
	1.7 Gear changeover control	•	•	•	•	•	•
	1.8 Orientation control	•	•	•	•	•	•
	1.9 Indexing control	•	•	•	•	•	•
	1.10 Synchronous tapping control	•	•	•	•	•	•
	1.11 Spindle synchronous control	•	•	•	•	•	•
	1.12 Spindle/C axis control	•	•	•	•	•	•
	1.13 Proximity switch orientation control	•	•	(Note)	•	•	● (Note)
	2.1 Torque limit function	•	•	•	•	•	•
	2.2 Variable speed loop gain control	•	•	•	•	•	•
	2.5 Disturbance torque observer	•	•	•	•	•	•
	2.6 Smooth High Gain control (SHG	•					
2 Spindle control functions	control)	•	•	•	•	•	•
	2.7 High-speed synchronous tapping						
	control (OMR-DD control)	•		•	•		
	2.8 Dual feedback control	•	•	•	•	•	-
	2.11 Control loop gain changeover	•	•	•	•	•	•
	2.12 Spindle output stabilizing control	•	•	•	•	•	•
	2.13 High-response spindle acceleration/ deceleration function	•	•	•	•	•	•
3 Compensation control function	3.1 Jitter compensation	•	•	•	•	•	•
	3.2 Notch filter	Variable frequency: 4 Fixed frequency: 1					
	3.3 Adaptive tracking-type notch filter	•	•	• 1	•	• 1	•
	3.4 Overshooting compensation	•	•	•	•	•	•
	3.6 Lost motion compensation type 2	•	•	•	•	•	•
	3.9 Spindle motor temperature compensation function	•	•	•	•	•	•
4 Protection function	4.1 Deceleration control at emergency stop	•	•	•	•	•	•
	4.3 Earth fault detection	•	•	•	•	•	•
	4.5 SLS (Safely Limited Speed) function	•	•	•	•	•	•
	4.6 Fan stop detection	•	•	•	•	•	•
	4.9 STO (Safe Torque Off) function	•	•	•	•	•	•
5 Sequence functions	5.4 Specified speed output	•	•	•	•	-	-
	5.5 Quick READY ON sequence	•	•	•	•	-	-
6 Diagnosis	6.1 Monitor output function	•	•	•	•	•	•
	6.2 Machine resonance frequency display function	•	•	•	•	•	•
		_		•	•	•	•
•	6.3 Machine inertia display function						
functions	6.3 Machine inertia display function 6.4 Motor temperature display function	•	•	•	•	•	•

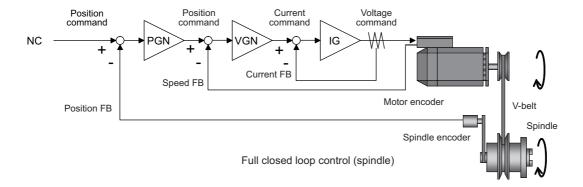
(Note) As for 2-axis spindle drive unit, setting is available only for one of the axes.

3.1 Base Control Functions


3.1.1 Full Closed Loop Control

The servo control is all closed loop control using the encoder's feedback. "Full closed loop control" is the system that directly detects the machine position using a linear scale, whereas the general "semi-closed loop" is the one that detects the motor position.

In a machine that drives a table with a ball screw, the following factors exist between the motor and table end:

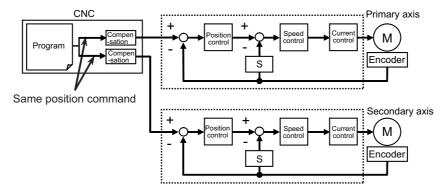

- (1) Coupling or ball screw table bracket's backlash
- (2) Ball screw pitch error

These can adversely affect the accuracy. If the table position of the machine side is directly detected with a linear scale, high-accuracy position control which is not affected by backlash or pitch error is possible.

Full closed loop control (servo)

The ball screw side encoder is also applied.

31


3.1.2 Position Command Synchronous Control

This is one of the controls which enable two servo motors to drive the same axis. This is also called "Position tandem control"

The same position command is issued to the 2-axis servo control, and the control is carried out according to each axis' position and speed feedbacks.

<Features>

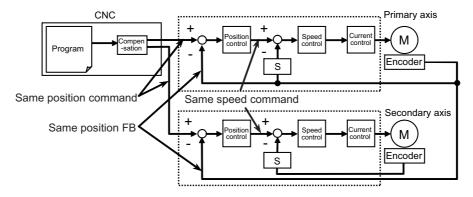
- (1) The position commands in which machine's mechanical errors (pitch error, backlash, etc.) have been compensated, can be output to each axis.
- (2) Each axis conducts independent position control, therefore the machine posture can be kept constant.
- (3) Deviation between the two axes is always monitored, and if excessive, the alarm is detected.

A CAUTION

When the rigidity between two axes is high, such as when the ball screw interval between the tandem axes is narrow in full closed control, use the speed command synchronous control.

32

3.1.3 Speed Command Synchronous Control


This is one of the controls which enable two servo motors to drive the same axis. This is also called "Speed tandem control".

The same position command is issued to the 2-axis servo control, and the control is carried out according to each axis' position and speed feedbacks.

This function is usually used when the control is performed with one linear scale during the full closed loop control.

<Features>

- (1) When a linear scale is used, two axes can share the position feedback signal from one linear scale.
- (2) Feed rates of each axis are controlled with each axis' speed feedback signals, which allows stable control.
- (3) Mechanical errors (pitch error, backlash, etc.) are compensated using the common values.

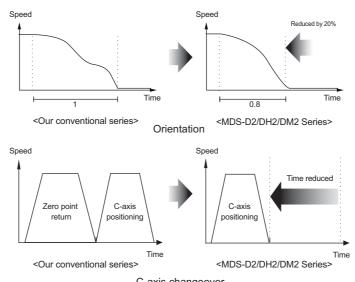
CAUTION

- 1. The speed command synchronous control cannot be used for a primary or secondary axis on which load unbalance is generated (Example: an axis carrying an operating axis). Use the position command synchronous control.
- 2. Disturbance observer cannot be used during the speed command synchronous control.
- 3. The speed command synchronous control cannot be performed with the distance-coded reference scale.

3.1.4 Distance-coded Reference Position Control

This is the function to establish the reference point from axis movements of the reference points using a scale with distance-coded reference mark.

Since it is not necessary to move the axis to the reference point, the axis movement amount to establish the reference point can be reduced.


No dog is used as the position is calculated using reference marks.

If the distance-coded reference check function is used to verify the motor end encoder data, select a battery option before setting the parameter.

3.1.5 Spindle's Continuous Position Loop Control

Under this control, position loop control is always applied to spindle, including when speed command is issued (in cutting). There is no need for control changeover nor zero point return during orientation and C axis control changeover. Therefore, the operation can be completed in a shorter time than the previous.

In acceleration/deceleration with S command, the acceleration/deceleration and orientation are always controlled with the spindle motor's maximum torque.

C-axis changeover

3.1.6 Coil Changeover Control

A signal output from the spindle drive unit controls the changeover of the low-speed and high-speed specification coils in a spindle motor.

The drive unit automatically outputs the coil changeover sequence in accordance with the motor speed.

3.1.7 Gear Changeover Control

This function enables a spindle motor to perform both high-speed light cutting and low-speed heavy cutting by changing the gear ratio between the motor and spindle.

The gear change is carried out while the spindle is not running.

3.1.8 Orientation Control

This control enables a spindle motor to stop at a designated angle when the motor is rotating at a high-speed with a speed command. This control is used for exchanging the tools in machining centers and performing index positioning in lathes, etc.

3.1.9 Indexing Control

This control enables positioning of a spindle motor at an arbitrary angle (in increments of 0.01 degrees) from the orientation stop position. This control is used for positioning in lathes for hole drilling, etc.

3.1.10 Synchronous Tapping Control

Under synchronous tapping control, spindle control is completely synchronized with Z axis servo control, and Z axis is accurately fed by one screw pitch in accordance with one tap revolution. The tap is completely fixed to the spindle head. As a result, feed pitch error is less likely to occur, which allows high-speed, high-accuracy and high-durable tapping.

3.1.11 Spindle Synchronous Control

This control enables two spindles to run at the same speed. A spindle being driven with a speed command is synchronized with another spindle at a constant rate or acceleration/deceleration rate.

This control is applied such as when a workpiece is transferred between two rotating chucks in lathe or a workpiece is held with two chucks.

3.1.12 Spindle/C Axis Control

An axis rotating about Z axis is called C axis, whose rotation direction is normally the same as of spindle. This function enables high-accuracy spindle control including interpolation control, like servo axis, when a high-resolution position encoder is attached to the spindle motor.

3.1.13 Proximity Switch Orientation Control

Orientation control is carried out based on the leading edge position of the proximity switch output signal (ON/OFF) after the spindle is stopped.

3.1.14 Power Regeneration Control

This control enables the regeneration energy generated when the motor decelerates to return to the power supply. This is an energy saving method because regeneration energy is hardly converted to heat.

3.1.15 Resistor Regeneration Control

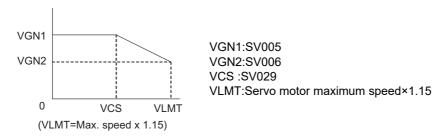
This control enables the regeneration energy generated when the motor decelerates to convert to heat with regenerative resistance.

The drive system can be downsized because the regeneration capacity is also small in the motor of relatively small capacity.

Select a suitable regenerative resistance according to the load inertia, motor operation speed, etc.

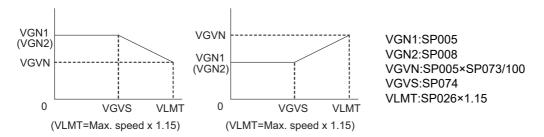
3.2 Servo/Spindle Control Functions

3.2.1 Torque Limit Function

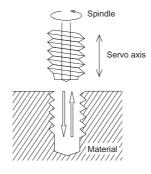

This control suppresses the motor output torque with the parameter values (SV013, SV014).

This function is used for stopper positioning control and stopper reference position establishment, by switching the two setting values.

3.2.2 Variable Speed Loop Gain Control


< Servo >

If disturbing noise occurs when the motor is rotating at a high speed, such as during rapid traverse, the high speed loop gain during high-speed rotation can be lowered with this function.


< Spindle >

For a high-speed spindle of machining center etc., adequate response can be ensured with this function by suppressing noise and vibration at low speeds and increasing the speed loop gain at high-speeds.

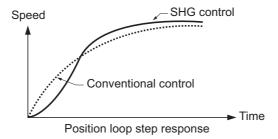
3.2.3 Gain Changeover for Synchronous Tapping Control

SV003, SV004 and SV057 are used as the position loop gain for normal control. Under synchronous tapping control, SV049, SV050 and SV058 are used instead to meet the spindle characteristics.

3.2.4 Speed Loop PID Changeover Control

This function is used under full-closed loop control. Normally, machine-end position tracking delays compared with the motor-end position.

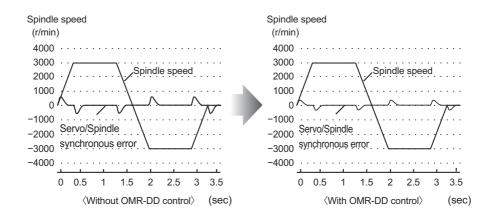
Under full-closed position loop control, machine-end position is used for position feedback. Therefore, the motor-end position tends to advance too much, which may cause overshooting of the machine-end position.


This function can suppress the generation of overshoot by adding the D (delay) control to the speed control, which is normally controlled with PI (proportional integral), in order to weaken the PI control after the position droop becomes 0.

3.2.5 Disturbance Torque Observer

The effect caused by disturbance, frictional resistance or torsion vibration during cutting can be reduced by estimating the disturbance torque and compensating it.

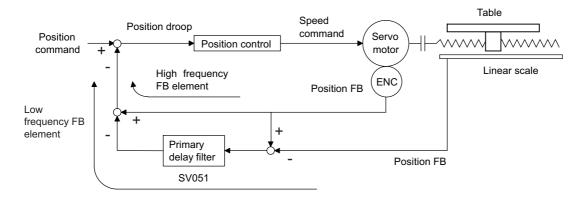
3.2.6 Smooth High Gain Control (SHG Control)


A high-response control and smooth control (reduced impact on machine) were conventionally conflicting elements; however, SHG control enables the two elements to function simultaneously by controlling the motor torque (current FB) with an ideal waveform during acceleration/deceleration.

3.2.7 High-speed Synchronous Tapping Control (OMR-DD Control)

Servo drive unit detects the spindle position, and compensates the synchronization errors. This control enables more accurate tapping than the previous.

(Note) A spindle drive unit that controls the high-speed synchronous tapping (OMR-DD control) has to be connected on the farther side from the NC than the servo drive unit that is subject to the synchronous tapping control.

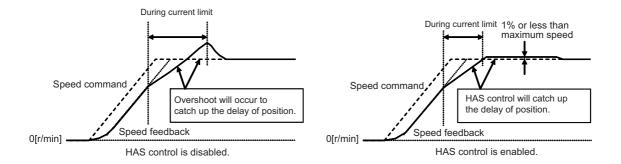


3.2.8 Dual Feedback Control

This function is used under full-closed loop control.

When a linear scale is used, the machine-end position, such as a table, is directly detected, which may render the position loop control unstable.

With this control, however, high-frequency components are eliminated from the machine-end feedback signals, which will lead to stable control.



Dual feedback control

3.2.9 HAS Control

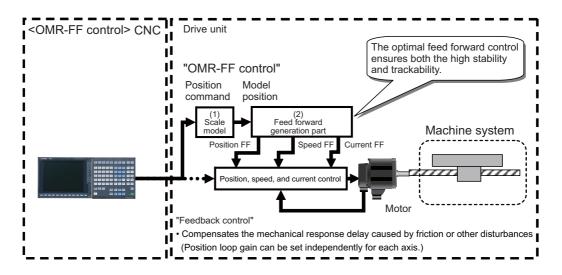
If the torque output during acceleration/deceleration is close to the servo motor's maximum torque, the motor cannot accelerate with the commanded time constant when the torque is saturated due to input voltage fluctuation, etc. As a result, speed overshoot occurs when a constant speed command is issued, because the position droop for the delay is canceled.

With HAS control, however, this overshoot is smoothened so that the machine operation can be stable.

3.2.10 OMR-FF Control

OMR-FF control enables fine control by generating feed forward inside the drive unit and can realize the strict feedback control to the program command than the conventional high-speed accuracy control.

The conventional position control method causes machine vibration when increasing the gain because it ensures both the trackability to the position command and the servo rigidity to the friction or cutting load, etc. by setting the position loop gain (PGN).


OMR-FF function allows the improvement of the command trackability by independently deciding the trackability with the scale model position loop gain (PGM) and the servo rigidity with the position control gain (PGN).

OMR-FF control option for NC side is required when using this function.

It is recommended that this function is used for linear motors, direct-drive motors, or general motors in semi-closed loop control.

< Features >

- (1) The command trackability can be decided independently of the position control gain (PGN) with the scale model position loop gain (PGM).
- (2) Position loop gain (PGN) can be set for each axis.
 - -> Delay in the machine's response caused by friction or cutting load, etc. can be compensated with high gain.

3.2.11 Control Loop Gain Changeover

Position loop gain and speed loop gain are switched between non-interpolation mode, which is used during speed command, and interpolation mode, which is used during synchronous tapping and C axis control. By switching these gains, optimum control for each mode can be realized.

3.2.12 Spindle Output Stabilizing Control

Spindle motor's torque characteristic is suppressed due to voltage saturation in the high-speed rotation range, therefore the current control responsiveness significantly degrades, which may cause excessive current.

With this control, however, the current and flux commands are compensated to avoid the voltage saturation so that the current control responsiveness will not degrade.

3.2.13 High-response Spindle Acceleration/Deceleration Function

This function enables reduction of the spindle motor's setting time (from when the command value becomes 0 until when the motor actually stops) without being affected by the position loop gain, when the spindle motor stops under deceleration stop control using the S command.

This function is not active when the spindle is stopped while performing position control, such as orientation control and synchronous tapping control.

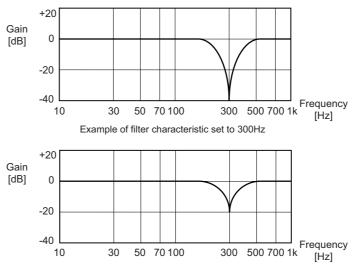
3.3 Compensation Control Function

3.3.1 Jitter Compensation

The load inertia becomes much smaller than usual if the motor position enters the machine backlash when the motor is stopped.

Because this means that an extremely large VGN1 is set for the load inertia, vibration may occur.

Jitter compensation can suppress the vibration that occurs at the motor stop by ignoring the backlash amount of speed feedback pulses when the speed feedback polarity changes.


3.3.2 Notch Filter

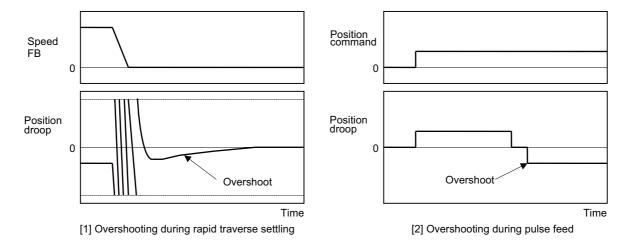
This filter can damp vibrations of servo torque commands at a specified frequency.

Machine vibrations can be suppressed by adjusting the notch filter frequency to the machine's resonance frequency. Filter depth adjustment is also available that allows stable control even when the filter is set to an extremely low frequency.

<Specifications>

Notch filter	Frequency	Depth compensation
Notch filter 1	50Hz to 2250Hz	Enabled
Notch filter 2	50Hz to 2250Hz	Enabled
Notch filter 3	Fixed at 1125Hz	Disabled
Notch filter 4	50Hz to 2250Hz	Enabled
Notch filter 5	50Hz to 2250Hz	Enabled

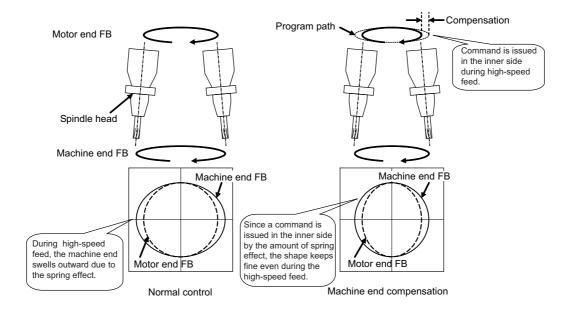
For shallow setting by additionally using the depth compensation at 300Hz


3.3.3 Adaptive Tracking-type Notch Filter

Machine's specific resonance frequency tends to change due to aged deterioration or according to machine's operation conditions. Therefore, the frequency may be deviated from the filter frequency set at the initial adjustment. With adaptive tracking-type notch filter, resonance point fluctuation due to the machine's condition change is estimated using the vibration components of the current commands, and effective notch filter frequency, which has been deviated from the setting value, is automatically corrected to suppress the resonance.

3.3.4 Overshooting Compensation

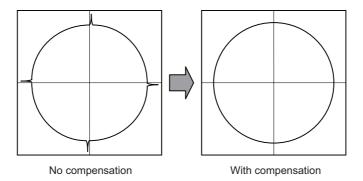
The phenomenon when the machine position goes past or exceeds the command during feed stopping is called overshooting.


In OVS compensation, the overshooting is suppressed by subtracting the torque command set in the parameters when the motor stops.

3.3.5 Machine End Compensation Control

The shape of the machine end during high-speed and high-speed acceleration operation is compensated by compensating the spring effect from the machine end to the motor end.

The shape may be fine during low-speed operation. However, at high speeds, the section from the machine end to the outer sides could swell. This function compensates that phenomenon.



3.3.6 Lost Motion Compensation Type 2

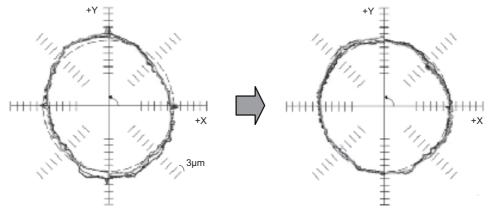
Servo motor always drives the machine opposing to the frictional force, and the torque which is required to oppose the friction during the axis movement is outputted by I control (Integral control) of the speed loop PI control. When the movement direction is changed, the frictional force works in the opposite direction momentarily, however, the machine will stop while the command torque is less than the frictional force as it takes some time to reverse the command torque in I control.

When the movement direction is changed, the frictional force works in the opposite direction momentarily, however, the machine will stop while the command torque is less than the frictional force as it takes some time to reverse the command torque in I control.

With the this lost motion compensation function improves the accuracy worsened by the stick motion.

3.3.7 Lost Motion Compensation Type 3

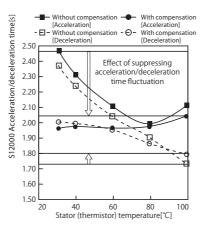
For a machine model where the travel direction is reversed, the compensation in accordance with the changes in the cutting conditions is enabled by also considering the spring component and viscosity component in addition to the friction.


This function can be used to accommodate quadrant projection changes that accompany feed rate and circular radius changes which could not be compensated by Lost motion compensation type 2.

- 1.Mechanical spring elements can't be ignored.
- 2.Changes between static and dynamic frictions are wide and steep.

Not only frictions but spring element and viscosity element can be compensated, thus quadrant protrusions are suppressed within a wide band.

Conventional control can't perform enough compensation.



Conventional compensation control

Lost motion compensation control type 3

3.3.8 Spindle Motor Temperature Compensation Function

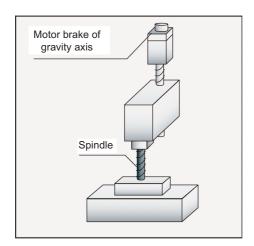
As for the low-temperature state of the IM spindle motor, the output characteristic may deteriorate in comparison with the warm-up state and the acceleration/deceleration time may become long, or the load display during cutting may become high immediately after operation. This function performs the control compensation depending on the motor temperature with the thermistor built into the spindle motor and suppresses the output characteristic deterioration when the temperature is low. Temperature compensation function is not required for IPM spindle motor in principle.

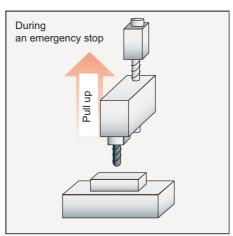
3.4 Protection Function

3.4.1 Deceleration Control at Emergency Stop

When an emergency stop (including NC failure, servo alarm) occurs, the motor will decelerate following the set time constant while maintaining the READY ON state.

READY will turn OFF and the dynamic brakes will function after stopping. The deceleration stop can be executed at a shorter distance than the dynamic brakes.


3.4.2 Vertical Axis Drop Prevention/Pull-up Control

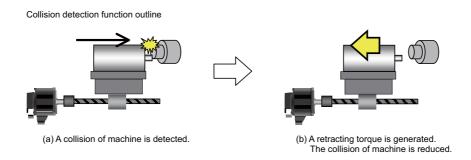

If the READY OFF and brake operation are commanded at same time when an emergency stop occurs, the axis drops due to a delay in the brake operation.

The no-control time until the brakes activate can be eliminated by delaying the servo READY OFF sequence by the time set in the parameters.

Always use this function together with deceleration control.

When an emergency stop occurs in a vertical machining center, the Z axis is slightly pulled upwards before braking to compensate the drop of even a few μ m caused by the brake backlash.

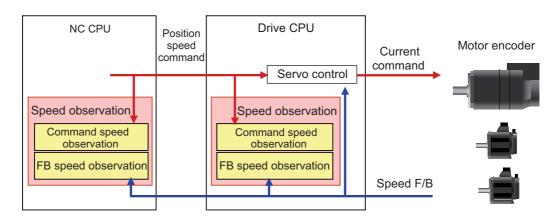
3.4.3 Earth Fault Detection


When an emergency stop is canceled, the earth fault current is measured using the power module's special switching circuit before Servo ready ON.

Specifying the faulty axis is possible in this detection, as the detection is carried out for each axis.

3.4.4 Collision Detection Function

Collision detection function quickly detects a collision of the motor shaft, and decelerates and stops the motor. This suppresses the generation of an excessive torque in the machine tool, and helps to prevent an abnormal state from occurring. Impact at a collision will not be prevented by using this collision detection function, so this function does not necessarily guarantee that the machine tool will not be damaged or that the machine accuracy will be maintained after a collision.


The same caution as during regular operation is required to prevent the machine from colliding.

3.4.5 SLS (Safely Limited Speed) Function

This function is aimed at allowing a safety access to the machine's working part by opening the safety door, etc. without shutting the power for saving the setup time.

Both the NC control system and drive system (servo and spindle drive units) doubly observe the axis feed rate so that it will not exceed the safety speed. If it exceeds the set safety speed, emergency stop occurs and the power is shut OFF.

3.4.6 Fan Stop Detection

The rotation of the radiation fin cooling fan is observed and when the fan stops rotating for a breakdown of the fan or an external factor, warning is detected. (The system will not be stopped.) Before sudden system down by the power module overheat, inspection and replacement of the fan are prompted.

3.4.7 Open-phase Detection

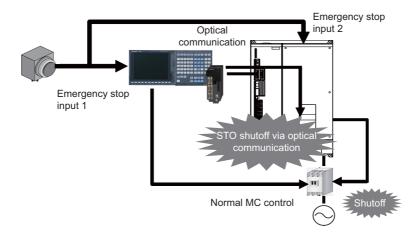
Disconnection of a phase of the 3-phase input power is detected.

The occurrence of abnormal operation will be avoided by open-phase detection because open-phase does not cause a power failure, however, abnormal operation will occur when the motor load becomes large.

45

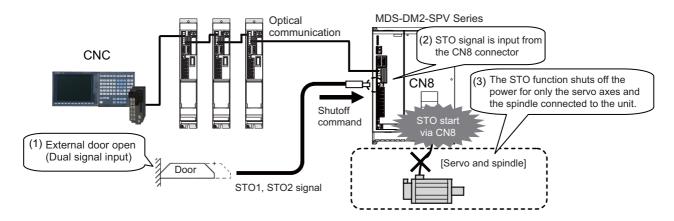
3.4.8 Contactor Weld Detection

It detects that a contact of the external contactor is welding and cannot be opened.

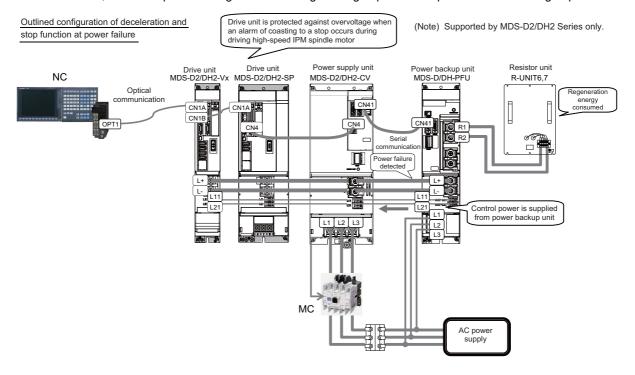

3.4.9 STO (Safe Torque Off) Function

STO (Safe Torque Off) function is a shutoff function which stops the supply of energy to the motor capable of generating torque. It shuts off an energy supply electronically inside the drive unit.

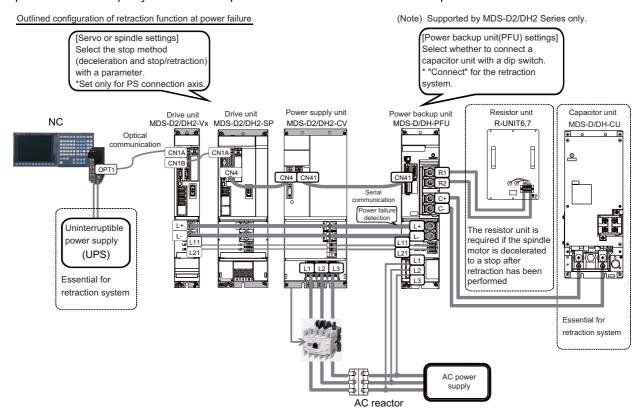
It is an uncontrolled stop function in accordance with "IEC60204-1 Stop Category 0".


STO function can be used in the following two ways ([1] and [2] below), which directly input the STO signal from the external device by using a network cable and CN8 connector.

[1] When using network STO function
STO function shuts off the motor power of all axes in the system.


[2] When using dedicated wiring STO function

This method is used to shut off the motor power with STO function only for the servo axes and spindle which are connected to the MDS-DM2-SPV drive unit while operating the system.


3.4.10 Deceleration and Stop Function at Power Failure

The deceleration and stop function at power failure is a function to safely decelerate the servo axes and the spindle when a power failure occurs. This function prevents a damage on the machine due to an overrun of the servo axes, and at the same time, realizes a protection against overvoltage for high-speed IPM spindle motors and high-speed DDMs.

3.4.11 Retraction Function at Power Failure

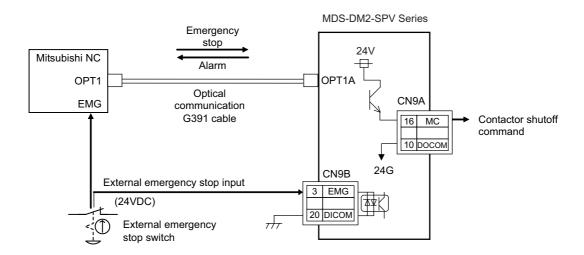
The retraction function at power failure is a function to backup the power of the main circuit from the capacitor unit and perform a tool escape by the retraction operation with the NC command when a power failure occurs.

3.5 Sequence Functions

3.5.1 Contactor Control Function

With this function, the contactor ON/OFF command is output from the power supply unit (or servo/spindle drive unit for integrated type) based on the judgement as to whether it is in emergency stop, emergency stop cancel, spindle deceleration and stop or vertical axis drop prevention control, etc.

3.5.2 Motor Brake Control Function


With this function, the brake ON/OFF command is output from the servo drive unit based on the judgement as to whether it is in emergency stop, emergency stop cancel or vertical axis drop prevention/pull-up control, etc.

When a multiaxis drive unit is connected, all the axes are simultaneously controlled.

3.5.3 External Emergency Stop Function

Besides the emergency stop input from the NC, double-protection when an emergency stop occurs can be provided by directly inputting an external emergency stop, which is a second emergency stop input, to the power supply unit (servo/spindle drive unit for integrated type).

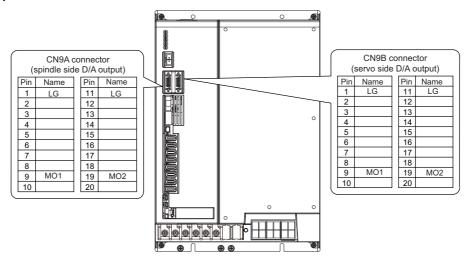
Even if the emergency stop is not input from NC for some reason, the contactors will be activated by the external emergency stop input, and the power can be shut off.

3.5.4 Specified Speed Output

This function is to output a signal that indicates whether the machine-end speed has exceeded the speed specified with the parameter.

With this function, the safety door, etc. can be locked to secure the machine operator when the machine-end speed has exceeded the specified speed. This function can also be used for judging whether the current machine-end speed is higher than the specified speed.

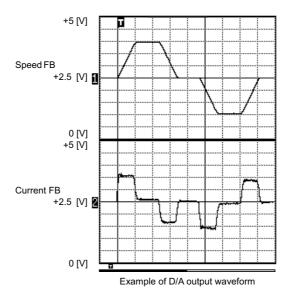
3.5.5 Quick READY ON Sequence


With this function, the charging time during READY ON is shortened according to the remaining charge capacity of the power supply unit. When returning to READY ON status immediately after the emergency stop input, the charging time can be shortened according to the remaining charge capacity and the time to READY ON is shortened.

3.6 Diagnosis Function

3.6.1 Monitor Output Function

Drive unit has a function to D/A output the various control data. The servo and spindle adjustment data required for setting the servo and spindle parameters to match the machine can be D/A output. Measure using a high-speed waveform recorder, oscilloscope, etc.


D/A output specifications

MDS-DM2-SPV Series

Item	Explanation			
No. of channels	2ch			
Output cycle	0.8ms (min. value)			
Output precision	12bit			
Output voltage range	0V to 2.5V (zero) to +5V			
Output magnification setting	-32768 to 32767 (1/100-fold)			
Output pin (servo side: CN9B connector)	MO1 = Pin 9, MO2 = Pin 19, LG = Pin 1,11			
Output pin (spindle side: CN9A connector)	MO1 = Pin 9, MO2 = Pin 19, LG = Pin 1,11			
Others	The D/A output for the 2nd axis or the 3rd axis is also 2ch. When using the 2nd axis or the 3rd axis, set "-1" for the output data (SV061, SV062) of the servo axis that is not to be measured.			

When the output data is 0, the offset voltage is 2.5V. If there is an offset voltage, adjust the zero level position in the measuring instrument side.

49

IB-1501136-C

3.6.2 Machine Resonance Frequency Display Function

If resonance is generated and it causes vibrations of the current commands, this function estimates the vibration frequency and displays it on the NC monitor screen (AFLT frequency).

This is useful in setting the notch filter frequencies during servo adjustment. This function constantly operates with no need of parameter setting.

3.6.3 Machine Inertia Display Function

With this function, the load current and acceleration rate during motor acceleration are measured to estimate the load inertia.

According to the parameter setting, the estimated load inertia is displayed on the NC monitor screen, expressed as its percentage to the motor inertia.

3.6.4 Motor Temperature Display Function

The temperature sensed by the thermal sensor attached to the motor coil is displayed on the NC screen. (Note) This function is only compatible with Spindle motor.

3.6.5 Load Monitor Output Function

A spindle motor's load is output as an analog voltage of 0 to 3V (0 to 120%). To use this function, connect a load meter that meets the specifications.

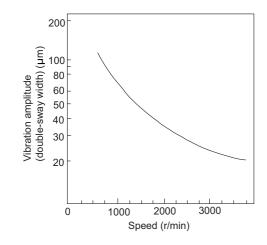
3.6.6 Power Supply Diagnosis Display Function

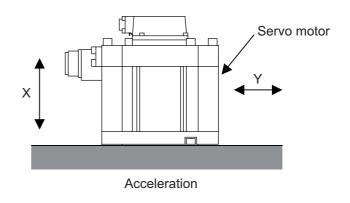
The diagnosis information of the power supply (bus voltage and current) is displayed on the NC monitor screen.

50

Characteristics

4.1 Servo Motor

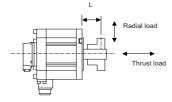

4.1.1 Environmental Conditions


Environment	Conditions		
Ambient temperature	0°C to +40°C (with no freezing)		
Ambient humidity	80% RH or less (with no dew condensation)		
Storage temperature	-15°C to +70°C (with no freezing)		
Storage humidity	90% RH or less (with no dew condensation)		
Atmosphere	Indoors (no direct sunlight) No corrosive gas, inflammable gas, oil mist or dust		
Altitude	Operation / storage: 1000m or less above sea level Transportation: 10000m or less above sea level		

4.1.2 Quakeproof Level

Motor type	Acceleration direction			
wotor type	Axis direction (X)	Direction at right angle to axis (Y)		
HF54, 104, 154, 224, 223	24.5m/s ² (2.5G) or less	24.5m/s ² (2.5G) or less		
HF204, 303, 302, 354, 453	24.5m/s ² (2.5G) or less	29.4m/s ² (3G) or less		

The vibration conditions are as shown below.


4.1.3 Shaft Characteristics

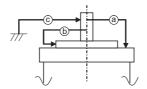
There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the radial direction and thrust direction, when mounted on the machine, is below the tolerable values given below. These loads may affect the motor output torque, so consider them when designing the machine.

Servo motor	Tolerable radial load	Tolerable thrust load
HF54T, 104T, 154T, 224T, 223T (Taper shaft)	392N (L=58)	490N
HF54S, 104S, 154S, 224S, 223S (Straight shaft)	980N (L=55)	490N
HF204S, 303S, 302S, 354S, 453S (Straight shaft)	2058N (L=79)	980N

(Note 1) The tolerable radial load and thrust load in the above table are values applied when each motor is used independently.

(Note 2) The symbol L in the table refers to the value of L below.

L: Length from flange installation surface to center of load mass [mm]

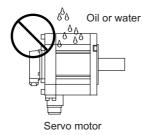

↑ CAUTION

- 1. Use a flexible coupling when connecting with a ball screw, etc., and keep the shaft core deviation to below the tolerable radial load of the shaft.
- 2. When directly installing the gear on the motor shaft, the radial load increases as the diameter of the gear decreases. This should be carefully considered when designing the machine.
- 3. When directly installing the pulley on the motor shaft, carefully consider so that the radial load (double the tension) generated from the timing belt tension is less than the values shown in the table above.
- 4. In machines where thrust loads such as a worm gear are applied, carefully consider providing separate bearings, etc., on the machine side so that loads exceeding the tolerable thrust loads are not applied to the motor.
- 5. Do not apply the loads exceeding the tolerable level. Failure to observe this may lead to the axis or bearing damage.

4.1.4 Machine Accuracy

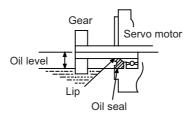
Machine accuracy of the servo motor's output shaft and around the installation part is as below. (Excluding special products)

Accuracy	Measurement		Flange size [mm]				
Accuracy	point	Less than 100 SQ.	100 SQ., 130 SQ.	176 SQ 250 SQ.	280 SQ. or over		
Run-out of the flange surface to the output shaft	а	0.05mm	0.06mm	0.08mm	0.08mm		
Run-out of the flange surface's fitting outer diameter	b	0.04mm	0.04mm	0.06mm	0.08mm		
Run-out of the output shaft end	С	0.02mm	0.02mm	0.03mm	0.03mm		

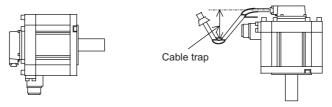


53

4.1.5 Oil / Water Standards


(1) The motor protective format uses the IP type, which complies with IEC Standard. (Refer to the section "Specifications

However, these Standards are short-term performance specifications. They do not guarantee continuous environmental protection characteristics. Measures such as covers, etc., must be taken if there is any possibility that oil or water will fall on the motor, and the motor will be constantly wet and permeated by water. Note that the motor's IP-type is not indicated as corrosion-resistant.



(2) When a gear box is installed on the servo motor, make sure that the oil level height from the center of the shaft is higher than the values given below. Open a breathing hole on the gear box so that the inner pressure does not rise.

Servo motor	Oil level (mm)
HF54, 104, 154, 224, 223	22.5
HF204, 303, 302, 354, 453	30

(3) When installing the servo motor horizontally, set the connector to face downward. When installing vertically or on an inclination, provide a cable trap because the liquid such as oil or water may enter the motor from the connector by running along the cable.

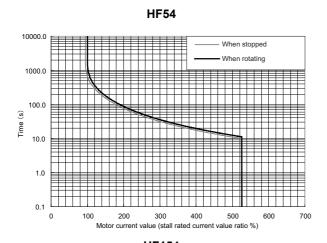
⚠ CAUTION

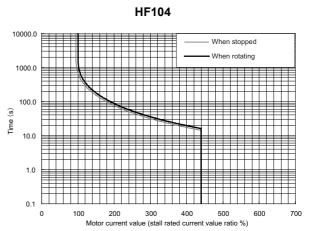
- 1. The servo motors, including those having IP67 specifications, do not have a completely waterproof (oil-proof) structure. Do not allow oil or water to constantly contact the motor, enter the motor, or accumulate on the motor. Oil can also enter the motor through cutting chip accumulation, so be careful of this also.
- 2. Oil may enter the motor from the clearance between the cable and connector. Protect with silicon not to make the
- 3. When the motor is installed facing upwards, take measures on the machine side so that gear oil, etc., does not flow onto the motor shaft.

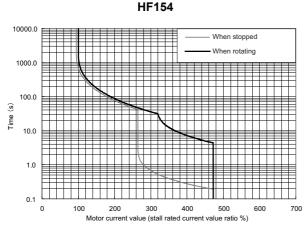
4.1.6 Installation of Servo Motor

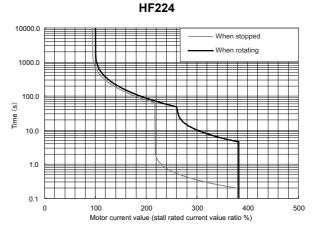
Mount the servo motor on a flange which has the following size or produces an equivalent or higher heat dissipation effect:

Flange size (mm)	Servo motor capacity
150×150×6	100W
250×250×6	200 to 400W
250×250×12	0.5 to 1.5kW
300×300×20	2.0 to 7.0kW
800×800×35	9.0 to 11.0kW

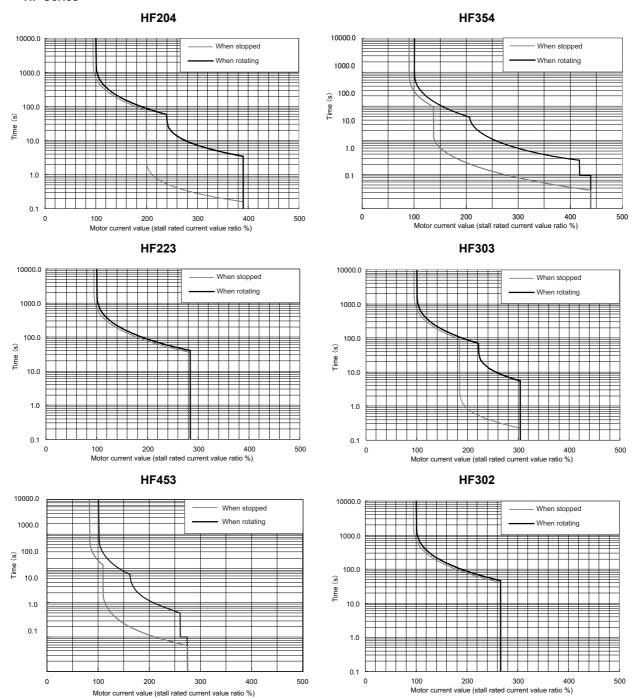

(Note 1) These flange sizes are recommended dimensions when the flange material is an aluminum.


(Note 2) If enough flange size cannot be ensured, ensure the cooling performance by a cooling fan or operate the motor in the state that the motor overheat alarm does not occur.


4.1.7 Overload Protection Characteristics


The servo drive unit has an electronic thermal relay to protect the servo motor and servo drive unit from overloads. The operation characteristics of the electronic thermal relay are shown below when standard parameters (SV021=60, SV022=150) are set. If overload operation over the electronic thermal relay protection curve shown below is carried out, overload 1 (alarm 50) will occur. If the maximum torque is commanded continuously for one second or more due to a machine collision, etc., overload 2 (alarm 51) will occur.

< HF Series>



< HF Series >

4.1.8 Magnetic Brake

- 1. The axis will not be mechanically held even when the dynamic brakes are used. If the machine could drop when the power fails, use a servo motor with magnetic brakes or provide an external brake mechanism as holding means to prevent dropping.
- 2. The magnetic brakes are used for holding, and must not be used for normal braking. There may be cases when holding is not possible due to the life or machine structure (when ball screw and servo motor are coupled with a timing belt, etc.). Provide a stop device on the machine side to ensure safety.
- 3. When operating the brakes, always turn the servo OFF (or ready OFF). When releasing the brakes, always confirm that the servo is ON first. Sequence control considering this condition is possible by using the brake contact connection terminal on the servo drive unit.
- 4. When the vertical axis drop prevention function is used, the drop of the vertical axis during an emergency stop can be suppressed to the minimum.

(1) Motor with magnetic brake

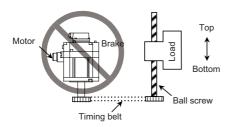
(a) Types

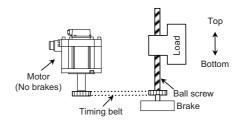
The motor with a magnetic brake is set for each motor. The "B" following the standard motor model stands for the motor with a brake.

(b) Applications

When this type of motor is used for the vertical feed axis in a machining center, etc., slipping and dropping of the spindle head can be prevented even when the hydraulic balancer's hydraulic pressure reaches zero when the power turns OFF. When used with a robot, deviation of the posture when the power is turned OFF can be prevented.

When used for the feed axis of a grinding machine, a double safety measures is formed with the deceleration stop (dynamic brake stop) during emergency stop, and the risks of colliding with the grinding stone and scattering can be


This motor cannot be used for the purposes other than holding and braking during a power failure (emergency stop). (This cannot be used for normal deceleration, etc.)


(c) Features

- [1] The magnetic brakes use a DC excitation method, thus:
 - The brake mechanism is simple and the reliability is high.
 - There is no need to change the brake tap between 50Hz and 60Hz.
 - There is no rush current when the excitation occurs, and shock does not occur.
 - The brake section is not larger than the motor section.
- [2] The magnetic brake is built into the motor, and the installation dimensions are the same as the motor without brake.

(d) Cautions for using a timing belt

Connecting the motor with magnetic brakes and the load (ball screw, etc.) with a timing belt as shown on the left below could pose a hazard if the belt snaps. Even if the belt's safety coefficient is increased, the belt could snap if the tension is too high or if cutting chips get imbedded. Safety can be maintained by using the method shown on the right below.

(2) Magnetic brake characteristics

< HF Series >

		Moto	r type		
Ite	em	HF54B, HF104B, HF154B, HF224B	HF204B, HF354B HF303B, HF453B		
		HF223B	HF302B		
Type (Note 1)		Spring closed non-exciting operation magnetic brakes			
Type (Note 1)		(for maintenance and emergency braking)			
Rated voltage		24\	/DC		
Rated current at 20°C (A)		0.8	1.4		
Capacity (W)		19	34		
Static friction torque (N•m)	8.3	43.1		
Inertia (Note 2) (kg•cm²)		2.2	9.7		
Release delay time (Note 3	3) (s)	0.04	0.1		
Braking delay time (DC OI	FF) (Note 3) (s)	0.03	0.03		
Tolerable braking work	Per braking (J)	400	4,500		
amount	Per hour (J)	4,000	45,000		
Brake play at motor axis (degree)		0.2 to 0.6	0.2 to 0.6		
No. of braking		20,000	20.000		
Brake life (Note 4)	operations (times)	20,000	20,000		
212 (1.1010 1)	Work amount	200	1,000		
	per braking (J)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

- (Note 1) There is no manual release mechanism. If handling is required such as during the machine core alignment work, prepare a separate 24VDC power supply, and electrically release a brake.
- (Note 2) These are the values added to the servo motor without a brake.
- (Note 3) This is the representative value for the initial attraction gap at 20°C.
- (Note 4) The brake gap will widen through brake lining wear caused by braking. However, the gap cannot be adjusted. Thus, the brake life is considered to be reached when adjustments are required.
- (Note 5) A leakage flux will be generated at the shaft end of the servo motor with a magnetic brake.
- (Note 6) When operating in low speed regions, the sound of loose brake lining may be heard. However, this is not a problem in terms of function.

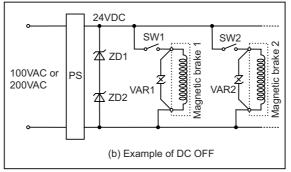
Magnetic brake power supply

⚠ CAUTION

- 1. Always install a surge absorber on the brake terminal when using DC OFF.
- 2. Do not pull out the cannon plug while the brake power is ON. The cannon plug pins could be damaged by sparks.

(a) Brake excitation power supply

- [1] Prepare a brake excitation power supply that can accurately ensure the attraction current in consideration of the voltage fluctuation and excitation coil temperature.
- The brake terminal polarity is random. Make sure not to mistake the terminals with other circuits.


(b) Bake excitation circuit

When turning OFF the brake excitation power supply (to apply the brake), DC OFF is used to shorten the braking delay time.

A surge absorber will be required. Pay attention to the relay cut off capacity.

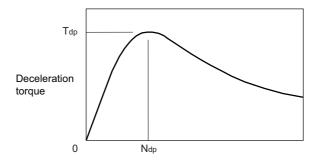
<Cautions>

- Provide sufficient DC cut off capacity at the contact.
- Always use a surge absorber.
- When using the cannon plug type, the surge absorber will be further away, so use shielded wires between the motor and surge absorber.

: 24VDC stabilized power supply PS

ZD1,ZD2 : Zener diode for power supply protection (1W, 24V)

VAR1, VAR2 : Surge absorber


Magnetic brake circuits

4.1.9 Dynamic Brake Characteristics

If a servo alarm that cannot control the motor occurs, the dynamic brakes will function to stop the servo motor regardless of the parameter settings.

(1) Deceleration torque

The dynamic brake uses the motor as a generator, and obtains the deceleration torque by consuming that energy with the dynamic brake resistance. The characteristics of this deceleration torque have a maximum deceleration torque (Tdp) regarding the motor speed as shown in the following drawing. The torque for each motor is shown in the following table.

Deceleration torque characteristics of a dynamic brake

Motor speed

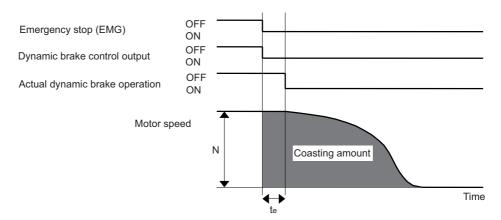
Max. deceleration torque of a dynamic brake

		L	/M-axis		S-axis		
Motor type	Drive unit type	Stall torque (N•m)	Tdp (N•m)	Ndp (r/min)	Stall torque (N•m)	Tdp (N•m)	Ndp (r/min)
HF54	SPVx-xxx80, SPHV3-20080	2.9	3.97	758	2.9	3.96	533
HF104	SPVx-xxx80, SPHV3-20080	5.9	10.02	1060	5.9	10.02	540
HF154	SPVx-xxx80, SPHV3-20080	9.0	15.64	1356	9.0	15.65	546
HF 134	SPV3-2000120	9.0	15.64	850	9.0	15.05	340
HF224	SPVx-xxx80, SPHV3-20080	12.0	20.07	1765	12.0	20.06	608
111 224	SPV3-2000120			1042			
HF204	SPVx-xxx80, SPHV3-20080	13.7	15.95	1029	13.7	15.97	370
111 204	SPV3-2000120			617			
HF354	SPV3-2000120	22.5	35.25	908	22.5	35.25	469
HF223	SPVx-xxx80, SPHV3-20080	12.0	19.95	1059	12.0	19.95	463
HF303	SPVx-xxx80, SPHV3-20080	22.5	30.40	955	22.5	30.43	308
пгэоэ	SPV3-2000120	22.5	30.40	550	22.5		
HF453	SPV3-2000120	37.2	52.94	1080	37.2	52.94	529
HF302	SPVx-xxx80, SPHV3-20080	20.0	29.42	635	20.0	29.42	253

(2) Coasting rotation distance during emergency stop

The distance that the motor coasts (angle for rotary axis) when stopping with the dynamic brakes can be approximated with the following expression.

$$L_{MAX}\!=\! \ \frac{F}{60} \cdot \! \{ t \, e \, + \, (1 + \frac{J_L}{J_M}) \cdot (A \! \cdot \! N^2 \! + \! B) \, \}$$


 $\mathsf{L}_{\mathsf{MAX}}$: Motor coasting distance (angle) [mm, (deg)]

F : Axis feedrate [mm/min, (deg/min)]

 $\begin{array}{lll} N & : Motor speed & [r/min] \\ J_M & : Motor inertia & [\times 10^{-4} kg \bullet m^2] \\ J_L & : Motor shaft conversion load inertia & [\times 10^{-4} kg \bullet m^2] \end{array}$

 t_{e} : Brake drive relay delay time [s] (Normally, 0.03s)

A : Coefficient A (Refer to the following table)
B : Coefficient B (Refer to the following table)

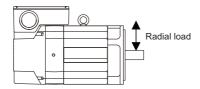
Dynamic brake braking diagram

Coasting amount calculation coefficients table

Motor	Duive venit tome		L/M-axis		S-axis			
type	Drive unit type	J _M (kg•cm²)	Α	В	J _M (kg•cm²)	Α	В	
HF54	SPVx-xxx80, SPHV3-20080	6.1	3.54×10 ⁻⁹	6.10×10 ⁻³	6.1	5.04×10 ⁻⁹	4.29×10 ⁻³	
HF104	SPVx-xxx80, SPHV3-20080	11.9	1.95×10 ⁻⁹	6.59×10 ⁻³	11.9	3.84×10 ⁻⁹	3.36×10 ⁻³	
HF154	SPVx-xxx80, SPHV3-20080	17.8	1.47×10 ⁻⁹	8.08×10 ⁻³	17.8	3.64×10 ⁻⁹	3.25×10 ⁻³	
	SPV3-2000120		2.34×10 ⁻⁹	5.06×10 ⁻³				
HF224	SPVx-xxx80, SPHV3-20080	23.7	1.17×10 ⁻⁹	10.91×10 ⁻³	23.7	3.39×10 ⁻⁹	3.76×10 ⁻³	
	SPV3-2000120		1.98×10 ⁻⁹	6.44×10 ⁻³				
HF204	SPVx-xxx80, SPHV3-20080	38.3	4.07×10 ⁻⁹	12.94×10 ⁻³	38.3	11.31×10 ⁻⁹	4.66×10 ⁻³	
	SPV3-2000120		6.79×10 ⁻⁹	7.76×10 ⁻³				
HF354	SPV3-2000120	75.0	4.09×10 ⁻⁹	10.12×10 ⁻³	75	7.92×10 ⁻⁹	5.22×10 ⁻³	
HF223	SPVx-xxx80, SPHV3-20080	23.7	1.96×10 ⁻⁹	6.60×10 ⁻³	23.7	4.49×10 ⁻⁹	2.88×10 ⁻³	
HF303	SPVx-xxx80, SPHV3-20080	75.0	4.51×10 ⁻⁹	12.33×10 ⁻³	75.0	14.00×10 ⁻⁹	3.97×10 ⁻³	
	SPV3-2000120		7.82×10 ⁻⁹	7.11×10 ⁻³				
HF453	SPV3-2000120	112	3.42×10 ⁻⁹	11.96×10 ⁻³	112	6.98×10 ⁻⁹	5.86×10 ⁻³	
HF302	SPVx-xxx80, SPHV3-20080	75.0	7.01×10 ⁻⁹	8.48×10 ⁻³	75.0	17.58×10 ⁻⁹	3.38×10 ⁻³	

61

4.2 Spindle Motor


4.2.1 Environmental Conditions

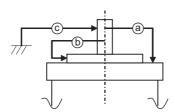
Environment	Conditions
Ambient temperature	0°C to +40°C (with no freezing)
Ambient humidity	90%RH or less (with no dew condensation)
Storage temperature	-20°C to +65°C (with no freezing)
Storage humidity	90%RH or less (with no dew condensation)
Atmosphere	Indoors (Where unit is not subject to direct sunlight) No corrosive gases, flammable gases, oil mist or dust
Altitude	Operation/storage: 1000m or less above sea level Transportation: 10000m or less above sea level
Vibration	X:29.4m/s ² (3G) Y:29.4m/s ² (3G)

4.2.2 Shaft Characteristics

There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the radial direction, when mounted on the machine, is below the tolerable values given below. These loads may affect the motor output torque, so consider them when designing the machine.

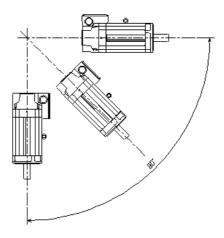
Spindle motor	Tolerable radial load
SJ-VL11-10FZT, SJ-DL5.5/150-01T	245N
SJ-V5.5-01ZT, SJ-V7.5-01ZT, SJ-V7.5-03ZT, SJ-V11-06ZT	
SJ-VL11-05FZT-S01, SJ-VL11-07ZT, SJ-D5.5/120-02	980N
SJ-DJ5.5/100-01, SJ-DJ5.5/120-01, SJ-DJ5.5/120-02, SJ-DL7.5/150-01T	
SJ-D5.5/100-01, SJ-D5.5/120-01, SJ-DJ7.5/100-01, SJ-V11-08ZT	1470N
SJ-V11-01ZT, SJ-V11-13ZT, SJ-V11-01T,	
SJ-D7.5/100-01, SJ-D7.5/120-01, SJ-D11/80-01, SJ-D11/100-01	1960N
SJ-DJ11/100-01, SJ-DJ15/80-01	
SJ-V15-01ZT, SJ-V15-09ZT, SJ-V11-09T, SJ-V15-03T	2940N

(Note) The load point is at the one-half of the shaft length.


Consider on the machine side so that the thrust loads are not applied to the spindle motor.

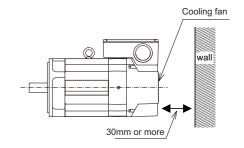
4.2.3 Machine Accuracy

Machine accuracy of the spindle motor's output shaft and around the installation part is as below. (Excluding special products)


	Measurement	Frame No.		
Accuracy	point	A71, B71, A90, B90,	A160, B160, C160,	
	•	C90, D90, A112, B112	A180, B180, A225	
Run-out of the flange surface to the output shaft	а	0.03mm	0.05mm	
Run-out of the flange surface's fitting outer diameter	b	0.02mm	0.04mm	
Run-out of the output shaft end	С	0.01mm	0.02mm	

(Note) Refer to Specifications Manual for the frame number of each spindle motor.

4.2.4 Installation of Spindle Motor


Make sure that the spindle motor is installed so that the motor shaft points from downward to 90° as shown below. When installing upward more than 90°, contact your Mitsubishi Electric dealer.

⚠ CAUTION

- Rubber packing for waterproof is attached on the inner surface of the top cover of terminal block.
 After checking that the packing is installed, install the top cover.
- 2. When installing a motor on a flange, chamfer(C1) the part of flange that touches inside low part of the motor.

To yield good cooling performance, provide a space of at least 30mm between the cooling fan and wall. If the motor is covered by a structure and the air is not exchanged, its cooling performance degrades and the motor is unable to fully exercise its performance, which may cause the spindle motor overheat alarm. Do not use the spindle motor in an enclosed space with little ventilation.

63

4.3 Drive Unit

4.3.1 Environmental Conditions

Environment	Conditions		
Ambient temperature	0°C to +55°C (with no freezing)		
Ambient humidity	90% RH or less (with no dew condensation)		
Storage temperature	-15°C to +70°C (with no freezing)		
Storage humidity	90% RH or less (with no dew condensation)		
Atmosphere	Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, dust or conductive fine particles		
Altitude	Operation/storage: 1000m or less above sea level Transportation: 13000m or less above sea level		
Vibration Operation/storage: 4.9m/s ² (0.5G) or less Transportation: 49m/s ² (5G)			

(Note)

When installing the machine at 1,000m or more above sea level, the heat dissipation characteristics will drop as the altitude increases in proportion to the air density. The ambient temperature drops 1% with every 100m increase in altitude.

When installing the machine at 1,800m altitude, the heating value of the drive unit must be reduced to 92% or less. The heating value is proportional to the square of the current, and required current decreasing rate follows the expression below.

Required current decreasing rate = $\sqrt{0.92}$ = 0.95

Therefore, use the unit with the reduced effective load rate to 95% or less.

4.3.2 Heating Value

The values for the servo drive unit apply at 50% of the stall output. The values for the spindle drive unit apply for the continuous rated output. The following values include the AC reactor's heating value.

Multiple axes integrated drive unit				
	Heating value [W]			
Type MDS-DM2-	Inside	Outside		
	panel	panel		
SPV3-10080	140	590		
SPV3-16080	150	650		
SPV3-20080	175	815		
SPV3-200120	235	1025		
SPHV3-20080	175	815		
SPV2-10080	120	510		
SPV2-16080	130	570		
SPV2-20080	155	740		

POINT

- 1. Design the panel's heating value taking the actual axis operation (load rate) into consideration.
- 2. The heating values in the above tables are calculated with the following load rates.

Unit	Load rate
Servo drive unit	50%
Spindle drive unit	100%
Power supply unit	100%

Dedicated Options

5.1 Servo Options

The interface units or battery options are required depending on the type of machine end encoder in the full closed loopcontrol system. Check the options to be required referring the following lists.

POINT

The scales shown in this manual are examples which the connectivity is verified by Mitsubishi Electric.

Connectable scales besides these are also marketed. Contact each scale manufacturer for details.

For the specifications of the scale, including the scales shown in this manual, refer to the manuals issued by the manufacturer.

IB-1501136-C

66

(a) Full closed loop control for linear axis

М	achine side end	oder to be used	Encoder signal output	Interface unit	Drive unit input signal	Battery option	Remarks
	_ SR74, SR84		Rectangular wave		Rectangular wave	Орион	
	Rectangular wave signal	(Magnescale)	signal	-	signal	-	
	output	Various scale	Rectangular wave signal	-	Rectangular wave signal	-	
				IBV series (HEIDENHAIN)	Rectangular wave signal	1	
		LS187, LS487 (HEIDENHAIN)	SIN wave signal	EIB series (HEIDENHAIN)	Mitsubishi serial signal	-	
Incre-				APE series (HEIDENHAIN)	Mitsubishi serial signal	-	
mental encoder	SIN wave signal output	LS187C, LS487C (HEIDENHAIN)	SIN wave signal	MDS-B-HR-11(P) (Mitsubishi Electric) EIB series	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale (Note 2)
				(HEIDENHAIN) MDS-B-HR-11(P)			
		Various scale	SIN wave signal	(Mitsubishi Electric)	Mitsubishi serial	(Required)	Distance-coded reference scale is also
		various scale	Silv wave signal	EIB series (HEIDENHAIN)	signal	(Note 1)	available (Note 2)
	Mitsubishi serial signal output	SR75, SR85 (Magnescale)	Mitsubishi serial signal	-	Mitsubishi serial signal	-	
		OSA105ET2A (Mitsubishi Electric)	Mitsubishi serial signal	-	Mitsubishi serial signal	Required	Ball screw side encoder
		SR27, SR77, SR87, SR67A (Magnescale)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		LC195M, LC495M, LC291M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	Mitsu03-4
		LC193M, LC493M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	Mitsu02-4
Abso-		AT343, AT543, AT545, ST748 (Mitutoyo)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
lute position	Mitsubishi serial signal	SAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
encoder	output	SVAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		GAM Series (FAGOR)	Mitsubishi serial	-	Mitsubishi serial	Not required	
		LAM Series	signal Mitsubishi serial		signal Mitsubishi serial	Not	
		(FAGOR)	signal	-	signal	required	
		RL40N Series (Renishaw)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		AMS-ABS-3B Series	Mitsubishi serial		Mitsubishi serial	Not	
		(Schneeberger)	signal	-	signal	required	
		LMFA Series	Mitsubishi serial		Mitsubishi serial	Not	
		(AMO)	signal	-	signal	required	
		LMBA Series	Mitsubishi serial	-	Mitsubishi serial	Not	-
		(AMO)	signal		signal	required	

⁽Note 1) When using the distance-coded reference scale, it is recommended to use with distance-coded reference check function. In this case, the battery option is required.

⁽Note 2) The distance-coded reference scale is the supported option for M700V Series.

Machine side encoder to be used		Encoder signal output	Interface unit	Drive unit input signal	Battery option	Remarks	
Abso-	SIN wave	MPS Series (NIDEC MACHINE TOOL)	SIN wave signal	ADB-20J60 (NIDEC MACHINE TOOL)	Mitsubishi serial signal	Required	
position encoder	position signal	MPI Series (NIDEC MACHINE TOOL)	SIN wave signal	ADS-20J60 (NIDEC MACHINE TOOL)	Mitsubishi serial signal	rtoquireu	

(b) Full closed loop control for rotary axis

N	Machine side encoder to be used		Encoder signal output	Interface unit	Output signal	Battery option	Remarks
	Rectangular wave signal output	Various scale	Rectangular wave signal	-	Rectangular wave signal	-	
Incre- mental	SIN wave	ERM280 Series (HEIDENHAIN)	SIN wave signal	EIB series (HEIDENHAIN)	Mitsubishi serial signal	-	
encoder signal output	signal	Various scale	SIN wave signal	MDS-B-HR-11(P) (Mitsubishi Electric)	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale is also available (Note 2)
		MBA405W Series (Mitsubishi Electric)	Mitsubishi serial signal	(Provided)	Mitsubishi serial signal	Not required	
	Mitsubishi serial signal output	RU77 (Magnescale)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		RCN223M, RCN227M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	Mitsu02-4
		RCN727M, RCN827M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	Mitsu02-4
Abso-		RA Series (Renishaw)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
lute position		HAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
signal		WMFA Series WMBA Series WMRA Series (AMO)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
	SIN wave	MPRZ Series (NIDEC MACHINE TOOL)	SIN wave signal	ADB-20J71 (NIDEC MACHINE TOOL)	Mitsubishi serial signal	Not required	
	signal output	MPI Series (NIDEC MACHINE TOOL)	SIN wave signal	ADB-20J60 (NIDEC MACHINE TOOL)	Mitsubishi serial signal	Required	

- (Note 1) When using the distance-coded reference scale, it is recommended to use with distance-coded reference check function. In this case, the battery option is required.
- (Note 2) The distance-coded reference scale is the supported option for M700V Series. It cannot be used with the speed command synchronous control.

< Contact information about machine side encoder >

- Magnescale Co., Ltd.: http://www.mgscale.com/mgs/language/english/
- HEIDENHAIN CORPORATION: http://www.heidenhain.com/
- Mitutoyo Corporation: http://www.mitutoyo.co.jp/eng/
- NIDEC MACHINE TOOL CORPORATION: http://www.nidec.com/en/nidec-machinetool/
- FAGOR Automation: http://www.fagorautomation.com/
- Renishaw plc.: http://www.renishaw.com/en/renishaw-enhancing-efficiency-in-manufacturing-and-healthcare--1030
- SCHNEEBERGER AG: https://www.schneeberger.com
- AMO (Automatisierung Messtechnik Optik) GmbH: http://www.amo-gmbh.com/en/

POINT

The absolute position system cannot be established in combination with the relative position (incremental) machine side encoder and absolute position motor side encoder.

5.1.1 Battery Option (ER6V-C119B, A6BAT, MDS-BTBOX-36)

This battery option may be required to establish absolute position system. Select a battery option from the table below depending on the servo system.

Туре	EER6V-C119B	A6BAT(MR-BAT)	MDS-BTBOX-36
Installation type	Drive unit installation	Dedicated case type	Control panel installation
Hazard class	Not applicable	Not applicable (24 or less)	Not applicable
Number of connectable axes	Up to 3 axes	Up to 3 axes Up to 8 axes (When using dedicated case)	
Change method	Battery option change	Battery option change	Battery change
Appearance	Battery ER6V-C119B connector	Battery A6BAT (MR-BAT) Dedicated case MDS-BTCASE	

(Note) When using the converged battery option, refer to this section "(4) Converged battery option".

⚠ CAUTION

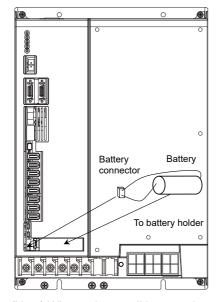
- 1. When transporting lithium batteries with means such as by air transport, measures corresponding to the United Nations Dangerous Goods Regulations must be taken. (Refer to "Appendix 2 Restrictions for Lithium Batteries".)
- 2. The lithium battery must be transported according to the rules set forth by the International Civil Aviation Organization (ICAO), International Air Transportation Association (IATA), International Maritime Organization (IMO), and United States Department of Transportation (DOT), etc. The packaging methods, correct transportation methods, and special regulations are specified according to the quantity of lithium alloys. The battery unit exported from Mitsubishi is packaged in a container (UN approved part) satisfying the standards set forth in this UN Advisory.
- 3. To protect the absolute value, do not shut off the servo drive unit control power supply if the battery voltage becomes low (warning 9F).
- 4. The battery life (backup time) is greatly affected by the working ambient temperature. The above data is the theoretical value for when the battery is used 8 hours a day/240 days a year at an ambient temperature of 25°C. Generally, if the ambient temperature increases, the backup time and useful life will both decrease.

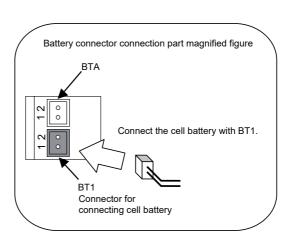
POINT

A6BAT is a battery with same specifications as MR-BAT.

(1) Cell battery (ER6V-C119B)

(a) Specifications


Battery option type		Cell battery		
		ER6V-C119B		
Battery mode		ER6V		
Nominal volta	ige	3.6V		
Nominal capa	city	2000mAh		
	Hazard class	-		
	Battery shape	Single battery		
Battery	Number of	FR6V x 1		
safety	batteries used	ENOV X I		
	Lithium alloy	0.7g		
	content	5::9		
	Mercury content	1g or less		
Number of connectable axes		Up to 3 axes (Note 1)		
Battery continuous backup time		Up to 2 axes: Approx. 10,000 hours		
Battery Contin	iuous backup tiille	3 axes connected: Approx. 6,600 hours		
Battery usefu	l life	7 years		
(From date of	unit manufacture)	r yours		
Data save time in battery		HF Series: Approx. 20 hours at time of delivery, approx. 10 hours after 5 years		
replacement		The defices. Approx. 20 flours at time of delivery, approx. To flours after 5 years		
Back up time from battery		Up to 2 axes: Approx. 100 hours		
warning to alarm occurrence		3 axes connected: Approx. 60 hours		
(Note 2)				
Mass		20g		


- (Note 1) When using ball screw side encoder OSA166ET2NA/OSA105ET2A, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the load becomes double.
- (Note 2) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.
- (Note 3) A battery load is generated in the axis for which the incremental control is set when a battery is connected.

(b) Installing the cell battery

Open the upper front cover of the servo drive unit.

Connect the battery connector and then put the battery inside.

(Note) When using a cell battery, do not connect the battery unit, MDS-BTBOX-36.

POINT

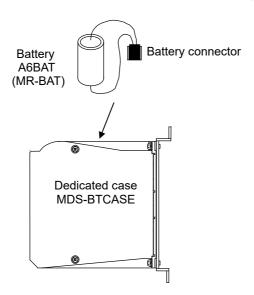
When using a cell battery built-in drive unit, the wiring between units is not required. The cell battery can be changed in each drive unit.

(2) Cell battery (A6BAT)

Always use the cell battery (A6BAT) in combination with the dedicated case (MDS-BTCASE).

(a) Specifications

Battery option type		Cell battery		
		A6BAT (MR-BAT)		
Battery mod	el name	ER17330V		
Nominal volt	tage	3.6V		
Nominal cap	acity	1700mAh		
	Hazard class	-		
	Battery shape	Single battery		
Battery	Number of	A6BAT (MR-BAT) x 1		
safety	batteries used	ACCIVITY (WINCE DATE)		
culoty	Lithium alloy	0.48g		
	content	0.40g		
	Mercury content	1g or less		
Number of connectable axes		1 axis / (per 1 battery)		
Battery cont	inuous backup time	Approx. 10000 hours		
Battery usef		5 years		
(From date of	of unit manufacture)	o yours		
Data save time in battery		Approx. 20 hours at time of delivery, approx. 10 hours after 5 years		
replacement		r pproxi 20 nouro at timo or admost, approxi no nouro anter o youro		
Back up time from battery				
warning to alarm occurrence		Approx. 80 hours		
(Note)				
Mass		17g		


(Note) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.

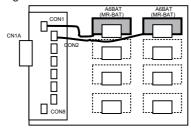
(b) Specifications of the dedicated case MDS-BTCASE

Туре	MDS-BTCASE
Number of batteries installed	Up to 8 A6BATs (MR-BATs) (Install either 2, 4, 6 or 8 A6BATs (MR-BATs))
Number of connectable axes	Max. 8 axes (It varies depending on the number of batteries installed.) When A6BAT (MR-BAT) x 2, 1 to 2 axis/axes When A6BAT (MR-BAT) x 4, 3 to 4 axes When A6BAT (MR-BAT) x 6, 5 to 6 axes When A6BAT (MR-BAT) x 8, 7 to 8 axes

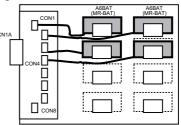
(c) Installing the cell battery

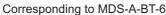
Open the cover of the dedicated case. Connect the battery connector and then put the battery inside.

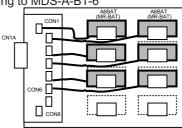
(d) Installing A6BAT (MR-BAT) to battery case

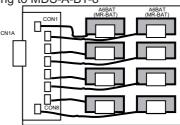

Open the cover of the dedicated case. Connect the battery connector and then put the battery inside.

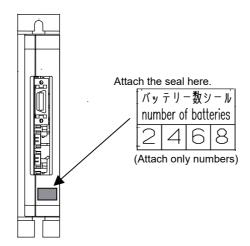
[1] Incorporate batteries in order, from the connector CON1 on the top of the case. In the same way, install batteries to holders in order, from the holder on the top.

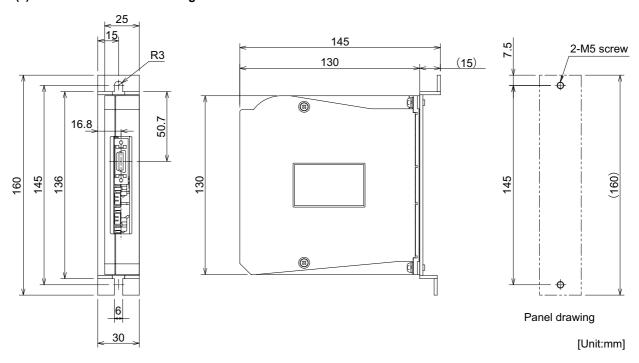



Example of incorporated batteries (Photo: 8 batteries incorporated)


Corresponding to MDS-A-BT-2


Corresponding to MDS-A-BT-4




Corresponding to MDS-A-BT-8

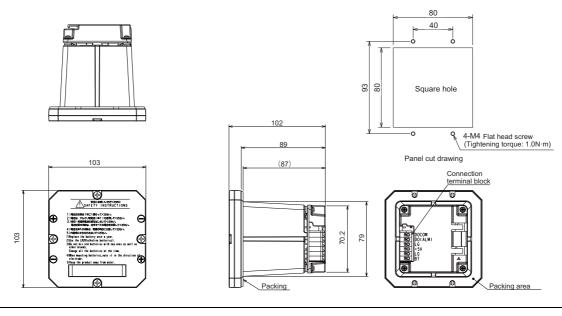
[2] Attach a seal indicating the number of incorporated batteries to the part shown below.

(e) Outline dimension drawing of the dedicated case MDS-BTCASE

(3) Battery box (MDS-BTBOX-36)

(a) Specifications

Battery option type	Battery box
Battery option type	MDS-BTBOX-36
Battery model name (Note 1)	size-D alkaline batteries LR20 x 4 pieces
Nominal voltage	3.6V (Unit output), 1.5V (Isolated battery)
Number of connectable axes	Up to 8 axes
Battery continuous backup time (Note 3)	Approx. 10000 hours (when 8 axes are connected, cumulative time in non-energized state)
Back up time from battery warning to	Approx. 336 hours (when 8 axes are connected)
alarm occurrence (Note 3)	Approx. 330 hours (when a axes are connected)


- (Note 1) Install commercially-available alkaline dry batteries into MDS-BTBOX-36. The batteries should be procured by customers. Make sure to use new batteries that have not passed the expiration date. We recommend you to replace the batteries in the one-year cycle.
- (Note 2) When using ball screw side encoder, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the load becomes double.
- (Note 3) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning (9F) occurs.
- (Note 4) A battery load is generated in the axis for which the incremental control is set when a battery is connected.

(b) Explanation of terminals

		Name	Description
(1)	Power supply output for absolute position encoder	ВТ	3.6V output for absolute position encoder backup
(2)	backup	LG	Ground
(3)	Power supply input for battery voltage drop detection	+5V	5V power supply input for battery voltage drop detection circuit
(4)	circuit	LG	Ground
(5) (6)	Battery voltage drop warning signal output	DO(ALM)	Battery voltage drop warning output
(6)	Dattery voitage Grop warming Signal Output	DOCOM	DO output common

(c) Outline dimension drawings

[Unit: mm]

As soon as the battery warning has occurred, replace the batteries with new ones.

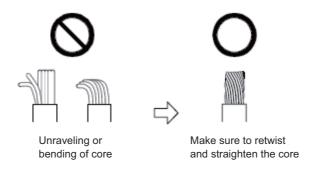
Make sure to use new batteries that have not passed the expiration date. We recommend you to replace the batteries in the one-year cycle.

CAUTION

When installing the battery box on the panel, it may be damaged if the screw is tightened too much. Make sure the tightening torque of the screw.

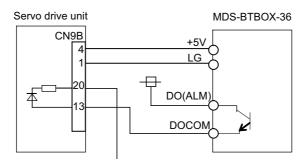
(d) Cable connection procedure

When connecting the terminal block, select a cable for the terminal block referring to the applicable size as a guide. Connect the cable by crimping the bare conductor or bar terminal. Do not pre-solder the wire.


< Range of applicable terminal block cable > Twisted wire: 0.2mm² to 1.25mm²
< Recommended bar terminal > Type: TUB-0.5 Crimping tool: YHT-2622

- Processing of power insulator

The strip length of the wire insulator should be 11mm.



Retwist and straighten the core as shown below.

(e) Wiring of the battery voltage drop warning output

The battery voltage drop warning is detected in the MDS-BTBOX-36 and output to the servo drive unit as digital signal. Connect the battery voltage drop warning signal to one of the servo drive units supported by MDS-BTBOX-36. For the connected servo axis, set the servo parameter "SV082/bitF-C" to "2" to enable this signal input. When using 2 or 3-axis drive unit, set the value to one of the axes and set other axes in the same unit to "0" (No signal).

Battery voltage drop warning signal connection diagram

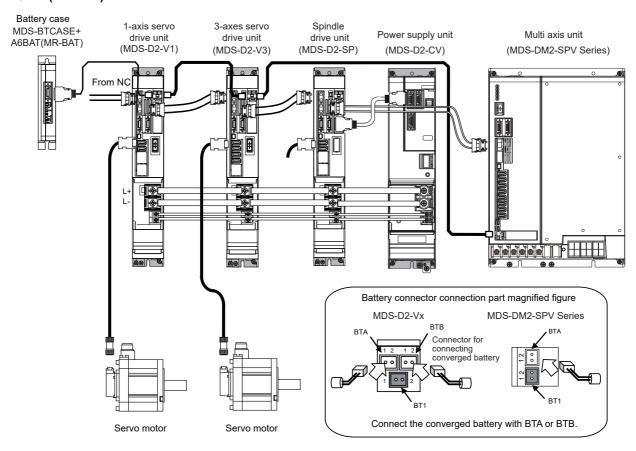
5 Dedicated Options

(f) When backing up for more than 8 axes

Add a MDS-BTBOX-36 so that the number of connectable axes for a battery unit is 8 axes or less. For all of servo drive units supported by one MDS-BTBOX-36, start the control powers ON simultaneously.

⚠ CAUTION

- 1. The battery voltage drop warning signal and SLS (Safely Limited Speed) function door state signal cannot be connected to the same drive unit. To use these function together as a system, connect to the different drive unit.
- 2. Battery voltage drop warning (9F) can also occur when the cable between the battery box and drive unit is broken.
- 3. For 2-axis or 3-axis drive unit, the parameter error "E4" or drivers communication error "82" occurs at all the axes when the setting of SV082(SSF5)/bitF-C differs according to axes (except 0 setting).
- 4. The drive unit which is connected to the battery box and cell battery cannot be used together.
- 5. Replace the batteries with new ones without turning the control power of the drive unit OFF immediately after the battery voltage drop alarm (9F) has been detected.
- 6. Replace the batteries while applying the control power of all drive units which are connected to the battery box.
- 7. When changing the wiring of the CN9 control input, change after SV082(SSF5)/bitF-C is set to 0. Otherwise unexpected alarms can be detected because of a mismatch of the control input signal and setting parameter.

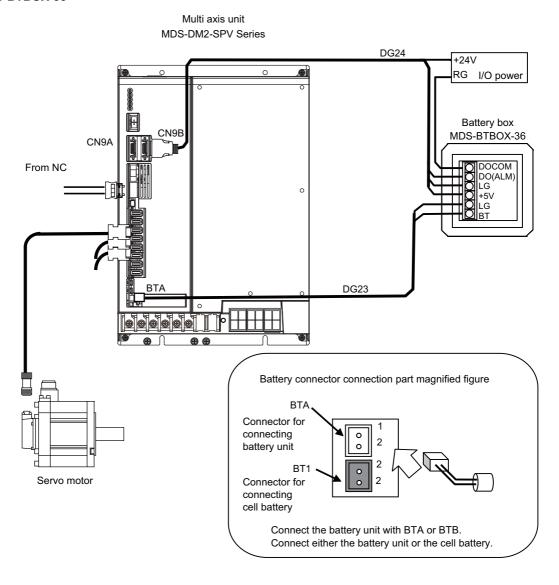

(4) Converged battery option

When using the following battery options, the wiring between units which configure an absolute position system is required.

Battery option type	Installation type	Battery charge
A6BAT (MR-BAT)	Dedicated case type (built-in MDS-BTCASE)	Possible
MDS-BTBOX-36	Unit and battery integration type	Possible

System configuration

< A6BAT(MR-BAT) >



- 1. This wiring is not required for the drive unit or spindle drive unit which is not an absolute system.
- 2. Use a shield cable for wiring between drive units.

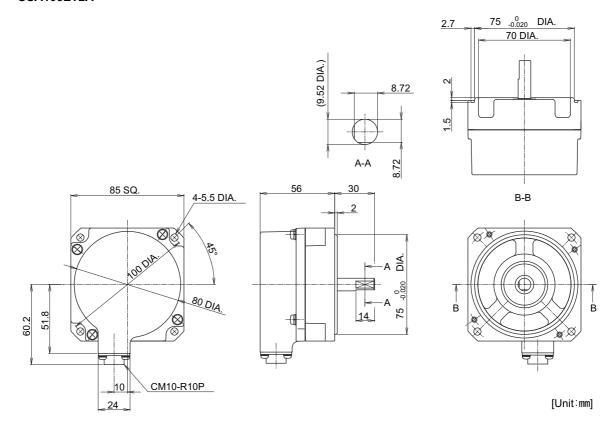
The drive unit could malfunction.

< MDS-BTBOX-36 >

⚠ CAUTION

- 1. 24V power for DO output must always be turned ON before the NC power input.
- 2. Connect the cable for alarm with CN9B on the drive unit. CN9A cannot receive the battery voltage drop warning.
- 3. The total length of battery cable (from the battery unit to the last connected drive unit) must be 30m or less.

5.1.2 Ball Screw Side Encoder (OSA105ET2A)


(1) Specifications

	Encoder type	OSA105ET2A
Electrical	Encoder resolution	1,000,000 pulse/rev
	Detection method	Absolute position method (battery backup method)
	Accuracy (*1)	±3 seconds
characteristics	Tolerable rotation speed at power off (*2)	500r/min
	Encoder output data	Serial data
	Power consumption	0.3A
Manhautaal	Inertia	0.5 x 10 ⁻⁴ kgm ² or less
Mechanical characteristics for	Shaft friction torque	0.1Nm or less
rotation	Shaft angle acceleration	4 x 10 ⁴ rad/s ² or less
	Tolerable continuous rotation speed	4000r/min
Mechanical configuration	Shaft run-out (position 15mm from end)	0.02mm or less
	Tolerable load (thrust direction/radial direction)	9.8N/19.6N
	Mass	0.6kg
	Degree of protection	IP67 (The shaft-through portion is excluded.)
	Recommended coupling	bellows coupling
	Ambient temperature	0°C to +55°C
M/a while as	Storage temperature	-20°C to +85°C
Working environment	Humidity	95%Ph
CHANOLINELL	Vibration resistance	5 to 50Hz, total vibration width 1.5mm, each shaft for 30min
	Impact resistance	490m/s ² (50G)

^(*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.

^(*2) If the tolerable rotation speed at power off is exceeded, the absolute position cannot be repaired.

(2) Outline dimension drawings OSA105ET2A

(3) Explanation of connectors

Connector pin layout

Pin	Function	Pin	Function
1	RQ	6	SD
2	RQ*	7	SD*
3	-	8	P5(+5V)
4	BAT	9	-
5	LG(GND)	10	SHD

5.1.3 Machine Side Encoder

(1) Relative position encoder

Depending on the output signal specifications, select a machine side relative position encoder with which the following (a), (b) or (c) is applied.

(a) Serial signal type (serial conversion unit made by each manufacture)

The following serial conversion unit converts the encoder output signal and transmits the signal to the drive unit in serial communication.

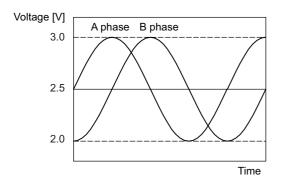
For details on the specifications of each conversion unit scale and for purchase, contact each corresponding manufacture directly.

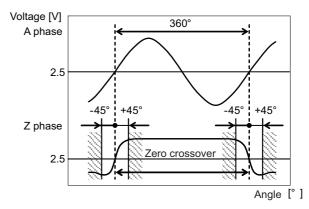
Manufacturer	Encoder type	Interface unit type	Minimum detection resolution	Tolerable maximum speed
Magnescale Co., Ltd	SR75 SR85	Not required	0.1µm	
			0.05µm	200m/min
			0.01µm	
HEIDENHAIN CORPORATION	LS187	EIB192M A4 20µm	0.0012µm	120m/min
	LS487	EIB392M A4 20µm		
	ERM280 1200	EIB192M C4 1200	0.0000183°	20000r/min
		EIB392M C4 1200	(19,660,800p/rev)	200001/111111
	ERM280 2048	EIB192M C6 2048	0.0000107° (33,554,432p/rev)	11718r/min
		EIB392M C6 2048		

< Contact information about machine side encoder >

- Magnescale Co., Ltd.: http://www.mgscale.com/mgs/language/english/
- HEIDENHAIN CORPORATION: http://www.heidenhain.com/

⚠ CAUTION


- 1. The above value does not guarantee the accuracy of the system.
- 2. The user shall prepare the above-mentioned detector after inquiring of each manufacturer about the specifications and confirm them.
- 3. When using an encoder not listed above, contact the manufacturer to make sure that the encoder is compatible with Mitsubishi interface.


(b) SIN wave output (using MDS-B-HR)

When using a relative position encoder that the signal is the SIN wave output, the encoder output signal is converted in the encoder conversion unit (MDS-B-HR), and then the signal is transmitted to the drive unit in the serial communication. Select a relative position encoder with A/B phase SIN wave signal that satisfies the following conditions. For details on the specifications of MDS-B-HR, refer to the section "MDS-B-HR".

< Encoder output signal >

- 1Vp-p analog A-phase, B-phase, Z-phase differential output
- Output signal frequency 200kHz or less

A/B phase output signal waveform during forward run

Relationship between A phase and Z phase (When the differential output waveform is measured)

- Combination speed / rotation speed

In use of linear scale:

Maximum speed (m/min) = scale analog signal frequency (m) × 200,000 × 60

In use of rotary encoder:

Maximum rotation speed (r/min) = 200,000 / numbers of encoder scale (1/rev) × 60

An actual Maximum speed/ rotary speed is limited by the mechanical specifications and electrical specifications, etc. of the connected scale, so contact the manufacture of the purchased scale.

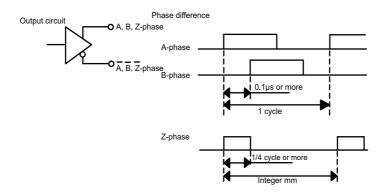
- Division number 512 divisions per 1 cycle of signal

In use of linear scale:

Minimum resolution (m) = scale analog signal frequency (m) / 512

In use of rotary encoder:

Minimum resolution (pulse/rev) = numbers of encoder scale (1/rev) × 512



The above value does not guarantee the accuracy of the system.

(c) Rectangular wave output

Select a relative position encoder with an A/B phase difference and Z-phase width at the maximum feedrate that satisfies the following conditions.

Use an A, B, Z-phase signal type with differential output (RS-422 standard product) for the output signal.

- (Note 1) For a scale having multiple Z phases, select the neighboring Z phases whose distance is an integer multiple or 1/integer of the ball screw pitch.
- (Note 2) The above value is minimum value that can be received normally in the servo drive unit side.
 In an actual selection, ensure margin of 20% or more in consideration of degradation of electrical wave and speed overshoot.

< Example of scale specifications >

The example of using representative rectangular wave scale is shown below.

For specifications of each conversion unit and scale and for purchase, Contact each corresponding manufacture directly.

Manufacturer	Encoder type	Interface unit type	Minimum detection resolution	Tolerable maximum speed
Magnescale Co., Ltd	SR67A SR74 SR84	Not required	1.0µm	180m/min
			0.5µm	125m/min
			0.1µm	25m/min
			0.05µm	12m/min
HEIDENHAIN CORPORATION	LS187 LS487	IBV 101 (10 divisions)	0.5µm	120m/min
		IBV 102 (100divisions)	0.05µm	24m/min
		IBV 660B (400divisions)	0.0125µm	7.5m/min

< Contact information about machine side encoder >

- Magnescale Co., Ltd: http://www.mgscale.com/mgs/language/english/
- HEIDENHAIN CORPORATION: http://www.heidenhain.com/

(2) Absolute position encoder

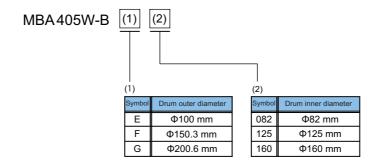
The applicable absolute position encoders are as follows.

MISAUBINE Electric Corporation MBA405W Series (Provided) (4,000,000phe') (3000min 200m/min 2	Manufacturer	Encoder type	Interface unit type	Minimum detection resolution	Tolerable maximum speed
SR77 SR87 Not required 0.05µm 200m/min 200m/min 0.001µm 0.0000429* (8,388,608p/rev) 2.000r/min 0.0000107 (33,554,432p/rev) 2.000r/min 180m/min 0.000107 (33,554,432p/rev) 2.000r/min 180m/min 0.01µm 180m/min 0.01µm 180m/min 0.01µm 180m/min 0.01µm 180m/min 0.01µm 180m/min 0.000107 0.0000129* 0.0000129* 0.0000022* 0.00000027* 0.0000022* 0.00000027* 0.0000022* 0.00000027* 0.0000000000000000000000000000000000		MBA405W Series	(Provided)	0.00009°	,
RU77 Not required (8,388,608p/rev) 2,000r/min 2		SR77	Not required	0.1μm 0.05μm	200m/min
LC193M	Magnescale	RU77	Not required	(8,388,608p/rev)	2,000r/min
LC493M				(33,554,432p/rev)	2,000r/min
LC495M			Not required		180m/min
RCN223M Not required 0.0000429° (8.388.608p/rev) 1.500r/min RCN227M RCN227M Not required (9.0000027° (134.217.728p/rev) 1.500r/min Not required (1.500r/min 1.500r/min 1.500r/			Not required	•	180m/min
RCN223M	HEIDENHAIN	LC291M	Not required		180m/min
RCN227M Not required (134,217,728p/rev) 1,500r/min RCN827M RCN927M RCN92		RCN223M	Not required	(8,388,608p/rev)	1,500r/min
RCN827M			Not required	(134,217,728p/rev)	1,500r/min
AT543 Not required 0.05µm 150m/min		RCN827M	'	(134,217,728p/rev)	
AT545 Not required 0.00488 (20/4096)µm 150m/min			· ·	· ·	
NIDEC MACHINE TOOL CORPORATION	Mitutava Camanatian	AT543	Not required	·	150m/min
MPRZ Series ADB-20J71 0.000043° (8,388,608p/rev) 10,000r/min (8,388,608p/rev) 3600m/min (8,388,608p/rev) 3600m/min (7,200,000p/rev) (1,4400,000p/rev) (1,	mitutoyo Corporation		•	(20/4096)µm	
MPRZ Series ADB-20J71 (8,388,608p/rev) 10,000r/min (8,388,608p/rev) 10,000r/min (8,388,608p/rev) 10,000r/min (8,388,608p/rev) 10,000r/min (8,388,608p/rev) 3600m/min (8,388,608p/rev) (7,200,000p/rev) (8,388,608p/rev) (8,388,608p/		ST748	Not required	·	300m/min
MPI Series ADB-20J60				(8,388,608p/rev)	•
MPI Series ADB-20J60 (7,200,000p/rev) (7,20	NIDEC MACHINE TOOL	MPS Series	ADB-20J60		3600m/min
SAM Series Not required 0.05µm 120m/min		MPI Series	ADB-20J60	(7,200,000p/rev) or 0.000025°	5,000r/min
SVAM Series Not required 0.05µm 120m/min		CAM Corios	Not required		120m/min
CAM Series Not required 0.05μm 120m/min			·	·	
LAM Series Not required 0.1μm 120m/min					.==,
HAM Series Not required 0.0000429° (8,388,608p/rev) 0.0000027° (134,217,728p/rev) 6000r/min	5400D 4-4		· ·	·	.==,
RL40N Series Not required 0.0000027° (134,217,728p/rev) 6000r/min	PAGOR Automation		,	0.0000429°	6000r/min
RL40N Series Not required 0.001μm 6,000m/min			Not required		6000r/min
RA Series Not required (8,388,608p/rev) 36000r/min		RL40N Series	Not required	0.001µm	6,000m/min
LMFA Series Not required 1μm 600 m/min 150m/min 1μm 300m/min 150m/min 1μm 300m/min 150m/min 1μm 300m/min 150m/min 1μm 300m/min 150m/min 150	Renishaw plc.	RA Series	Not required	(8,388,608p/rev)	36000r/min
AMO LMBA Series Not required 1μm 300m/min 0.25μm 150m/min 0.25μm 150m/min 0.25μm 150m/min 0.25μm 150m/min 0.25μm 150m/min 150			Not required		36000r/min
AMO LMBA Series Not required 1μm 300m/min 1μm 300m/min 0.25μm 150m/min 250,000r/rev 500,000r/rev 1,000,000r/rev 1,000,000r/rev 2,000,000r/rev 4,000,000r/rev 4,000,000r/rev 8,000,000r/rev 8,000,000r/rev					
AMO WMFA Series WMRA Series Not required 250,000r/rev 1,000,000r/rev 2,000,000r/rev 4,000,000r/rev 4,000,000r/rev 8,000,000r/rev 8,000,000r/rev	АМО		Not required		
WMFA Series WMBA Series WMRA Series					
		WMBA Series	Not required	250,000r/rev 500,000r/rev 1,000,000r/rev 2,000,000r/rev 4,000,000r/rev	
The state of the s	Schneeberger	AMS-ABS-3B Series	Not required	0.05µm	180m/min

5 Dedicated Options

< Contact information about machine side encoder >

- Magnescale Co., Ltd.: http://www.mgscale.com/mgs/language/english/
- HEIDENHAIN CORPORATION: http://www.heidenhain.com/
- Mitutoyo Corporation: http://www.mitutoyo.co.jp/eng/
- NIDEC MACHINE TOOL CORPORATION: http://www.nidec.com/en/nidec-machinetool/
- FAGOR Automation: http://www.fagorautomation.com/
- Renishaw plc.: http://www.renishaw.com/en/renishaw-enhancing-efficiency-in-manufacturing-and-healthcare--1030
- SCHNEEBERGER AG: https://www.schneeberger.com
- AMO (Automatisierung Messtechnik Optik) GmbH : http://www.amo-gmbh.com/en/



⚠ CAUTION

- 1. Confirm the specifications of each encoder manufacturer before using machine side encoders made by other manufacturers.
- 2. Refer to "Twin-head Magnetic Encoder (MBA Series)" for details of the specifications of MBA405W.

5.1.4 Twin-head Magnetic Encoder (MBA Series)

(1) Type description

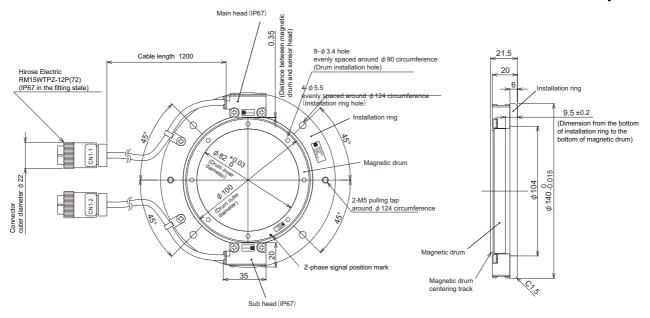
(2) Specifications

	Encoder type	MBA405W-BE082	MBA405W-BF125	MBA405W-BG160			
	Encoder resolution	4,000,000p/rev					
	Detection method	Absolute position method (battery backup method)					
Electrical	Accuracy (*1) (*2)	±4 seconds	±3 seconds	±2 seconds			
characteristics	Wave number within one rotation	512 waves	768 waves	1024 waves			
	Encoder output data		Serial data				
	Power consumption		0.2A or less				
Mechanical	Inertia	0.5×10 ⁻³ kg • m ²	2.4×10 ⁻³ kg • m ²	8.7×10 ⁻³ kg • m ²			
characteristics for rotation	Tolerable continuous rotation speed	3000r/min	2000r/min	1500r/min			
	Drum inner diameter	Ф82mm	Ф125mm	Ф160mm			
Mechanical	Drum outer diameter	Ф100mm	Ф150.3mm	Ф200.6mm			
configuration	Drum mass	0.2kg	0.46kg	1.0kg			
	Degree of protection (*3)	IP67					
	Ambient temperature range		0°C to +55°C				
	Storage temperature range	-20°C to +85°C					
Working	Humidity	95%RH					
environment	Vibration resistance	Horizontal direction to the axis: 5G or less, Vertical direction to the axis: 5G or less					
	Impact resistance	Vertical direction to the axis: 5G or less 490m/s ² (50G)					

- (*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.
- (*2) The user is requested to install the magnetic drum and installation ring in the encoder within the accuracy range specified herein. Even when the accuracy of the encoder when shipped and when installed by the user is both within the specified range, there is a difference in the installation position. Therefore, the accuracy at the time of our shipment may not be acquired.
- (*3) It is the degree of protection when fitted with a connector.

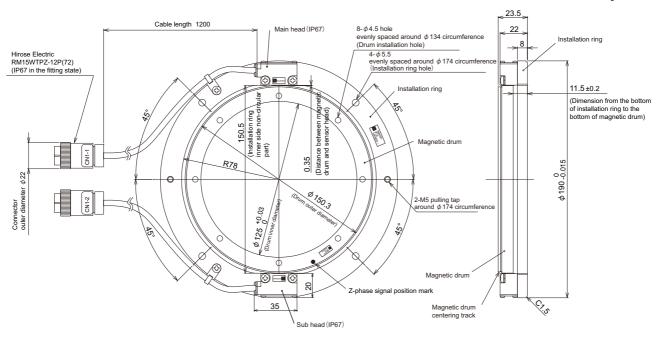
(3) Specifications of preamplifier

Item	Specified value
Output communication style	High-speed serial communication I/F
Working ambient temperature	0°C to +55°C
Working ambient humidity 90%RH or less (with no dew condensation	
Atmosphere	No toxic gases
Tolerable vibration	Horizontal direction to the axis: 5G or less, Vertical direction to the axis: 5G or less
Tolerable impact	490m/s ² (50G)
Tolerable power voltage	DC5V±10%
Mass	0.33kg
Degree of protection (*2)	IP67

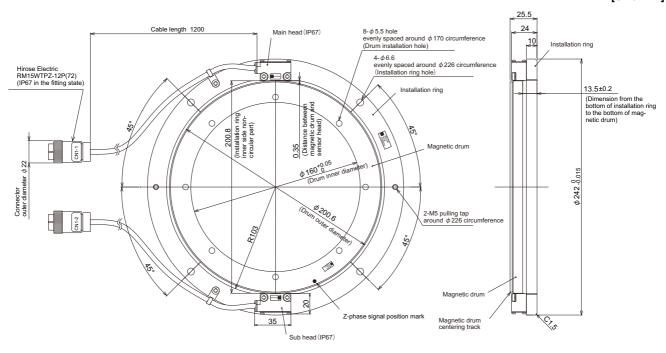

(*1) The values above are the specified values for the preamplifier provided with a twin-head magnetic encoder.

87

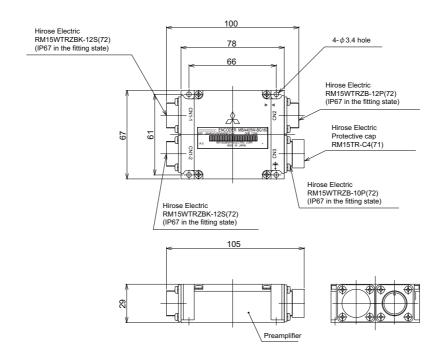
(*2) It is the degree of protection when fitted with a connector.


(4) Outline dimension drawing < MBA405W-BE082 >

[Unit: mm]


< MBA405W-BF125 >

[Unit: mm]


< MBA405W-BG160 >

[Unit: mm]

< Preamplifier (common) >

[Unit: mm]

< Explanation of connectors >

Connector name	Application		
CN1-1 For connection with scale (main he			
CN1-2	For connection with scale (sub head)		
CN2	For connection with servo drive unit		
CN3	For connection with motor thermistor		

< Connector pin layout >

CN2 < Drive unit >

CN3 < Thermistor>

Pin No.	Function	Pin No.	Function
1	-	1	-
2	BT	2	-
3	SD	3	MT1-i
4	SD*	4	-
5	SHD	5	-
6	MT1	6	-
7	RQ	7	-
8	RQ*	8	-
9	P5	9	MT2-i
10	LG	10	-
11	MT2	11	-
12	CNT	12	-

5.2 Spindle Options

According to the spindle control to be adopted, select the spindle side encoder based on the following table.

(1) No-variable speed control

(When spindle and motor are directly coupled or coupled with a 1:1 gear ratio)

Spindle control item	Control specifications	Without spindle side encoder	With spindle side encoder
	Normal cutting control	•	
Spindle control	Constant surface speed control (lathe)	•	
	Thread cutting (lathe)	•	
	1-point orientation control	•	
Orientation control	Multi-point orientation control	•	This normally is not used for no-
	Orientation indexing	•	variable speed control.
Synchronous tap	Standard synchronous tap	•	'
control	Synchronous tap after zero point return	•	
Spindle	Without phase alignment function	•	
synchronous control	With phase alignment function	•	
C-axis control	C-axis control	● (Note 2)	•

(Note 1) ● :Control possible

x: Control not possible

(Note 2) When spindle and motor are coupled with a 1:1 gear ratio, use of a spindle side encoder is recommended to assure the precision.

(2) Variable speed control

(When using V-belt, or when spindle and motor are connected with a gear ratio other than 1:1)

			With s	pindle side enco	der
Spindle control item	Control specifications	Without spindle side encoder	TS5690/ERM280/ MPCI/MBE405W Series	OSE-1024	Proximity switch
	Normal cutting control	•	•	•	•
Spindle control	Constant surface speed control (lathe)	● (Note 2)	•	•	● (Note 2)
	Thread cutting (lathe)	Х	•	•	Х
	1-point orientation control	Х	•	•	● (Note 4)
	Multi-point orientation control	х	•	•	х
	Orientation indexing	Х	•	•	х
Synchronous	Standard synchronous tap	● (Note 3)	•	•	● (Note 3)
tap control	Synchronous tap after zero point return	х	•	•	х
Spindle synchronous	Without phase alignment function	● (Note 2)	•	•	● (Note 2)
control	With phase alignment function	х	•	•	х
C-axis control	C-axis control	Х	•	Х	Х

91

(Note 1) ● :Control possible

x: Control not possible

(Note 2) Control not possible when connected with the V-belt.

(Note 3) Control not possible when connected with other than the gears.

(Note 4) Orientation is carried out after the spindle is stopped when a proximity switch is used.

As for 2-axis spindle drive unit, setting is available only for one of the axes.

5.2.1 Spindle Side ABZ Pulse Output Encoder (OSE-1024 Series)

When a spindle and motor are connected with a V-belt, or connected with a gear ratio other than 1:1, use this spindle side encoder to detect the position and speed of the spindle. Also use this encoder when orientation control and synchronous tap control, etc are executed under the above conditions.

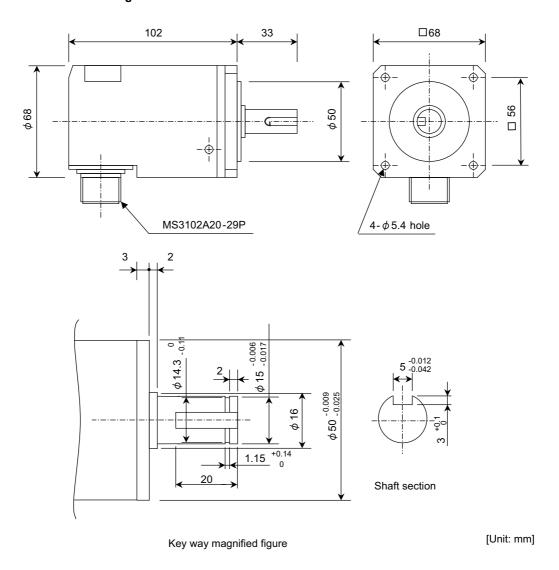
(1) Specifications

	Encoder type	OSE-1024-3-15-68	OSE-1024-3-15-68-8			
Mechanical	Inertia	0.1x10 ⁻⁴ kgm ² or less	0.1x10 ⁻⁴ kgm ² or less			
characteristic	Shaft friction torque	0.98Nm or less	0.98Nm or less			
s for rotation	Shaft angle acceleration	10 ⁴ rad/s ² or less	10 ⁴ rad/s ² or less			
	Tolerable continuous rotation speed	6000 r/min	8000 r/min			
	Bearing maximum non-lubrication time	20000h/6000r/min	20000h/8000r/min			
	Shaft run-out (position 15mm from end)	0.02mm or less	0.02mm or less			
	Tolerable load	10kg/20kg	10kg/20kg			
Mechanical	(thrust direction/radial direction)	Half of value	Half of value			
configuration	·	during operation	during operation			
	Mass	1.5kg	1.5kg			
	Degree of protection	IP54				
	Squareness of flange to shaft	0.05mm or less				
	Flange matching eccentricity	0.05mm or less				
	Ambient temperature range	-5°C to +55°C				
	Storage temperature range	-20°C to +85°C				
Working	Humidity	95%	6Ph			
environment	Vibration resistance	5 to 50Hz, total vibration width 1.5mm,				
	VIDI ALIOH TESISLANCE	each shaft for 30min.				
	Impact resistance	294.20m	/s ² (30G)			

(2) Detection signals

Signal name	Number of detection pulses
A, B phase	1024p/rev
Z phase	1p/rev

Connector pin layout

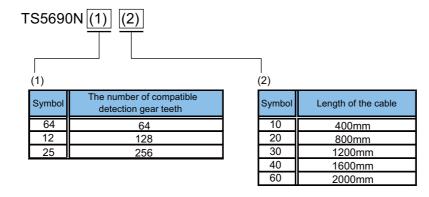

Pin	Function	Pin	Function
Α	A+ signal	K	0V
В	Z+ signal	L	-
С	B+ signal	M	-
D	-	N	A- signal
E	Case grounding	Р	Z- signal
F	-	R	B- signal
G	-	S	-
Н	+5V	T	-
J	-		

⚠ CAUTION

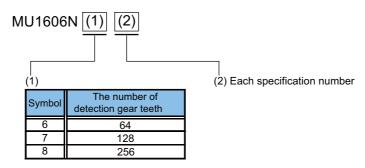
Cautions for connecting the spindle end with an OSE-1024 encoder

- 1. Confirm that the gear ratio (pulley ratio) of the spindle end to the encoder is 1:1.
- 2. Use a timing belt when connecting by a belt.

(3) Outline dimension drawings


Spindle side encoder (OSE-1024-3-15-68, OSE-1024-3-15-68-8)

5.2.2 Spindle Side PLG Serial Output Encoder (TS5690, MU1606 Series)


This encoder is used when a more accurate synchronous tapping control or C-axis control than OSE encoder is performed to the spindle which is not directly-connected to the spindle motor.

(1) Type configuration

<Sensor type>

<Detection gear type>

(2) Specifications

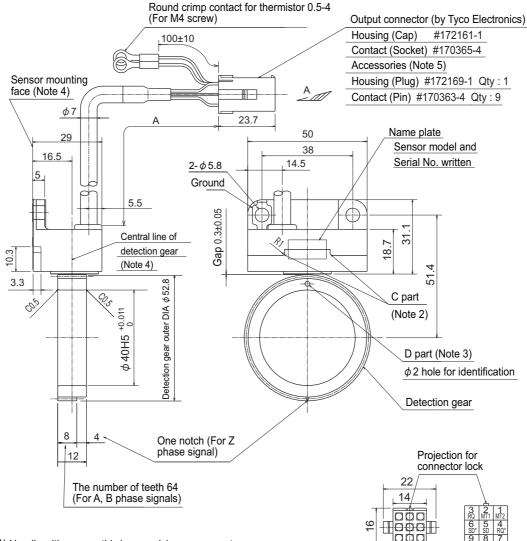
	Series type	TS5690N64xx				TS	5690N1	2xx		TS5690N25xx						
Sensor	Sensor xx (The end of the type name)		20	30	40	60	10	20	30	40	60	10	20	30	40	60
	Length of lead [mm]	400 ±10	800 ±20	1200 ±20	1600 ±30	2000 ±30	400 ±10	800 ±20	1200 ±20	1600 ±30	2000 ±30	400 ±10	800 ±20	1200 ±20	1600 ±30	2000 ±30
	Type MU1606N601				MU	J1606N	709			MU	J1606N	805				
	The number of teeth			64					128					256		
Detection	Outer diameter [mm]			Ф52.8			Ф104.0						Ф206.4			
gear	Inner diameter [mm]	Ф40Н5			Ф80Н5				Ф140Н5							
	Thickness [mm]		12			12				14						
	Shrink fitting [mm]		0.0	20 to 0.0	040		0.030 to 0.055				0.050 to 0.085					
Notched	Outer diameter [mm]			Ф72.0			Ф122.0				Ф223.6					
fitting section	Outer diameter tolerance [mm]		+0.0	10 to +0	0.060		-0.025 to +0.025					-0.025 to +0.025				
The number	A/B phase			64			128				256					
of output pulse	Z phase	1			1				1							
Detection res	solution [p/rev]			2 million	1		4 million 8 million			1						
Absolute acc	Absolute accuracy at stop 15			150"			100"				95"					
Tolerable spe	eed [r/min]	40,000			20,000				10,000							
Signal outpu	t	Mitsubishi high-speed serial														

94

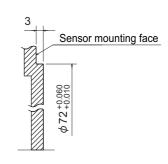
⚠ CAUTION

- 1. Selected encoders must be able to tolerate the maximum rotation speed of the spindle.
- 2. Please contact your Mitsubishi Electric dealer for the special products not listed above.

(3) Outline dimension drawings



Always apply the notched fitting section machining with the specified dimensions to the sensor installation surface.

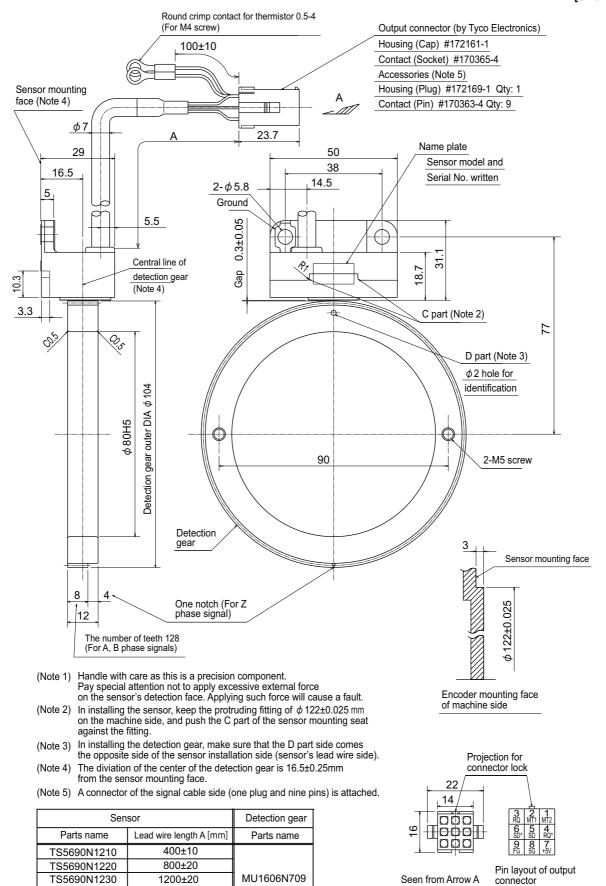

< TS5690N64xx + MU1606N601 >

[Unit: mm]

- (Note 1) Handle with care as this is a precision component. Pay special attention not to apply excessive external force on the sensor's detection face. Applying such force will cause a fault.
- (Note 2) In installing the sensor, keep the protruding fitting of ϕ 72 $^{+0.060}_{+0.010}$ mm on the machine side, and push the C part of the sensor mounting seat against the fitting.
- (Note 3) In installing the detection gear, make sure that the D part side comes the opposite side of the sensor installation side (sensor's lead wire side).
- (Note 4) The diviation of the center of the detection gear is 16.5±0.25mm from the sensor mounting face.
- (Note 5) A connector of the signal cable side (one plug and nine pins) is attached.

Se	Detection gear			
Parts name	Parts name Lead wire length A [mm]			
TS5690N6410	400±10			
TS5690N6420	800±20			
TS5690N6430	1200±20	MU1606N601		
TS5690N6440	1600±30			
TS5690N6460	2000±30			

Pin layout of output


connector

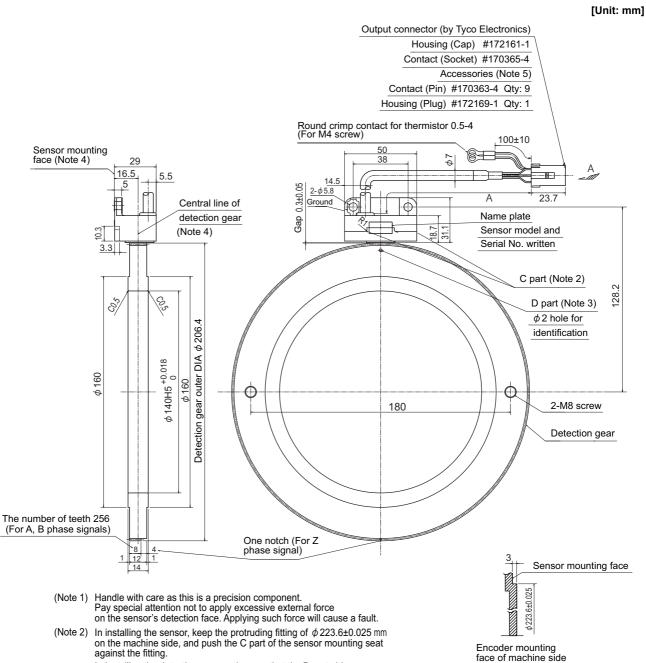
Encoder mounting face of machine side

Seen from Arrow A

< TS5690N12xx + MU1606N709 >

[Unit: mm]

IB-1501136-C 96

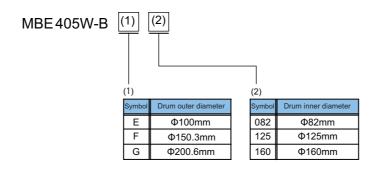

1600±30

2000±30

TS5690N1240

TS5690N1260

< TS5690N25xx + MU1606N805 >


- (Note 3) In installing the detection gear, make sure that the D part side comes the opposite side of the sensor installation side (sensor's lead wire side).
- The diviation of the center of the detection gear is 16.5±0.25mm from the sensor mounting face.
- (Note 5) A connector of the signal cable side (one plug and nine pins) is attached.

S	Detection gear				
Parts name	Parts name Lead wire length A [mm]				
TS5690N2510	400±10				
TS5690N2520	800±20				
TS5690N2530	1200±20	MU1606N805			
TS5690N2540	1600±30				
TS5690N2560	TS5690N2560 2000±30				

5.2.3 Twin-head Magnetic Encoder (MBE Series)

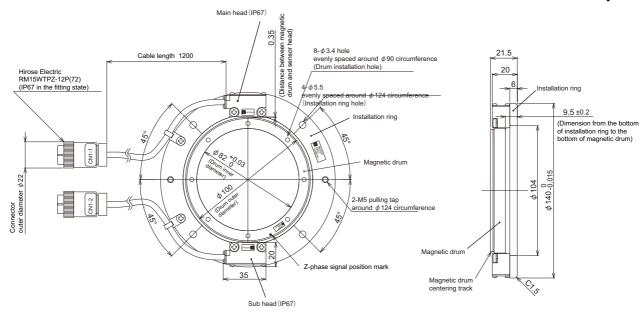
(1) Type description

(2) Specifications

Encoder type		MBE405W-BE082	MBE405W-BF125	MBE405W-BG160	
	Encoder resolution		4,000,000p/rev		
	Detection method	Incremental			
Electrical	Accuracy (*1) (*2)	±4 seconds	±3 seconds	±2 seconds	
characteristics	Wave number within one rotation	512 waves	768 waves	1024 waves	
	Encoder output data		Serial data		
	Power consumption		0.2A or less		
Mechanical	Inertia	0.5×10 ⁻³ kg • m ²	2.4×10 ⁻³ kg • m ²	8.7×10 ⁻³ kg • m ²	
characteristics for rotation	Tolerable continuous rotation speed	15000r/min	10000r/min	8000r/min	
	Drum inner diameter	Ф82mm	Ф125mm	Ф160mm	
Mechanical	Drum outer diameter	Ф100mm	Ф150.3mm	Ф200.6mm	
configuration	Drum mass	0.2kg	0.46kg	1.0kg	
	Degree of protection (*3)	IP67			
	Ambient temperature range	0°C to +55°C			
	Storage temperature range	-20°C to +85°C			
Working	Humidity		95%RH		
environment	Vibration resistance	Horizontal direction to the axis: 5G or less, Vertical direction to the axis: 5G or less			
	Impact resistance	490m/s ² (50G)			

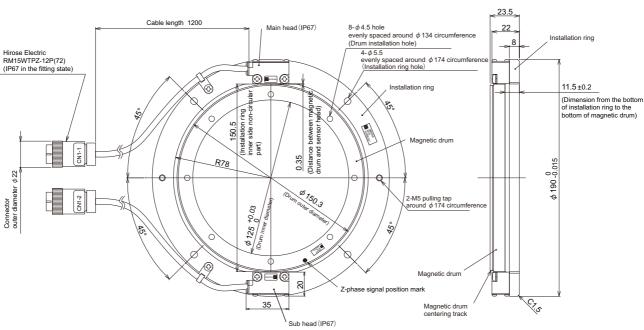
- (*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.
- (*2) The user is requested to install the magnetic drum and installation ring in the encoder within the accuracy range specified herein. Even when the accuracy of the encoder when shipped and when installed by the user is both within the specified range, there is a difference in the installation position. Therefore, the accuracy at the time of our shipment may not be acquired.
- (*3) It is the degree of protection when fitted with a connector.

(3) Specifications of preamplifier

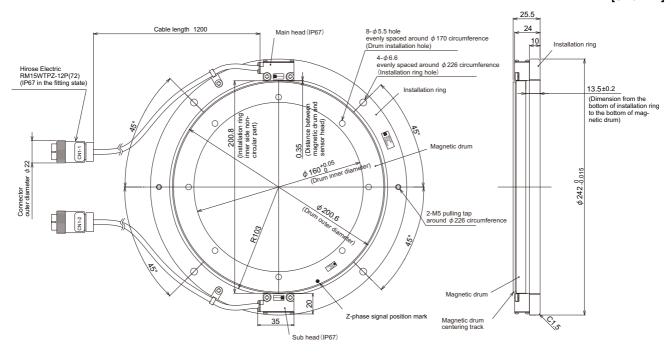

Item	Specified value		
Output communication style	High-speed serial communication I/F		
Working ambient temperature	0°C to +55°C		
Working ambient humidity	90%RH or less (with no dew condensation)		
Atmosphere	No toxic gases		
Tolerable vibration	Horizontal direction to the axis: 5G or less, Vertical direction to the axis: 5G or less		
Tolerable impact	490m/s ² (50G)		
Tolerable power voltage	DC5V±10%		
Mass	0.33kg		
Degree of protection (*2)	IP67		

- (*1) The values above are the specified values for the preamplifier provided with a twin-head magnetic encoder.
- (*2) It is the degree of protection when fitted with a connector.

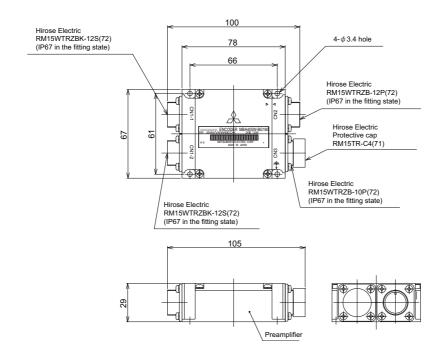
(4) Outline dimension drawing


< MBE405W-BE082 >

[Unit: mm]


< MBE405W-BF125 >

[Unit: mm]


< MBE405W-BG160 >

[Unit: mm]

< Preamplifier (common) >

[Unit: mm]

< Explanation of connectors >

Connector name	Application
CN1-1	For connection with scale (main head)
CN1-2	For connection with scale (sub head)
CN2	For connection with spindle drive unit
CN3	For connection with motor thermistor

< Connector pin layout >

CN2 < Drive unit >

CN3 < Thermistor>

Pin No.	Function	Pin No.	Function
1	-	1	-
2	-	2	-
3	SD	3	MT1-i
4	SD*	4	-
5	SHD	5	-
6	MT1	6	-
7	RQ	7	-
8	RQ*	8	-
9	P5	9	MT2-i
10	LG	10	-
11	MT2	11	-
12	CNT	12	-

101

5.2.4 Spindle Side Accuracy Serial Output Encoder (ERM280, MPCI Series) (Other Manufacturer's Product)

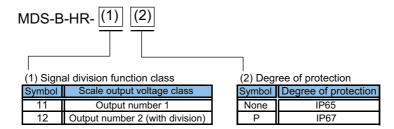
C-axis control encoder is used in order to perform an accurate C-axis control.

Manufacturer	Encoder type	Interface unit type	Minimum detection resolution	Tolerable maximum speed
	ERM280 1200	EIB192M C4 1200	0.0000183°	20000 r/min
HEIDENHAIN	EINW200 1200	EIB392M C4 1200	(19,660,800p/rev)	20000 1/111111
CORPORATION	ERM280 2048	EIB192M C6 2048	0.0000107°	11718 r/min
		EIB392M C6 2048	(33,554,432p/rev)	117 10 1/111111
NIDEC MACHINE TOOL CORPORATION	MPCI series	ADB-20J20	0.00005° (7200000p/rev)	10000 r/min

<Contact information about machine side encoder>

- HEIDENHAIN CORPORATION: http://www.heidenhain.com/
- NIDEC MACHINE TOOL CORPORATION: http://www.nidec.com/en/nidec-machinetool/

<u>A</u> CAUTION


Confirm specifications of each encoder manufacturer before using the machine side encoder.

5.3 Encoder Interface Unit

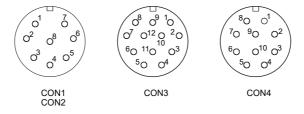
5.3.1 Serial Output Interface Unit for ABZ Analog Encoder MDS-B-HR

This unit superimposes the scale analog output raw waves, and generates high resolution position data. Increasing the encoder resolution is effective for the servo high-gain. MDS-B-HR-12(P) is used for the synchronous control system that 1-scale 2-drive operation is possible.

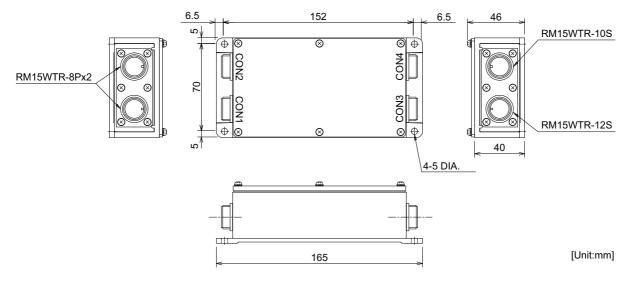
(1) Type configuration

(2) Specifications

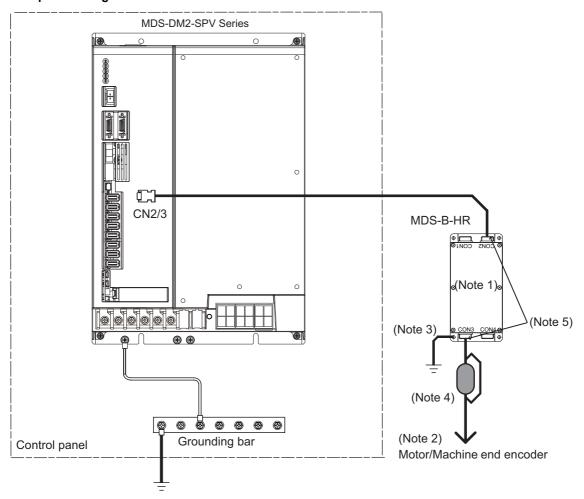
Type MDS-B-HR-	11	12	11P	12P		
Compatible scale (example)	LS186 / LS486 / LS186C / LS486C (HEIDENHAIN)					
Signal 2-division function	-	*	-	*		
Analog signal input specifications	A-phase, B-phase, Z-phase (Amplitude 1Vp-p)					
Compatible frequency		Analog raw wavet	orm max. 200kHz			
Scale resolution		Analog raw wave	form/512 division			
Input/output communication style	High-speed serial communication I/F, RS485 or equivalent					
Working ambient temperature	0 to 55°C					
Working ambient humidity	,	90%RH or less (with	no dew condensation	n)		
Atmosphere		No toxi	c gases			
Tolerable vibration		98.0 m/s	s ² (10G)			
Tolerable impact	294.0 m/s ² (30G)					
Tolerable power voltage	5VDC±5%					
Maximum heating value	2W					
Mass	0.5kg or less					
Degree of protection	IP65 IP67					


(3) Explanation of connectors

Connector name	Application	Remarks
CON1	For connection with servo drive unit (2nd system)	Not provided for 1-part system specifications
CON2	For connection with servo drive unit	
CON3	For connection with scale	
CON4	For connection with pole detection unit (MDS-B-MD)	*Used for linear servo system


CON1		C	ON2	ON2 CON3			CON4
Pin No.	Function	Pin No.	Function	Pin No.	Function	Pin No.	Function
1	RQ+ signal	1	RQ+ signal	1	A+ phase signal	1	A phase signal
2	RQ- signal	2	RQ- signal	2	A- phase signal	2	REF signal
3	SD+ signal	3	SD+ signal	3	B+ phase signal	3	B phase signal
4	SD- signal	4	SD- signal	4	B- phase signal	4	REF signal
5	P5	5	P5	5	Z+ phase signal	5	P24
6	P5	6	P5	6	Z- phase signal	6	MOH signal
7	GND	7	GND	7	-	7	P5
8	GND	8	GND	8	-	8	P5
				9	-	9	TH signal
				10	-	10	GND
				11	P5		
				12	GND		

< Connector pin layout >


Connector	Туре	
CON1	RM15WTR-8P (Hirose Electric)	
CON2		
CON3	RM15WTR-12S (Hirose Electric)	
CON4	RM15WTR-10S (Hirose Electric)	

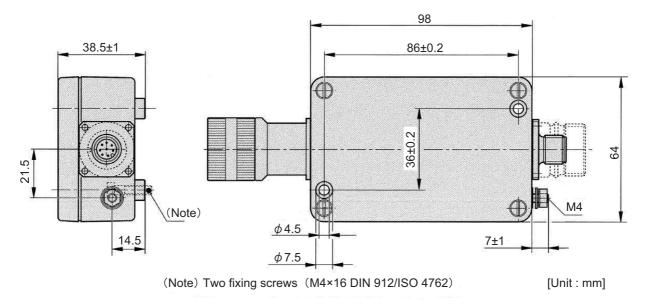
(4) Outline dimension drawings

(5) Example of wiring

- (Note 1) Install the MDS-B-HR unit outside the control panel.
- (Note 2) For connections between an encoder and MDS-B-HR unit, keep the cable length as short as possible.
- (Note 3) Ground the MDS-B-HR unit.
- (Note 4) Place a ferrite core as close as possible to the MDS-B-HR unit.

 Wind the cable around the unit one time when installing a ferrite core.
- (Note 5) Use shielded cables and join the shield to the connector shell.

5.3.2 Serial Output Interface Unit for ABZ Analog Encoder EIB192M (Other Manufacturer's Product)


(1) Appearance

(2) Specifications

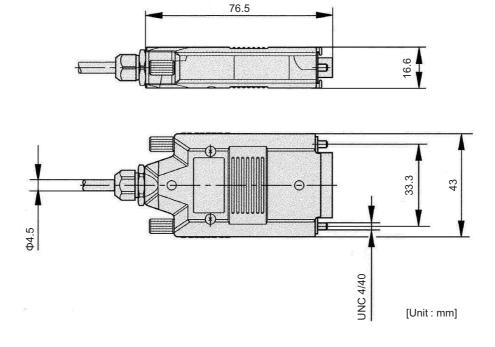
Туре	EIB192M A4 20μm EIB192M C4 1200 EIB192M C4				
Manufacturer	HEIDENHAIN CORPORATION				
Input signal	A-phase	e, B-phase: SIN wave 1Vpp,	Z-phase		
Maximum input frequency		400kHz			
Output signal	Mitsubishi high-speed serial signal (Mitsu02-4)				
Interpolation division number	Maximum 16384 divisions				
Compatible encoder	LS187, LS487	ERM280 1200	ERM280 2048		
Minimum detection resolution	0.0012µm	0.0000183° (19,660,800p/rev)	0.0000107° (33,554,432p/rev)		
Working temperature	0°C to 70°C				
Degree of protection	IP65				
Mass	300g				

(3) Outline dimension drawings

CAUTION

These are other manufacturer's products. When purchasing these products, refer to the manufacturer's information materials for the product specifications.

5.3.3 Serial Output Interface Unit for ABZ Analog Encoder EIB392M (Other Manufacturer's Product)


(1) Appearance

(2) Specifications

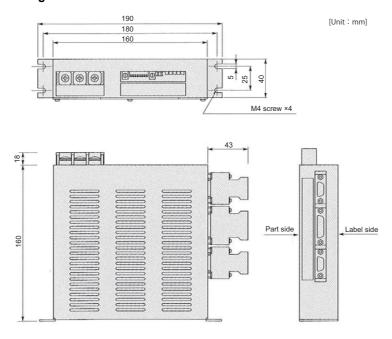
Туре	EIB392M A4 20μm EIB392M C4 1200 EIB392M				
Manufacturer	HEIDENHAIN CORPORATION				
Input signal	A-phase	e, B-phase: SIN wave 1Vpp,	Z-phase		
Maximum input frequency		400kHz			
Output signal	Mitsubishi high-speed serial signal (Mitsu02-4)				
Interpolation division number	Maximum 16384 divisions				
Compatible encoder	LS187, LS487	ERM280 1200	ERM280 2048		
Minimum detection resolution	0.000183° 0.000017° (19,660,800p/rev) (33,554,432p/re				
Working temperature	0°C to 70°C				
Degree of protection	IP40				
Mass	140g				

(3) Outline dimension drawings

⚠ CAUTION

These are other manufacturer's products. When purchasing these products, refer to the manufacturer's information materials for the product specifications.

5.3.4 Serial Output Interface Unit for ABZ Analog Encoder ADB-20J Series (Other Manufacturer's Product)


(1) Appearance

(2) Specifications

Туре	ADB-20J20	20J20 ADB-20J60		ADB-20J71		
Manufacturer	NIDEC MACHINE TOOL CORPORATION					
Maximum response speed	10,000r/min	3,600m/min	5,000r/min	10,000r/min		
Output signal		Mitsubishi high-	speed serial signal			
Compatible encoder	MPCI Series	MPS Series	MPI Series	MPRZ Series		
Minimum detection resolution	0.00005° (7,200,000p/rev)	0.05µm	0.000025° (1,440,000p/rev)	0.000043° (8,388,608p/rev)		
Working temperature	0°C to 55°C					
Degree of protection	IP20					
Mass	0.9kg					

(3) Outline dimension drawings

⚠ CAUTION

These are other manufacturer's products. When purchasing these products, refer to the manufacturer's information materials for the product specifications.

5.4 Drive Unit Option

5.4.1 Optical Communication Repeater Unit (FCU7-EX022)

When the distance of the optical communication cable between NC control unit and drive unit is over 30m (M700V/M70V/E70 Series: maximum 30m, M700/M70/C70 Series: maximum 20m), the communication can be performed by relaying the optical signal.

Using up to two units, relay of the total length of up to 90m can be performed.

<Product features>

- (a) When the distance of the optical communication cable between NC control unit and drive unit is over 30m, the communication can be performed by relaying the optical signal.
- (b) The relay between NC control unit and drive unit can be performed for up to two channels.
- (c) If the distance between NC control unit and drive unit is even within 30m, the cable can be divided by the relay in transporting the machine.
- (d) Same mounting dimension as the remote I/O unit (DX unit).

A CAUTION

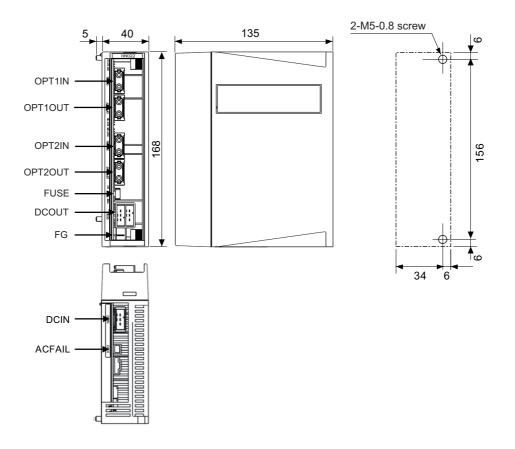
This unit can not be used between drive units.

(1) Specifications

	Item		FCU7-EX022	
	Input voltage		24V±10% (21.6V to 26.4V)	
DC24V input	Inrush current		35A	
DC24V IIIput	Power consumption	1	10W	
	Consumption curre	nt	0.4A	
Optical interface	Channel number		2 channels	
Optical interface	Connectable number	er	Maximum 2	
	Ambient	Operation	0°C to +55°C	
	temperature	Storage	-20°C to +60°C	
	Ambient humidity	Operation	+10%RH to +75%RH (with no dew condensation)	
		(long term)	10701(11 to 170701(11 (with the dew condensation)	
		Operation	+10%RH to +95%RH	
Environment		(short term)	(with no dew condensation. Short term is within about one month.)	
Liivii Oiliiioit		Storage	+10%RH to +75%RH (with no dew condensation)	
	Vibration	Operation	4.9m/s ²	
	Vibration	Transportation	34.3m/s ²	
	Impact resistance	Operation	29.4m/s ²	
	Atmosphere		No corrosive gas, oil mist, or dust	
Dimension			(depth)135mm × (width)40mm × (height)168mm	
Dillielisioli	Mounting method		Screw cramp with M5 2 screw cramps	
Mass			0.42kg	

(2) Explanation of connectors

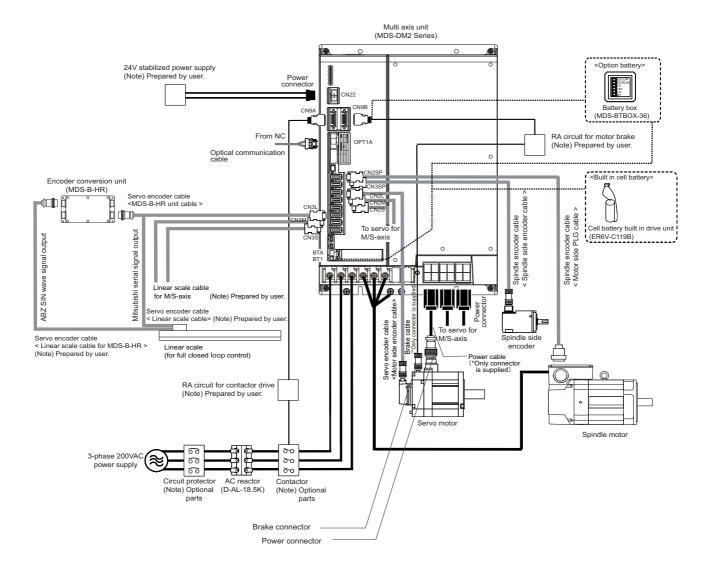
Connector name	Application	Remarks
OPT1IN, OPT1OUT, OPT2IN, OPT2OUT	Optical connector	
DCIN	DC24V Power connector	
DCOUT	DC24V/ Power OFF detection output connector	Relays the PD25/27 output to NC control unit.
ACFAIL	Power OFF detection connector	Relays the power OFF detection signal (ACFAIL) when sharing 24V power from PD25/PD27 for NC control unit and optical communication repeater unit. It will not be used when dedicated general-purpose power supply for optical communication repeater unit is prepared.
FG	FG Faston terminal	


D	DCIN DCOUT		AC	FAIL			
Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
1	DC24V	A1	ACFAIL	B1	DC24V	1	COM
2	0V (RG)	A2	COM	B2	0V (RG)	2	ACFAIL
3	FG	A3	NC	В3	FG		

< Connector pin layout >

Optical communication I/F (OPT1IN, OPT1OUT, OPT2IN, OPT2OUT)	DC24V input (DCIN)	DC24V output (DCOUT)	Power OFF input ACFAIL (Terminal name:CF01)	FG terminal (FG)
	1 3	B1 B3	2 1	FG
< Cable side connector type > (PCF type) Connector: CF-2D101-S Recommended manufacturer: Japan Aviation Electronics (POF type) Connector: PF-2D101 Recommended manufacturer: Japan Aviation Electronics	< PCB side connector type > Connector: 2-178293-5 Recommended manufacturer: Tyco Electronics <cable connector="" side="" type=""> Connector: 2-178288-3 Contact: 1-175218-5 Recommended manufacturer: Tyco Electronics</cable>	< PCB side connector type > Connector: 3-178137-5 Recommended manufacturer: Tyco Electronics <cable connector="" side="" type=""> Connector: 2-178127-6 Contact: 1-175218-5 Recommended manufacturer: Tyco Electronics</cable>	< PCB side connector type > Connector: 53103-0230 Recommended manufacturer: MOLEX <cable connector="" side="" type=""> Connector: 005057-9402 Contact: 0016020103 Recommended manufacturer: MOLEX</cable>	< Cable side faston terminal type name > Type name: 175022-1 (For AWG20-14 250 series) Recommended manufacturer: Tyco Electronics Terminal protection tube: 174817-2 (Yellow) [Unit:mm] Φ2.0 6.2 Unit side tab terminal shape (Note) The faston terminal "175022-1" of the cable side is a simple lock type. Make sure to insert until the simple lock pin is in the Φ second hole. Firmly press the simple lock release tab when unplugging it.

(3) Outline dimension drawings


[Unit: mm]

5.5 Cables and Connectors

5.5.1 Cable Connection Diagram

The cables and connectors that can be ordered from Mitsubishi Electric Corp. as option parts are shown below. Cables can only be ordered in the designated lengths. Purchase a connector set, etc., to create special length cables.

5.5.2 List of Cables and Connectors

< Optical communication cable >

	Item	Model	Contents		
	Optical communication cable For wiring between drive units (inside panel)	G396 L	Drive unit side connector (Japan Aviation Electronics Industry) Connector: PF-2D103	Drive unit side connector (Japan Aviation Electronics Industry) Connector: PF-2D103	
For CN1A/ CN1B/ OPT1A	Optical communication cable For wiring between drive units (outside panel) For NC - drive unit	G395 L	Drive unit side connector (Japan Aviation Electronics Industry) Connector: PF-2D103	Drive unit side connector (Japan Aviation Electronics Industry) Connector: PF-2D103	
	Optical communication cable For wiring between drive units (outside panel) For optical communication repeater unit	G380 L □ M □ : Length 5, 10, 12, 15, 20, 25, 30m	Drive unit side connector (Tyco Electronics) Connector: 1123445-1	Drive unit side connector (Tyco Electronics) Connector: 1123445-1	

(Note) For details on the optical communication cable, refer to the section "Optical Communication Cable Specification".

< Battery cable and connector >

	Item	Model	Cor	itents
Far	Battery cable (For drive unit - battery unit)	DG21- ☐ M ☐ : Length 0.3, 0.5, 1, 5m	Drive unit side connector (Hirose Electric) Connector: DF1B-2S-2.5R Contact: DF1B-2428SCA (Note 2)	Battery unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008 Compatible part (Note 1) (J.S.T) Connector: MS-P20-L Shell kit: MS20-2B-28
For battery unit	Battery cable (For drive unit - battery box)	DG23- ☐ M ☐ : Length 0.3, 0.5, 1, 2, 3, 5, 7, 10m	Drive unit side connector (Hirose Electric) Connector: DF1B-2S-2.5R Contact: DF1B-2428SCA (Note 2)	Battery box side (Note 3)
	5V supply/DO output cable (For drive unit - battery box)	DG24- ☐ M ☐: Length 0.3, 0.5, 1, 2, 3, 5, 7, 10m	Drive unit side connector (3M) Connector: 10120-6000EL Contact: 10320-3210-000	Battery box side (Note 3)
For drive unit	Battery cable (For drive unit - drive unit) *This cable is required to supply the power from the battery unit to multiple drive units.	DG22-	Drive unit side connector (Hirose Electric) Connector: DF1B-2S-2.5R Contact: DF1B-2428SCA (Note 2)	Drive unit side connector (Hirose Electric) Connector: DF1B-2S-2.5R Contact: DF1B-2428SCA (Note 2)
For CN9	Battery cable Connector set:	FCUA-CS000	Drive unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008 Compatible part (Note 1) (J.S.T) Connector: MS-P20-L Shell kit: MS20-2B-28	Power supply unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008 Compatible part (Note 1) (J.S.T) Connector: MS-P20-L Shell kit: MS20-2B-28

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

(Note 2) Hand crimping tools: DF1B-TA2428SHC

(Note 3) The battery box side is connected using a bare conductor or a bar terminal.

< STO input connector >

	Item	Model	Contents
	STO cable	MR-D05UDL3M-B	Connector set : 2069250-1 (Tyco Electronics)
For CN8	STO short-circuit connector	These connectors are supplied for each drive unit.	Required when not using dedicated wiring STO function. Drive unit side connector (Tyco Electronics) 1971153-1

< Optical communication repeater unit >

	Item	Model	Contents		
For OPT1/2	Optical communication cable For wiring between drive unit and optical communication repeater unit/ For wiring between optical communication repeater units	G380-L □ M □ : Length 5, 10, 12, 15, 20, 25, 30m	Drive unit side/ Optical communication repeater unit side connector (Tyco Electronics) Connector: 1123445-1	Optical communication repeater unit side connector (Tyco Electronics) Connector: 1123445-1	
For DCIN	For optical communication repeater unit DC24V power cable	F070 : Length 0.5, 1.5, 3, 5, 8, 10, 15, 20m	DC24V power side terminal (J.S.T.) Crimp terminal: V1.25-3 or V1.25-4 × 2	Optical communication repeater unit side connector (Tyco Electronics) Connector: 2-178288-3 Contact: 1-175218-5 × 3 (Note 1)	
For DCIN/ ACFAIL	For optical communication repeater unit/ For connecting Mitsubishi power unit PD25, PD27 DC24V power cable (power OFF detection)	F110 □: Length 0.5, 1.5, 3, 5, 8, 10, 15m	DC24V power side connector (Tyco Electronics) Connector: 3-178127-6 Contact: 1-175218-5 (for AWG16) × 3 (Note 1) 1-175217-5 (for AWG22) × 2 (Note 2)	Optical communication repeater unit side connector < DCIN > (Tyco Electronics) Connector: 2-178288-3 Contact: 1-175218-5 × 3 (Note 1) < ACFAIL (CF01) > (MOLEX) 005057-9402 0016020103 × 2 (Note 3) DCIN CF01	

(Note 1) Hand crimping tools: 91558-1 (Note 2) Hand crimping tools: 91557-1 (Note 3) Hand crimping tools: 57036-5000

< Servo encoder cable and connector >

	Item		Model	Contents
		CNV2E-8P- □ M □: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m CNV2E-9P- □ M □: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m	Drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit: 36310-3200-008	Motor encoder/ Ball screw side encoder side connector (DDK) Plug : CMV1-SP10S-M2 Contact : CMV1-#22ASC-S1
For CN2/	For HF		Compatible part (Note 1) (MOLEX) Connector set : 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	
CN2L/M/ S	Motor side encoder cable		Drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit: 36310-3200-008	Motor encoder/ Ball screw side encoder side connector (DDK) Plug : CMV1-AP10S-M2 Contact : CMV1-#22ASC-S1
			Compatible part (Note 1) (MOLEX) Connector set : 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	
For servo motor encoder/	Motor side encoder connector/	CNE10-R10S(9) Applicable cable outline Φ6.0 to 9.0mm		Motor encoder/ Ball screw side encoder side connector (DDK) Plug : CMV1-SP10S-M2 Contact: CMV1-#22ASC-S1
	Ball screw side encoder connector	CNE10-R10L(9) Applicable cable outline Φ6.0 to 9.0mm		servo motor encoder/ Ball screw side encoder side connector (DDK) Plug : CMV1-AP10S-M2 Contact: CMV1-#22ASC-S1

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

	Item		Model	Contents
CN3	MDS-B-HR unit cable	CNV2E-HP- □ M □: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m	Drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set : 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	MDS-B-HR unit side connector (Hirose Electric) Plug : RM15WTP-8S Clamp: RM15WTP-CP (10)
For MDS- B-HR unit	MDS-B-HR connector (For CON1,2: 1) (For CON3: 1)	CNEHRS(10) Applicable cable outline Φ8.5 to 11mm	MDS-B-HR unit side connector (Hirose Electric) Plug: RM15WTP-8S (for CON1, 2) RM15WTP-12P (for CON3) Clamp: RM15WTP-CP (10)	
For CN2	Encoder connector	CNU2S(AWG18)	Drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set : 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

< Brake cable and connector >

	Item	Model	Contents	
For motor		CNB10-R2S(6) Applicable cable outline Φ4.0 to 6.0mm	Servo motor side brake connector (DDK) Plug : CMV1-SP2S-2 Contact: CMV1-#22BSC-S2	
brake		CNB10-R2L(6) Applicable cable outline Φ4.0 to 6.0mm	Servo motor side brake connector (DDK) Plug : CMV1-AP2S-S Contact: CMV1-#22BSC-S2	

< Power connector >

	Item	Model	Contents
	Power connector for	CNP18-10S(14) Applicable cable outline Φ10.5 to 14mm	Motor side power connector (DDK) Plug: CE05-6A18-10SD-C-BSS Clamp: CE3057-10A-1 (D240)
For motor	HF54,104,154, 224, 223	CNP18-10L(14) Applicable cable outline Φ10.5 to 14mm	Motor side power connector (DDK) Plug: CE05-8A18-10SD-C-BAS Clamp: CE3057-10A-1 (D240)
power	Power connector for	CNP22-22S(16) Applicable cable outline Ф12.5 to 16mm	Motor side power connector (DDK) Plug: CE05-6A22-22SD-C-BSS Clamp: CE3057-12A-1 (D240)
	HF204, 354, 303, 453, 302	CNP22-22L(16) Applicable cable outline Φ12.5 to 16mm	Motor side power connector (DDK) Plug: CE05-8A22-22SD-C-BAS Clamp: CE3057-12A-1 (D240)
For CN31 L/M/S	Power connector for MDS-DM2 Series	RCN31S RCN31M Applicable cable outline Φ1.25 to 5.5mm	Drive unit side power connector (DDK) Housing: DK-5200M-04R Contact: DK-5RECSLP1-100 (For AWG 14,16) Contact: DK-5RECMLP1-100 (For AWG 10,12)
For	Control power connector for	RCN22 Applicable cable outline Φ0.5 to 1.25mm	Drive unit side control power connector (DDK) Housing: DK-3200S-02R Contact: DK-3RECLLP1-100
CN22	MDS-DM2 Series	RCN22S Applicable cable outline Φ1.25 to 2.2mm	Drive unit side control power connector (DDK) Housing: DK-3200S-02R Contact: DK-3REC2LLP1-100

< Spindle encoder cable and connector >

	Item	Model		Contents
For CN2	Motor side PLG cable Spindle side accuracy encoder TS5690 cable	CNP2E-1- □ M □: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m	Spindle drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008	Spindle motor side connector (Tyco Electronics) Connector: 172169-1 Contact:170363-1(AWG26-22) 170364-1(AWG22-18)
			Compatible part (Note 1) (MOLEX) Connector set: 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	
For CN3	Spindle side encoder OSE-1024 cable	CNP3EZ-2P- ☐ M ☐: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m	Spindle drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set: 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	Spindle motor side connector (DDK) Connector: MS3106A20-29S(D190) Straight back shell: CE02-20BS-S Clamp: CE3057-12A-3
		CNP3EZ-3P- ☐ M ☐: Length 2, 3, 4, 5, 7, 10, 15, 20, 25, 30m	Spindle drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set: 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R	Spindle motor side connector (DDK) Connector: MS3106A20-29S(D190) Angle back shell: CE-20BA-S Clamp : CE3057-12A-3
For spindle motor	Motor side PLG connector Spindle side accuracy encoder TS5690 connector	CNEPGS		Spindle motor side connector (Tyco Electronics) Connector: 172169-1 Contact:170363-1(AWG26-22) 170364-1(AWG22-18)
For spindle motor	Spindle side encoder OSE-1024 cable	CNE20-29S(10) Applicable cable outline Φ6.8 to 10mm		Spindle motor side connector (DDK) Connector:MS3106A20-29S(D190) Straight back shell: CE02-20BS-S Clamp: CE3057-12A-3
		CNE20-29S(10) Applicable cable outline Φ6.8 to 10mm		Spindle motor side connector (DDK) Connector:MS3106A20-29S(D190) Angle back shell: CE-20BA-S Clamp: CE3057-12A-3

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

5 Dedicated Options

Item		Model	Contents
For CN2/3	Spindle encoder drive unit side connector	CNU2S(AWG18)	Spindle drive unit side connector (3M) Receptacle: 36210-0100PL Shell kit : 36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set: 54599-1019 (J.S.T.) Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

< Twin-head magnetic encoder (MBE405W/MBA405W) cable and connector >

Item		Model	Contents	
For CN2	Cable for MBE405W/MBA405W	CNV2E-MB- ☐ M ☐ :Length 2, 3, 4, 5, 7, 10, 15, 20m	Drive unit side connector (3M) Receptacle:36210-0100PL Shell kit:36310-3200-008 Compatible part (Note 1) (MOLEX) Connector set: 54599-1019 (J.S.T.)	Encoder preamplifier side connector (Hirose Electric) Plug:RM15WTPZK-12S Clamp:JR13WCCA-8(72)
	Connector for MBE405W/MBA405W	CNEMB2S(8)	Plug connector : XV-10P-03-L-R Cable kit : XV-PCK10-R Encoder preamplifier side connector (Hirose Electric) Plug: RM15WTPZK-12S Cord clamp: JR13WCCA-8 (72)	
For CN3	Thermistor connector for MBE405W/ MBA405W	CNEMB3S(8)	Encoder preamplifier side connector (Hirose Electric) Plug: RM15WTPZ-10S (72) Cord clamp: JR13WCCA-8 (72)	

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

119

< Contact information >

Japan Aviation Electronics Industry, Limited: http://www.jae.com/en/index.html

 $HIROSE\ ELECTRIC\ CO.,\ LTD.:\ https://www.hirose.com/?lang=en$

3M: http://www.3m.com/

J.S.T. Mfg. Co., Ltd.: http://www.jst-mfg.com/index_e.php DDK Ltd.: http://www.ddknet.co.jp/English/index.html

Tyco Electronics Japan G.K.: http://www.te.com/en/home.html

Molex, LLC.: http://www.molex.com/

5.5.3 Optical Communication Cable Specifications

(1) Specifications

Cable model		G396 L □ M	G395 L □ M	G380 L □ M
Specification application		For wiring inside panel	For wiring outside panel	For wiring outside panel For long distance wiring
Cable length		0.3, 0.5, 1.0, 2.0, 3.0, 5.0m	1, 2, 3, 5, 7, 10m	5, 10, 12, 15, 20, 25, 30m
	Minimum bend radius	25mm	Enforced covering cable: 50mm cord: 30mm	
	Tension strength	140N	980N (Enforced covering cable)	
	Temperature range for use (Note1)	-40 to 85°C	-20 to 70°C	
	Ambient	Indoors (no direct sunlight) No solvent or oil		
Optical communication cable	Cable appearance [mm]	4.4±0.1	4.4±0.4 7.6±0.5	
	Connector appearance [mm]	Protection tube (6.7) (15) (13.4)	28.3]]
		37.65 (£.7)	22.7	

- (Note 1) This temperature range for use is the value for optical cable (cord) only. Temperature condition for the connector is the same as that for drive unit.
- (Note 2) Do not see directly the light generated from OPT1A connector of drive unit or the end of cable. When the light gets into eye, you may feel something is wrong for eye.

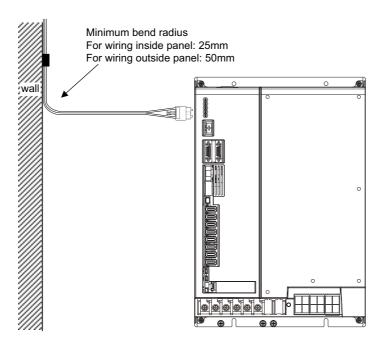
(The light source of optical communication corresponds to class1 defined in JISC6802 or IEC60825-1.)

(2) Cautions for using optical communication cable

Optical communication cable is made from optical fiber. If optical fiber is added a power such as a major shock, lateral pressure, haul, sudden bending or twist, its inside distorts or breaks, and optical transmission will not be available. Especially, as optical fiber for G396 L \square M is made of synthetic resin, it melts down if being left near the fire or high temperature. Therefore, do not make it touched the part, which becomes high temperature, such as radiator or regenerative brake option of drive unit.

Read described item in this section carefully and handle it with caution.

(a) Minimum bend radius


Make sure to lay the cable with greater radius than the minimum bend radius. Do not press the cable to edges of equipment or others. For the optical communication cable, the appropriate length should be selected with due consideration for the dimensions and arrangement of drive unit so that the cable bend will not become smaller than the minimum bend radius in cable laying. When closing the door of control box, pay careful attention for avoiding the case that optical communication cable is hold down by the door and the cable bend becomes smaller than the minimum bend radius.

Lay the cable so that the numbers of bends will be less than 10 times.

(b) Bundle fixing

When using optical communication cable of 3m or longer, fix the cable at the closest part to the connector with bundle material in order to prevent optical communication cable from putting its own weight on OPT1A connector of drive unit. Optical cord should be given loose slack to avoid from becoming smaller than the minimum bend radius, and it should not be twisted.

When tightening up the cable with nylon band, the sheath material should not be distorted. Fix the cable with tightening force of 1 to 2kg or less as a guide.

When laying cable, fix and hold it in position with using cushioning such as sponge or rubber which does not contain plasticizing material. If it is fixed by a cable tie and the like without using cushioning, the wire breakage may occur. Never use vinyl tape for cord. Plasticizing material in vinyl tape goes into optical fiber and lowers the optical characteristic. At worst, it may cause wire breakage. If using adhesive tape for cable laying, the fire resistant acetate cloth adhesive tape 570F (Teraoka Seisakusho Co., Ltd) is recommended.

If laying with other wires, do not make the cable touched wires or cables made from material which contains plasticizing material.

(c) Tension

If tension is added on optical fiber, the increase of transmission loss occurs because of external force which concentrates on the fixing part of optical fiber or the connecting part of optical connector. At worst, the breakage of optical fiber or damage of optical connector may occur. For cable laying, handle without putting forced tension.

(d) Lateral pressure

If lateral pressure is added on optical communication cable, the optical cable itself distorts, internal optical fiber gets stressed, and then transmission loss will increase. At worst, the breakage of optical cable may occur. As the same condition also occurs at cable laying, do not tighten up optical communication cable with a thing such as nylon band (TY-RAP).

Do not trample it down or tuck it down with the door of control box or others.

(e) Twisting

If optical fiber is twisted, it will become the same stress added condition as when local lateral pressure or bend is added. Consequently, transmission loss increases, and the breakage of optical fiber may occur at worst.

(f) Cable selection

- When wiring is outside the power distribution panel or machine cabinet, there is a highly possibility that external power is added. Therefore, make sure to use the cable for wiring outside panel (G380 L □ M)
- If a part of the wiring is moved, use the cable for wiring outside panel.
- In a place where sparks may fly and flame may be generated, use the cable for wiring outside panel.

(g) Method to lay cable

When laying the cable, do not haul the optical fiver or connector of the optical communication cable strongly. If strong force is added between the optical fiver and connector, it may lead to a poor connection.

(h) Protection when not in use

When the OPT1A connector of the drive unite or the optical communication cable connector is not used such as pulling out the optical communication cable from drive unit, protect the joint surface with attached cap or tube for edge protection. If the connector is left with its joint surface bared, it may lead to a poor connection caused by dirty.

(i) Attaching /Detaching optical communication cable connector

With holding the connector body, attach/detach the optical communication cable connector. If attaching/detaching the optical communication cable with directly holding it, the cable may be pulled out, and it may cause a poor connection.

When pulling out the optical communication connector, pull out it after releasing the lock of clock lever.

(j) Cleaning

If OPT1A connector of the drive unit or optical communication cable connector is dirty, it may cause poor connection. If it becomes dirty, wipe with a bonded textile, etc. Do not use solvent such as alcohol.

(k) Disposal

When incinerating optical communication cable, hydrogen fluoride gas or hydrogen chloride gas which is corrosive and harmful may be generated. For disposal of optical communication cable, request for specialized industrial waste disposal services that has incineration facility for disposing hydrogen fluoride gas or hydrogen chloride gas.

(I) Return in troubles

When asking repair of drive unit for some troubles, make sure to put a cap on OPT1A connector. When the connector is not put a cap, the light device may be damaged at the transit. In this case, exchange and repair of light device is required.

Specifications of Peripheral Devices

6.1 Selection of Wire

6.1.1 Example of Wires by Unit

Selected wires must be able to tolerate rated current of the unit's terminal to which the wire is connected.

How to calculate tolerable current of an insulated wire or cable is shown in "Tolerable current of electric cable" (1) of Japanese Cable Makers' Association Standard (JCS)-168-E (1995), its electric equipment technical standards or JEAC regulates tolerable current, etc. wire.

When exporting wires, select them according to the related standards of the country or area to export. In the UL standards, certification conditions are to use wires of 60°C and 75°C product. (UL508C)

Wire's tolerable current is different depending on conditions such as its material, structure, ambient temperature, etc. Check the tolerable current described in the specification of the wire to use.

Example of wire selections according to each standard is as follows.

Wire si	ze	Tolerabl	e current
Conductor (copper) [mm²]	AWG	60°C (IV wire)	75°C (HIV wire)
2	14	15A	15A
3.5	12	20A	20A
5.5	10	28A	30A
8	8	34A	46A
14	6	50A	65A
22	4	65A	85A
38	2	92A	115A
60	1/0	124A	150A
80	3/0	145A	200A
100	4/0	170A	225A

(Note) The relation between wire size and tolerable current above corresponds to restrictions specified in IEC/ EN60204-1,UL508C,JEAC8001.

Wire's tolerable current is different depending on the specifications even for the wires of the same size. Confirm the operating environment and conditions, and wire with the applicable wires.

(1) 600V vinyl insulated wire (IV wire) 60°C product (Example according to IEC/EN60204-1, UL508C)

		Terminal name							
	11-14-4		TE1		TE1		L/M/S	CN22	
	Unit type	(L1, L2, L3)		(U, V, W)		(U,V,W,PE)		(VDD.SG)	
		mm ²	AWG	mm ²	AWG	mm ²	AWG	mm ²	AWG
	MDS-DM2-SPV3-10080			5.5	10				
	MDS-DM2-SPV3-16080	30		14	6	3.5 5.5	12	2	44
	MDS-DM2-SPV3-20080			22					
Drive unit	MDS-DM2-SPV3-200120		3		4		10		
Drive unit	MDS-DM2-SPHV3-20080		3			3.5	12	2	14
	MDS-DM2-SPV2-10080			5.5	10				
	MDS-DM2-SPV2-16080			14	6	3.5	12		
	MDS-DM2-SPV2-20080			22	4				

(2) 600V double (heat proof) vinyl insulated wire (HIV wire) 75°C product (Example according to IEC/EN60204-1, UL508C)

			Terminal name							
Unit type		TE1 (L1, L2, L3)		TE1 (U, V, W)		CN31L/M/S (U,V,W,PE)		CN22 (VDD.SG)		
		mm ²	AWG	mm ²	AWG	mm ²	AWG	mm ²	AWG	
	MDS-DM2-SPV3-10080		4	5.5	10	3.5	3.5 12 5.5 10 3.5 12	- 2	14	
	MDS-DM2-SPV3-16080			8	8					
	MDS-DM2-SPV3-20080	22		22 4 14 6	1					
Drive unit	MDS-DM2-SPV3-200120				7	5.5				
Drive unit	MDS-DM2-SPHV3-20080	22			6					
	MDS-DM2-SPV2-10080			5.5	10	3.5				
	MDS-DM2-SPV2-16080			8	8					
	MDS-DM2-SPV2-20080			22	4					

(3) 600V bridge polyethylene insulated wire (IC) 105 °C product (Example according to JEAC8001)

			Terminal name								
Unit type		TE1 (L1, L2, L3)		TE1 (U, V, W)		CN31L/M/S (U,V,W,PE)		CN22 (VDD.SG)			
		mm ² AWG		mm ²	AWG	mm ²	AWG	mm ²	AWG		
	MDS-DM2-SPV3-10080			3.5	12						
	MDS-DM2-SPV3-16080			5.5	10	3.5	14	- - 1.25	16		
	MDS-DM2-SPV3-20080	14		14							
Drive unit	MDS-DM2-SPV3-200120		6		6		12				
Dilve aint	MDS-DM2-SPHV3-20080				•			1.20			
	MDS-DM2-SPV2-10080			3.5	12	2	14				
	MDS-DM2-SPV2-16080			5.5	10		14				
	MDS-DM2-SPV2-20080			14	6						

⚠ CAUTION

- 1. Selection conditions follow IEC/EN60204-1, UL508C, JEAC8001.
 - Ambient temperature is maximum 40°C.
 - Cable installed on walls without ducts or conduits.

To use the wire under conditions other than above, check the standards you are supposed to follow.

2. The maximum wiring length to the motor is 30m.

If the wiring distance between the drive unit and motor is 20m or longer, use a thick wire so that the cable voltage drop is

3. Always wire the grounding wire.

6.2 Selection of Circuit Protector and Contactor

Always select the circuit protector and contactor properly, and install them to each drive unit to prevent disasters.

6.2.1 Selection of Circuit Protector

Calculate a circuit protector selection current from the nominal input voltage of the drive unit as in the expression below. And then select the minimum capacity circuit protector whose rated current meets the circuit protector selection current.

Circuit protector selection current [A] = (Circuit protector selection current for 200V input [A] / Nominal input voltage [V]) × 200 [V]

Selection of circuit protector for 200V input

	•	•		
Unit tuno	MDS-DM2-SPV3-	xxx80 200120		
Unit type	MDS-DM2-SPHV3-	20080		
	MDS-DM2-SPV2-	xxx80		
Circuit protecte for 200V input	or selection current	76A		
Selection exam (Mitsubishi Ele	nple of circuit protector ectric Corp.)	NF125-CW3P-100A		
Rated current of circuit protector	of the selection example of or	100A		

Option part: A circuit protector is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.

⚠ CAUTION

It is dangerous to share a circuit protector for multiple drive units, so do not share it. Always install the circuit protectors for each drive unit.

6.2.2 Selection of Contactor

Select the contactor selection current that is calculated from the nominal input voltage of the drive unit as in the expression below. And then select the contactor whose conventional free-air thermal current meets the contactor selection current.

(1) For power supply

Contactor selection current [A]=

(Contactor selection current for 200V input [A] / Nominal input voltage [V]) × 200 [V]

Selection of contactor for 200V input

Unit tune	MDS-DM2-SPV3-	xxx80 200120
Unit type	MDS-DM2-SPHV3-	20080
	MDS-DM2-SPV2-	xxx80
Contactor selection for 200V input	ction current	76A
Selection exam (Mitsubishi Ele	ple of contactor ctric Corp.)	S-T65-AC200V
	reeair thermal current of cample of contactor	100A

Option part: A contactor is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.

(2) For spindle coil changeover

< Example of selecting a contactor for the coil changeover (Use a same contactor regardless of low-speed coil or high-speed coil) >

Unit type	Contactor type
MDS-DM2-SPV2-10080	
MDS-DM2-SPV3-10080	S-T35
MDS-DM2-SPV2-16080	3-133
MDS-DM2-SPV3-16080	
MDS-DM2-SPV2-20080	
MDS-DM2-SPV3-20080	S-T65
MDS-DM2-SPV3-200120	3-105
MDS-DM2-SPHV3-20080	

POINT

- 1. Use an alternating contactor.
- 2. If the contactor selection current is 20A or less, select the S-T12 product for the contactor.
- 3. Select a contactor whose excitation coil does not operate at 15mA or less.

6.3 Selection of Earth Leakage Breaker

When installing an earth leakage breaker, select the breaker on the following basis to prevent the breaker from malfunctioning by the higher frequency earth leakage current generated in the servo or spindle drive unit.

(1) Selection

Obtaining the earth leakage current for all drive units referring to the following table, select an earth leakage breaker within the "rated non-operation sensitivity current".

Usually use an earth leakage breaker for inverter products that function at a leakage current within the commercial frequency range (50 to 60Hz).

If a product sensitive to higher frequencies is used, the breaker could malfunction at a level less than the maximum earth leakage current value.

Earth leakage current for each unit

Unit	Maximum earth leakage current			
MDS-DM2-SPV3 Series	21mA			
MDS-DM2-SPV2 Series	19mA			

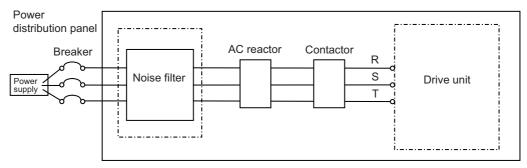
Maximum earth leakage current: Value that considers wiring length and grounding, etc. (Commercial frequency 50/60Hz)

(2) Measurement of earth leakage current

When actually measuring the earth leakage current, use a product that is not easily affected by the higher frequency earth leakage current. The measurement range should be 50 to 60Hz.

POINT

- 1. The earth leakage current tends to increase as the motor capacity increases.
- 2. A higher frequency earth leakage current will always be generated because the inverter circuit in the drive unit switches the transistor at high speed. Always ground to reduce the higher frequency earth leakage current as much as possible.
- 3. An earth leakage current containing higher frequency may reach approx. several hundreds of mA. According to IEC479-
 - 2, this level is not hazardous to the human body.


6.4 Noise Filter

(1) Selection

Use an EMC noise filter if the noise conducted to the power line must be reduced. Select an EMC noise filter taking the drive unit's input rated voltage and input rated current into consideration.

(2) Noise filter mounting position

Install the noise filter to the drive unit's power input as the diagram below indicates.

(Note) The noise filter must be prepared by the user.

Recommended devices:

Soshin Electric HF3000C-SZA Series

Contact:

Soshin Electric Co., Ltd. http://www.soshin-ele.com/

(Note) The above devices may be changed at the manufacturer's discretion.

Contact each manufacturer for more information.

6.5 Surge Absorber

When controlling a magnetic brake of a servo motor in DC OFF circuit, a surge absorber must be installed to protect the relay contacts and brakes. Commonly a varistor is used.

(1) Selection of varistor

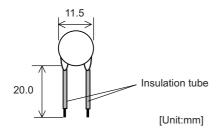
When a varistor is installed in parallel with the coil, the surge voltage can be adsorbed as heat to protect a circuit. Commonly a 120V product is applied. When the brake operation time is delayed, use a 220V product. Always confirm the operation with an actual machine.

(2) Specifications

Select a varistor with the following or equivalent specifications. To prevent short-circuiting, attach a flame resistant insulation tube, etc., onto the leads as shown in the following outline dimension drawing.

Varistor specifications

	Varistor		Rating							Electrostatic
Varistor type	voltage rating (range)		e circuit age	uit Surge current Energy withstand level (A) (J)		withstand level withstand level Power v		Max. limit voltage	capacity (reference value)	
	(V)	AC(V)	DC(V)	1 time	2 times	10/ 1000μs	2ms	(W)	(V)	(pF)
ERZV10D121	120	75	100	3500	2500	20	14.5	0.4	200	1400
TND10V-121K	(108 to 132)									
ERZV10D221	220	140	180	3500	2500	39	27.5	0.4	360	410
TND10V-221K	(198 to 242)	140	100	5500	2000	33	27.5	0.1	300	710


(Note 1) Selection condition: When ON/OFF frequency is 10 times/min or less, and exciting current is 2A or less (Note 2) ERZV10D121 and ERZV10D221 are manufactured by Panasonic Corporation.

TNR10V121K and TNR10V221K are manufactured by Nippon Chemi-Con Corporation.

Contact: Panasonic Corporation http://www.panasonic.com/global/home.html Nippon Chemi-Con Corporation http://www.chemi-con.co.jp/e/index.html

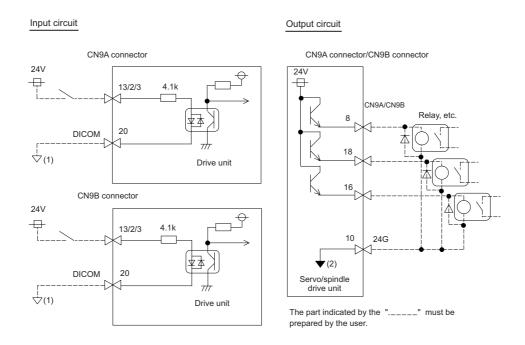
(3) Outline dimension drawing

ERZV10D121, ERZV10D221

POINT

Normally use a product with 120V varistor voltage. If there is no allowance for the brake operation time, use the 220V product. A varistor whose voltage exceeds 220V cannot be used, as such varistor will exceed the specifications of the relay in the unit.

6.6 Relay


CN9A/CN9B connector is equipped with 24V input/output circuit for the control of external devices and the control by an external signal.

Set the relevant parameters and use them with care for the wiring since some signals are changeover type, which can be switched over by parameters. Refer to the description of each function in relevant sections for details on the function specifications and settings.

In	put condition	Output condition		
	18VDC to 25.2VDC	Output voltage	24VDC ±5%	
Switch ON	4 3mA or more	Tolerable output current lo	50mA or less	
		Current io		
Switch OFF	4VDC or less 2mA or less			

For a switch or relay to be wired, use a switch or relay that satisfies the input/output (voltage, current) conditions.

Interface name	Selection example
For digital input signal (CN9A/CN9B)	Use a minute signal switch which is stably contacted and operated even with low voltage or current <example> OMRON: G2A, G6B type, MY type, LY type</example>
For digital output signal (CN9A/CN9B)	Use a compact relay operated with rating of 24VDC, 50mA or less. <example> OMROM: G6B type</example> , MY type

(Note) Do not connect "(1)" or "(2)".

If a ground of the external 24V power is same as the 24V power in the drive unit, a fault or abnormal operation could occur.

Servo input/output signal (CN9A,CN9B connector)

	Device name	Connector pin No.	Signal name	Signal changeover parameter
			SLS(Safely Limited Speed) function door state signal	SV082/bitF-C=1
Servo input signal			Battery box voltage drop signal	SV082/bitF-C=2
	MPI2	CN9A-2	(Reservation)	
	MPI3	CN9A-3	(Reservation)	
	MPO1	CN9B-8	Motor brake control signal	
Servo output signal	MPO2	CN9A-8	Servo specified speed signal	SV082/bit9,8=01
	MPO3	CN9A-18	(Reservation)	

Spindle input/output signal (CN9A,CN9B connector)

	Device name	Connector pin No.	Signal name	Signal changeover parameter	
	MPI1	CN9B-2	SLS(Safely Limited Speed) function door state signal	SP227/bitF-C=1	
Spindle input signal			Proximity switch signal	SP227/bitF-C=2	
	MPI2	CN9A-13	(Reservation)		
	MPI3	CN9B-3	External emergency stop signal	SP032/bit7-0=59	
	MPO1	CN9B-18	Coil changeover signal		
Spindle output signal	MPO2	CN9B-16	Spindle specified speed signal	SP229/bitC=1	
	MPO3	CN9A-16	Contactor control signal		

Input/output signal (CN9A,CN9B connector)

	Pin No.	CN9A	CN9B
	2	-	Proximity switch, Safety (SP)
Input signal	3	-	EXEMG
iliput sigilai	13	(Retract)	MPI1(DOOR), Safety(SV), BT-BOX
	20	DICOM	DICOM
	8	SV specified speed	MBR
Output signal	10	24G	24G
Output signal	16	MC	SP specified speed
	18	-	Coil changeover

Selection

7.1 Selection of the Servo Motor

7.1.1 Outline

It is important to select a servo motor matched to the purpose of the machine that will be installed. If the servo motor and machine to be installed do not match, the motor performance cannot be fully realized, and it will also be difficult to adjust the parameters. Be sure to understand the servo motor characteristics in this chapter to select the correct motor.

(1) Motor inertia

The servo motor has an optimum load inertia scale. If the load inertia exceeds the optimum range, the control becomes unstable and the servo parameters become difficult to adjust. When the load inertia is too large, decelerate with the gears (The motor axis conversion load inertia is proportional to the square of the deceleration ratio.), or change to a motor with a large inertia.

(2) Rated speed

Even with motors having the same capacity, the rated speed will differ according to the motor.

The motor's rated output is designed to be generated at the rated speed, and the output P (W) is expressed with expression (7-1). Thus, even when the motors have the same capacity, the rated torque will differ according to the rated speed.

P = 2
$$\pi$$
 NT (W) ---(7-1) N: Motor speed (1/sec) T: Output torque (N.m)

In other words, even with motors having the same capacities, the one with the lower rated speed will generate a larger torque. If generated torque is the same, the drive unit capacity can be downsized. When actually mounted on the machine, if the positioning distance is short and the motor cannot reach the maximum speed, the motor with the lower rated speed will have a shorter positioning time. When selecting the motor, consider the axis stroke and usage methods, and select the motor with the optimum rated speed.

7.1.2 Selection of Servo Motor Capacity

The following three elements are used to determine the servo motor capacity.

- 1. Load inertia ratio
- 2. Short time characteristics (acceleration/deceleration torque)
- 3. Continuous characteristics (continuous effective load torque)

Carry out appropriate measures, such as increasing the motor capacity, if any of the above conditions is not fulfilled.

(1) Load inertia ratio

Each servo motor has an appropriate load inertia ratio (load inertia/motor inertia). The control becomes unstable when the load inertia ratio is too large, and the servo parameter adjustment becomes difficult. It becomes difficult to improve the surface precision in the feed axis, and the positioning time cannot be shortened in the positioning axis because the settling time is longer.

If the load inertia ratio exceeds the recommended value in the servo specifications list, increase the motor capacity, and select so that the load inertia ratio is within the recommended range.

Note that the recommended value for the load inertia ratio is strictly one guideline. This does not mean that controlling of the load with inertia exceeding the recommended value is impossible.

POINT

- 1. When selecting feed axis servo motors for NC unit machine tools, place importance on the surface precision during machining. To do this, always select a servo motor with a load inertia ratio within the recommended value. Select the lowest value possible within that range.
- 2. The load inertia ratio for the motor with brakes must be judged based on the motor inertia for the motor without brakes.

(2) Short time characteristics

In addition to the continuous operation range, the servo motor has the short time operation range that can be used only in a short time such as acceleration/deceleration. This range is expressed by the maximum torque and the torque characteristics. The maximum torque or the torque characteristics differ according to each motor, so confirm the specifications in section "2.1 Servo Motor".

The torque required for the servo motor's acceleration/deceleration differs according to the CNC's command pattern or the servo's position control method.

Determine the required maximum motor torque from the following expression, and select the servo motor capacity.

(a) Selection with the maximum torque characteristics

In a low-speed rotation range (approximately less than half of the servo motor maximum speed), the linear acceleration/deceleration time constant "ta" that can be driven depends on the motor maximum torque. That can be approximated from the machine specifications using the expression (7-2).

ta =
$$\frac{1.05 \times 10^{-2} \times (J_L/\eta + J_M) \times N}{(0.8 \times T_{MAX} - T_L)}$$
 (ms) ••• (7-2)

Ν : Motor reach speed (r/min) $(\times 10^{-4} \text{kg} \cdot \text{m}^2)$ J_L : Motor shaft conversion load inertia J_{M} : Motor inertia $(\times 10^{-4} \text{kg} \cdot \text{m}^2)$

: Drive system efficiency (Normally 0.8 to 0.95)

 $\mathsf{T}_{\mathsf{MAX}}$: Maximum motor torque (N•m) T_{I} : Motor shaft conversion load (friction, unbalance) torque (N•m)

Using the approximate linear acceleration/deceleration time constant "ta" calculated above, confirm the torque characteristics of the high-speed rotation range in the CNC's command pattern or the servo's position control method.

(b) Approximation when using the NC command linear acceleration/deceleration pattern + servo standard position control

This is a normal command pattern or servo standard position control method.

Using the expression (7-3) and (7-4), approximate the maximum torque "Ta1" and maximum torque occurrence speed "Nm" required for this acceleration/deceleration pattern.

$$T_{a}1 = \frac{1.05 \times 10^{-2} \times (J_{L}/\eta + J_{M}) \times N}{ta} \times (1 - e^{\frac{-K_{D} \times t_{a}}{1000}}) + T_{L} \quad (N \cdot m) \qquad ••• (7-3)$$

Nm = N × {1-
$$\frac{1000}{\text{Kp} \times \text{ta}}$$
 × (1- $e^{\frac{\text{Kp} \times \text{ta}}{1000}}$)} (r/min) •••(7-4)

 $\begin{array}{llll} \text{ta} & : Acceleration/deceleration time constant} & (ms) \\ \text{Kp} & : Position loop gain (SV003) & (rad/s) \\ \text{N} & : Motor reach speed} & (r/min) \\ \text{J}_L & : Motor shaft conversion load inertia} & (\times 10^{-4} \text{kg} \cdot \text{m}^2) \\ \text{J}_M & : Motor inertia} & (\times 10^{-4} \text{kg} \cdot \text{m}^2) \\ \text{The property of the p$

 η $\,\,$: Drive system efficiency (Normally 0.8 to 0.95)

T_L : Motor shaft conversion load (friction, unbalance) torque (N•m)

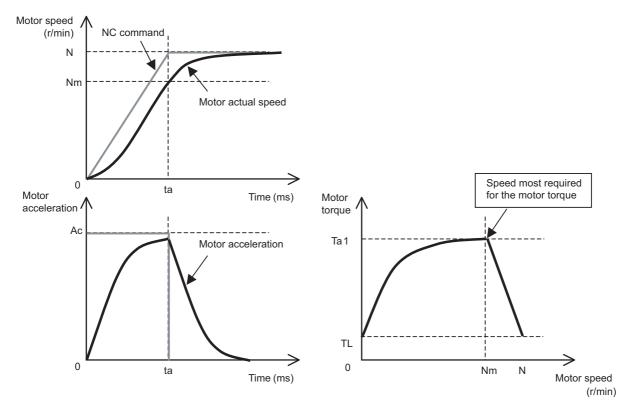


Fig.1 Speed, acceleration and torque characteristics when using the NC command linear acceleration/deceleration pattern + servo standard position control

(c) Approximation when using the NC command linear acceleration/deceleration pattern + servo SHG control (option)

This is a servo's position control method to achieve a normal command pattern and high precision. SHG control improves the position loop gain by stably controlling a delay of the position loop in the servo system. This allows the settling time to be reduced and a high precision to be achieved.

Using the expression (7-5) and (7-6), approximate the maximum torque "Ta1" and maximum torque occurrence speed "Nm" required for this acceleration/deceleration pattern.

$$T_{a}1 = \frac{1.05 \times 10^{-2} \times (J_{L}/\eta + J_{M}) \times N}{ta} \times (1 - 0.586 \times e^{\frac{-2 \times K_{p} \times ta}{1000}}) + T_{L} \qquad (N \cdot m) \quad ••• (7-5)$$

Nm =N × {1-
$$\frac{1000}{1.3 \times \text{Kp} \times \text{ta}} \times (1-1.5 \times e^{\frac{-2 \times \text{Kp} \times \text{ta}}{1000}})$$
} (r/min) ••• (7-6)

 $\begin{array}{llll} \text{ta} & : Acceleration/deceleration time constant} & (ms) \\ \text{Kp} & : Position loop gain (SV003) & (rad/s) \\ \text{N} & : Motor reach speed} & (r/min) \\ \text{J}_L & : Motor shaft conversion load inertia} & (\times 10^{-4} \text{kg} \cdot \text{m}^2) \\ \text{J}_M & : Motor inertia} & (\times 10^{-4} \text{kg} \cdot \text{m}^2) \end{array}$

η : Drive system efficiency (Normally 0.8 to 0.95)

T₁: Motor shaft conversion load (friction, unbalance) torque (N•m)

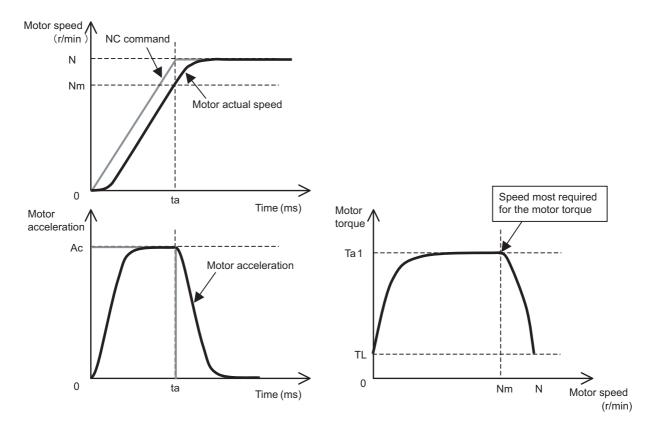


Fig.2 Speed, acceleration and torque characteristics when using the NC command linear acceleration/deceleration pattern + servo SHG control

137

(d) Approximation when using the NC command soft acceleration/deceleration pattern + feed forward control This is an approximation when using high-speed high-accuracy control and OMR-FF control. If the feed forward amount is set properly, the delay of the servo position loop is guaranteed. Therefore, this

command acceleration pattern can be approximated to the NC command and does not depend on the servo position control method.

Using the expression (7-7) and (7-8), approximate the maximum torque "Ta1" and maximum torque occurrence speed "Nm" required for this acceleration/deceleration pattern.

$$T_a 1 = \frac{1.05 \times 10^{-2} \times (J_L/\eta + J_M) \times N}{ta} + T_L \quad (N \cdot m) \quad ••• (7-7)$$

Nm =N ×
$$(1-\frac{1}{2} \times \frac{\text{tb}}{\text{ta}})$$
 (r/min) ••• (7-8)

ta : Acceleration/deceleration time constant (ms) tb : Acceleration/deceleration time constant (ms) : Motor reach speed (r/min) J_{L} : Motor shaft conversion load inertia $(\times 10^{-4} \text{kg} \cdot \text{m}^2)$ J_{M} : Motor inertia $(\times 10^{-4} \text{kg} \cdot \text{m}^2)$: Drive system efficiency (Normally 0.8 to 0.95) η

: Motor shaft conversion load (friction, unbalance) torque T_L (N•m)

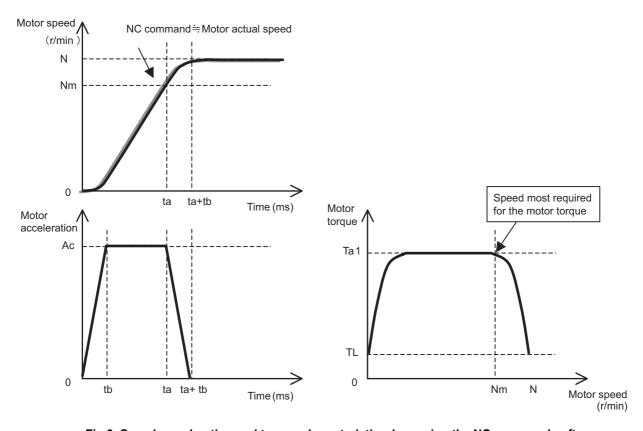
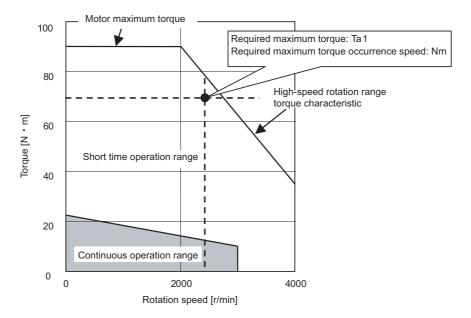



Fig 3. Speed, acceleration and torque characteristic when using the NC command soft acceleration/deceleration pattern + feed forward control

(e) Confirmation in the torque characteristics

Confirm whether the maximum torque "Ta1" and maximum torque occurrence speed "Nm" required for this acceleration/deceleration pattern calculated in the item "(b)" to "(d)" are in the short time operation range of the torque characteristics.

Motor torque characteristics

If they are not in the short time operation range, return to the item "(b)" to "(d)" and make the linear acceleration/ deceleration time constant "ta" large.

If the acceleration specification cannot be changed (the linear acceleration/deceleration time constant cannot be increased), reconsider the selection, such as increasing the motor capacity.

POINT

- 1. In selecting the maximum torque "Ta1" required for this acceleration/deceleration pattern, the measure of it is 80% of the motor maximum torque "T_{MAX}".
- 2. In high-speed rotation range, confirm that the maximum torque "Ta1" and maximum torque occurrence speed "Nm" required for this acceleration/deceleration is in the short time operation range.
- 3. The drive system efficiency is normally approx. 0.95 in the ball screw mechanism and approx. 0.8 in the gear mechanism.
- 4. For the torque characteristics in the motor high-speed rotation range, the AC input voltage is 200V. If the input voltage is low or if the power wire connecting the servo motor and drive unit is long (20m length), the short time operation range is limited. In this case, an allowance must be provided for the selection of the high-speed rotation range.

139

(3) Continuous characteristics

A typical operation pattern is assumed, and the motor's continuous effective load torque (Trms) is calculated from the motor shaft conversion and load torque. If numbers <1> to <8> in the following drawing were considered a one cycle operation pattern, the continuous effective load torque is obtained from the root mean square of the torque during each operation, as shown in the expression (7-9).

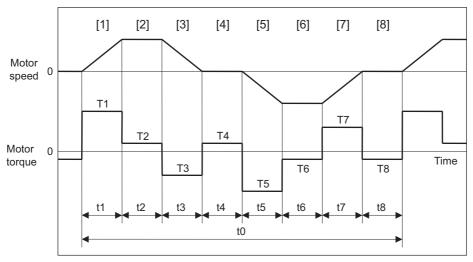


Fig. 1 Continuous operation pattern

Trms =
$$\sqrt{\frac{T1^2 \cdot t1 + T2^2 \cdot t2 + T3^2 \cdot t3 + T4^2 \cdot t4 + T5^2 \cdot t5 + T6^2 \cdot t6 + T7^2 \cdot t7 + T8^2 \cdot t8}{t0}}$$
 ••• (7-9)

Select a motor so that the continuous effective load torque Trms is 80% or less of the motor stall torque Tst.

Trms
$$\leq 0.8 \cdot \text{Tst} \cdot \cdot \cdot (7-10)$$

The amount of acceleration torque (Ta) shown in tables 7-3 and 7-4 is the torque to accelerate the load inertia in a frictionless state. It can be calculated by the expression (7-11). (For Acceleration/deceleration)

$$T_a = \begin{array}{c} \frac{1.05 \times 10^{-2} \times (J_L/\eta + J_M) \times N}{ta} & \text{(N·m)} \bullet \bullet \bullet \bullet \text{(7-11)} \\ \\ N & : \text{Motor reach speed} & \text{(r/min)} \\ \\ J_L & : \text{Motor shaft conversion load inertia} & \text{(\times10$^{-4}$kg$^{\bullet}$m2)} \\ \\ J_M & : \text{Motor inertia} & \text{(\times10$^{-4}$kg$^{\bullet}$m2)} \\ \\ ta & : \text{Acceleration/deceleration time constant} & \text{(ms)} \\ \\ \eta & : \text{Drive system efficiency (Normally 0.8 to 0.95)} \end{array}$$

For an unbalance axis, select a motor so that the motor shaft conversion load torque (friction torque + unbalance torque) is 60% or less of the stall. Also, select a motor so that the unbalance torque is equal to or less than the static friction torque of the magnetic brake.

$$TL \le 0.6 \cdot Tst \cdot \cdot \cdot (7-12)$$

(a) Horizontal axis load torque

When operations [1] to [8] are for a horizontal axis, calculate so that the following torques are required in each period.

Table 7-3 Load torques of horizontal axes

Period	Load torque calculation method	Explanation
[1]	(Amount of acceleration torque) + (Kinetic friction torque)	Normally the acceleration/deceleration time constant is calculated so that this torque is 80% of the maximum torque of the motor.
[2]	(Kinetic friction torque)	
[3]	(Amount of deceleration torque) + (Kinetic friction torque)	The absolute value of the acceleration torque amount is same as the one of the deceleration torque amount. The signs for the amount of acceleration torque and amount of deceleration torque are reversed.
[4]	(Static friction torque)	Calculate so that the static friction torque is always required during a stop.
[5]	- (Amount of acceleration torque) - (Kinetic friction torque)	The signs are reversed with period <1> when the kinetic friction does not change according to movement direction.
[6]	- (Kinetic friction torque)	The signs are reversed with period <2> when the kinetic friction does not change according to movement direction.
[7]	- (Amount of deceleration torque) - (Kinetic friction torque)	The signs are reversed with period <3> when the kinetic friction does not change according to movement direction.
[8]	- (Static friction torque)	Calculate so that the static friction torque is always required during a stop.

(b) Unbalance axis load torque

When operations [1] to [8] are for an unbalance axis, calculate so that the following torques are required in each period. Note that the forward speed shall be an upward movement.

Table 7-4 Load torques of unbalance axes

Period	Load torque calculation method	Explanation
[1]	(Amount of acceleration torque) + (Kinetic friction torque) + (Unbalance torque)	Normally the acceleration/deceleration time constant is calculated so that this torque is 80% of the maximum torque of the motor.
[2]	(Kinetic friction torque) + (Unbalance torque)	
[3]	(Amount of deceleration torque) + (Kinetic friction torque) + (Unbalance torque)	The absolute value of the acceleration torque amount is same as the one of the deceleration torque amount. The signs for the amount of acceleration torque and amount of deceleration torque are reversed.
[4]	(Static friction torque) + (Unbalance torque)	The holding torque during a stop becomes fairly large. (Upward stop)
[5]	- (Amount of acceleration torque) - (Kinetic friction torque) + (Unbalance torque)	
[6]	- (Kinetic friction torque) + (Unbalance torque)	The generated torque may be in the reverse of the movement direction, depending on the size of the unbalance torque.
[7]	- (Amount of deceleration torque) - (Kinetic friction torque) + (Unbalance torque)	
[8]	- (Static friction torque) + (Unbalance torque)	The holding torque becomes smaller than the upward stop. (Downward stop)

POINT

During a stop, the static friction torque may constantly be applied. The static friction torque and unbalance torque may be applied during an unbalance axis upward stop, and the torque during a stop may become extremely large. Therefore, caution is advised.

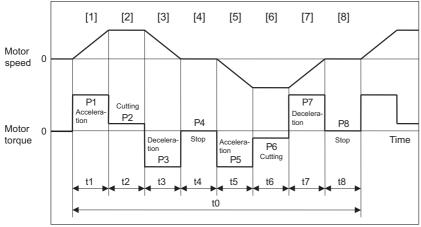
7.1.3 Motor Shaft Conversion Load Torque

The calculation method for a representative load torque is shown.

Туре	Mechanism	Calculation expression
Linear movement	Servo motor Z2 W	$T_L = \frac{F}{2\times 10^3\pi\eta} \cdot (\frac{V}{N}) = \frac{F\cdot\Delta S}{2\times 10^3\pi\eta}$ $T_L: \text{Load torque (N*m)}$ $F: \text{Force in axial direction of the machine that moves linearly (N)}$ $\eta: \text{ Drive system efficiency}$ $V: \text{Speed of object that moves linearly (mm/min)}$ $N: \text{Motor speed (r/min)}$ $\Delta S: \text{Object movement amount per motor rotation (mm)}$ $Z_1, Z_2: \text{Deceleration ratio}$ $\textbf{F in the above expression is obtained from the expression below when the table is moved as shown on the left.}$ $\textbf{F=Fc+}\mu \ (\textbf{W*g+F_0})$ $F_c: \text{Force applied on axial direction of moving section (N)}$ $F_0: \text{Tightening force on inner surface of table guide (N)}$ $W: \text{Total mass of moving section (kg)}$ $g: \text{Gravitational acceleration = 9.8 (m/s}^2)$ $\mu: \text{Friction coefficient}$
Rotary movement	Z ₁ Z ₂ Servo motor	$\begin{split} T_L &= \frac{Z_1}{Z_2} \cdot \frac{1}{\eta} \cdot T_{L0} + T_F = \frac{1}{n} \cdot \frac{1}{\eta} \cdot T_{L0} + T_F \\ T_L: \text{Load torque (N•m)} \\ T_{L0}: \text{Load torque on load shaft (N•m)} \\ T_F: \text{Motor shaft conversion load friction torque (N•m)} \\ \eta: \text{Drive system efficiency} \\ Z_1, Z_2: \text{Deceleration ratio} \\ \text{n:Deceleration ratio} \end{split}$
Vertical movement	Servo motor Counterweight W2	When rising $T_L = T_U + T_F$ When lowering $T_L = -T_U \cdot \eta^2 + T_F$ T_L :Load torque (N·m) T_U :Unbalanced torque (N·m) T_F :Friction torque on moving section (N·m) $T_U = \frac{(W_1 - W_2) \cdot g}{2 \times 10^3 \pi \eta} \cdot (\frac{V}{N}) = \frac{(W_1 - W_2) \cdot g \cdot \Delta S}{2 \times 10^3 \pi \eta}$ $T_F = \frac{\mu \cdot (W_1 + W_2) \cdot g \cdot \Delta S}{2 \times 10^3 \pi \eta}$ W_1 :Load mass (kg) W_2 :Counterweight mass (kg) η : Drive system efficiency g :Gravitational acceleration = 9.8 (m/s²) V :Speed of object that moves linearly (mm/min) N :Motor speed (r/min) ΔS :Object movement amount per motor rotation (mm) μ :Friction coefficient

7.1.4 Expressions for Load Inertia Calculation

The calculation method for a representative load inertia is shown.


Туре	Mechanism	Calculation expression
Cylinder	Rotary shaft is cylinder center	$J_L = \frac{\pi \cdot \rho \cdot L}{32} \cdot (D_1^4 - D_2^4) = \frac{W}{8} \cdot (D_1^2 + D_2^2)$ $T_L: \text{Load inertia (kg•cm²)}$ $\rho: \text{ Density of cylinder material (kg/cm³)}$ $L: \text{Length of cylinder (cm)}$ $D_1: \text{Outer diameter of cylinder (cm)}$ $W: \text{Mass of cylinder (kg)}$ $< \text{Reference data (Material densities)} > \text{Iron:} 7.80 \times 10^{-3} \text{(kg/cm³)} \qquad \text{Aluminum:} 2.70 \times 10^{-3} \text{(kg/cm³)}$ $Copper: 8.96 \times 10^{-3} \text{(kg/cm³)}$ $J_L = \frac{W}{8} \cdot (D^2 + 8R^2)$ $J_L: \text{Load inertia (kg•cm²)}$ $W: \text{Mass of cylinder (kg)}$ $D: \text{Outer diameter of cylinder (cm)}$ $R: \text{Distance between rotary axis and cylinder axis (cm)}$
Column	Rotary shaft	$J_{L} = W(\frac{a^{2}+b^{2}}{3}+R^{2})$ $J_{L}: Load inertia (kg \cdot cm^{2})$ $W: Mass of column (kg)$ $a,b,R: Left diagram (cm)$
Object that moves linearly	Servo motor W	$\begin{split} J_L &= W \big(\frac{1}{2\pi N} \cdot \frac{V}{10}\big)^2 = W \big(\frac{\Delta S}{20\pi}\big)^2 \\ J_L: \text{Load inertia (kg*cm}^2) \\ W: \text{Mass of object that moves linearly (kg)} \\ N: \text{Motor speed (r/min)} \\ V: \text{Speed of object that moves linearly (mm/min)} \\ \Delta S: \text{Object movement amount per motor rotation (mm)} \end{split}$
Suspended object	D W	$J_L = W(\frac{D}{2})^2 + J_p$ $J_L: Load inertia (kg•cm²)$ $W: Object mass (kg)$ $D: Diameter of pulley (cm)$ $Jp: Inertia of pulley (kg•cm²)$
Converted load	Servo Motor January Load A January No.	$\begin{split} J_L &= J_{11} + (J_{21} + J_{22} + J_A) \cdot (\frac{N_2}{N_1})^2 + (J_{31} + J_B) \cdot (\frac{N_3}{N_1})^2 \\ J_L : \text{Load inertia (kg•cm}^2) \\ J_A, J_B : \text{Inertia of load A, B (kg•cm}^2) \\ J_{11} \text{ to } J_{31} : \text{Inertia (kg•cm}^2) \\ N_1 \text{ to } N_3 : \text{Each shaft's speed (r/min)} \end{split}$

143

7.2 Selection of the Spindle Motor

(1) Calculation of average output for spindle

In the machine which carries out the spindle's acceleration/deceleration frequently (example: tapping center), short-time rating is frequently used, and a rise in temperature become significant on the spindle motor or drive unit. Thus, calculate the average output (P_{AV}) from one cycle operation pattern and confirm that the calculated value is less than the continuous rating output of the selected spindle motor.

Output during acceleration/deceleration (kW)

- = Actual acceleration/deceleration output (kW)
 - Actual acceleration/deceleration output (kW) is
 - 1.2-fold of "Standard output (kW) during acceleration/deceleration" or
 - 1.2-fold of "Short time rated output (kW)".

Continuous operation pattern (example)

$$P_{AV} = \sqrt{\frac{P1^2 \cdot t1 + P2^2 \cdot t2 + P3^2 \cdot t3 + P4^2 \cdot t4 + P5^2 \cdot t5 + P6^2 \cdot t6 + P7^2 \cdot t7 + P8^2 \cdot t8}{t0}}$$

P1 to P8 :Output t1 to t8 :Time

tΩ :One cycle operation time

Continuous rated output \geq One cycle operation pattern average output (PAV)

POINT

1. Calculate acceleration/deceleration time by the accurate load inertia because even if the rotation speed is the same, acceleration/deceleration time varies with a tool or workpiece mounted to the spindle.

Refer to the section "Adjusting the Acceleration/Deceleration Operation" (1) in Instruction Manual.

2. Calculation method of synchronous tapping

The acceleration/deceleration number of times is twice, for forward run and reverse run are carried out in one machining. The output guideline is 50% of the short-time rating. The time is tapping time constant.

3. Calculation method of spindle synchronization

The output guideline is 70% of the short-time rating. The time is spindle synchronization time constant.

Appendix 1

Cable and Connector Specifications

Appendix 1.1 Selection of Cable

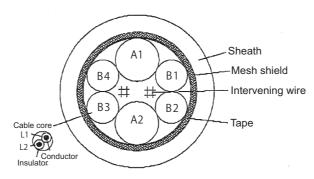
Appendix 1.1.1 Cable Wire and Assembly

(1) Cable wire

The specifications of the wire used for each cable, and the machining methods are shown in this section. Mitsubishi uses the cables shown in the tables below. When manufacturing the encoder cable and battery connection cable, use the wires shown below or equivalent products.

(a) Heat resistant specifications cable

Wire type	Finish	Einich		Wire characteristics						
(other manufacturer's product)	outer diameter	Sheath	Sheath No. of material pairs	Configura- tion	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility	
BD20288 Compound 6-pair		Heat	2 (0.5mm ²)	100 strands/ 0.08mm	40.7Ω/km or less	500\/AC/	1000		70×10 ⁴	
shielded cable Specification No. Bangishi-17145 (Note 1)	8.7mm	resistant PVC	4 (0.2mm ²)	40 strands/ 0.08mm	103Ω/km or less	500VAC/ 1min	MΩ/km or more	105°C	times or more at R200	

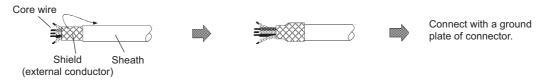

(b) General-purpose heat resistant specifications cable

Wire type	Finish			Wire characteristics					
(other manufacturer's product)	outer diameter	Sheath material	No. of pairs	Configura- tion	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility
BD20032 Compound 6-pair shielded cable			2 (0.5mm ²)	100 strands/ 0.08mm	40.7Ω/km or less		4000		100×10 ⁴
Specification No. Bangishi-16903 Revision No. 3 (Note 2))	8.7mm	PVC	4 (0.2mm ²)	40 strands/ 0.08mm	103Ω/km or less	500VAC/ 1min	1000 MΩ/km or more	60°C	times or more at R200

(Note 1) BANDO Electric Wire (http://www.bew.co.jp/)

(Note 2) The Mitsubishi standard cable is the (a) Heat resistant specifications cable. When the working environment temperature is low and so higher flexibility is required, use the (b) General-purpose heat resistant specifications cable. For MDS-C1/CH series, (b) or equivalent is used as the standard cable.

Compound 6-pair cable structure drawing

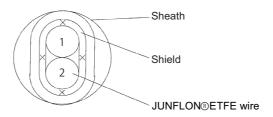


Core identification

Pair No.	Insulate	or color
raii No.	L1	L2
A1 (0.5mm ²)	Red	White
A2 (0.5mm ²)	Black	White
B1 (0.2mm ²)	Brown	Orange
B2 (0.2mm ²)	Blue	Green
B3 (0.2mm ²)	Purple	White
B4 (0.2mm ²)	Yellow	White

(2) Cable assembly

Assemble the cable with the cable shield wire securely connected to the ground plate of the connector.



(3) Battery connection cable

Wire type	Finish	Einich		Wire characteristics						
(other manufacturer's product)	outer diameter	uter Sheath		Configura- tion	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility	
J14B101224-00 Two core shield cable	3.3mm	PVC	1 (0.2mm ²)	7strands / 0.2mm	91.2Ω/km or less	AC500V/ 1min	1000MΩ/ km or less	80°C	R33mm	

(Note 1) Junkosha Inc. http://www.junkosha.co.jp/english/index.html

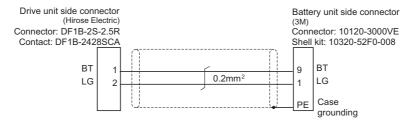
Dealer: TOA ELECTRIC INDUSTRIAL CO.,LTD. http://www.toadenki.co.jp/index_e.html

Two core shield cable structure drawing

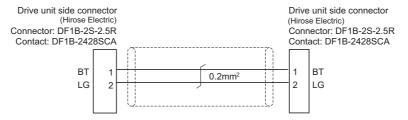
Core identification

No.	Insulator color
1	Red
2	Black

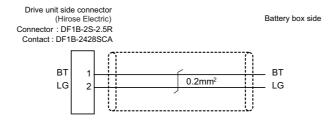
Appendix 1.2 Cable Connection Diagram

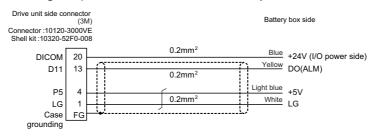

♠ CAUTION

- 1. Take care not to mistake the connection when manufacturing the encoder cable. Failure to observe this could lead to faults, runaway or fire.
- 2. When manufacturing the cable, do not connect anything to pins which have no description.


Appendix 1.2.1 Battery Cable

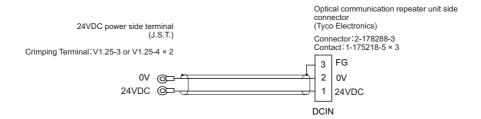
< DG21 cable connection diagram


(Connection cable between drive unit and A6BAT (MR-BAT) (MDS-BTCASE) >

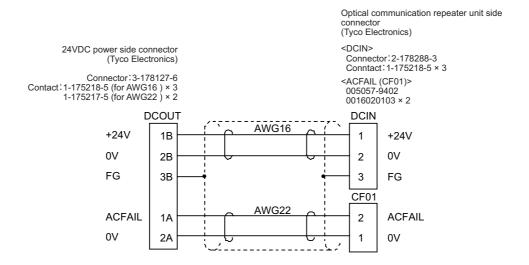

< DG22 cable connection diagram (Connection cable between drive unit and drive unit) >

< DG23 cable connection diagram (Connection cable between drive unit and MDS-BTBOX-36) >

< DG24 cable connection diagram (Connection cable for alarm output between drive unit and MDS-BTBOX-36) >

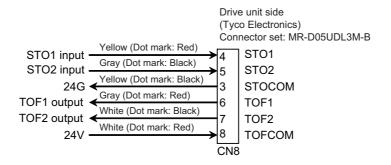


/!\ CAUTION

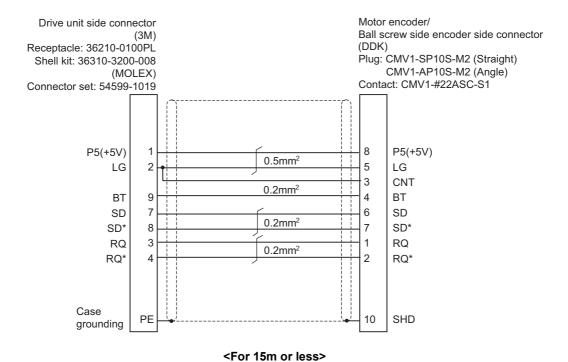

When DG24 cable is used, proximity switch or external emergency stop cannot be wired, so these functions cannot be used.

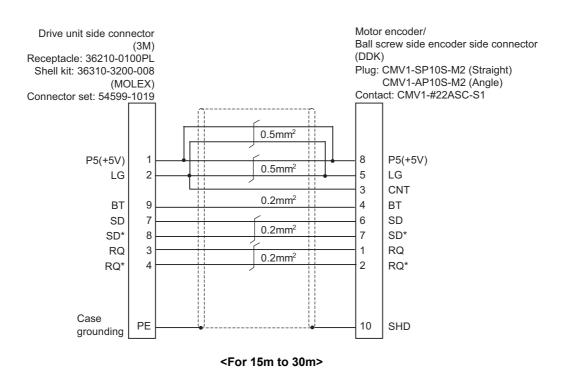
Appendix 1.2.2 Optical Communication Repeater Unit Cable

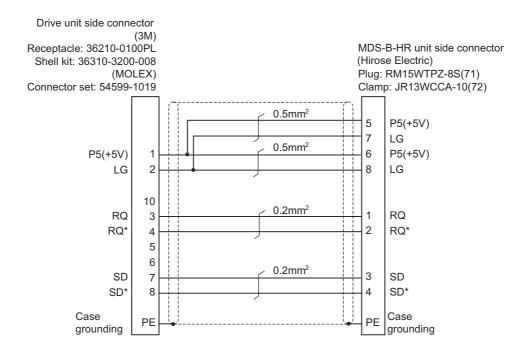
< F070 cable connection diagram >



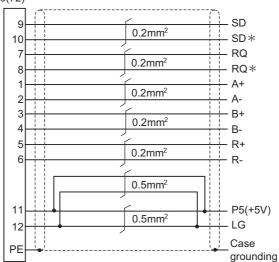
< F110 cable connection diagram >


Appendix 1.2.3 STO Cable

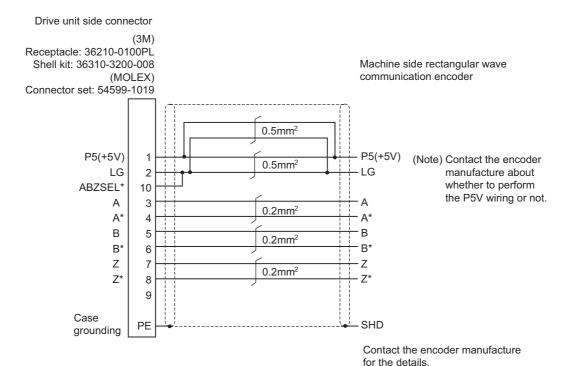

< CN8 STO input connector connection diagram >


Appendix 1.2.4 Servo Encoder Cable

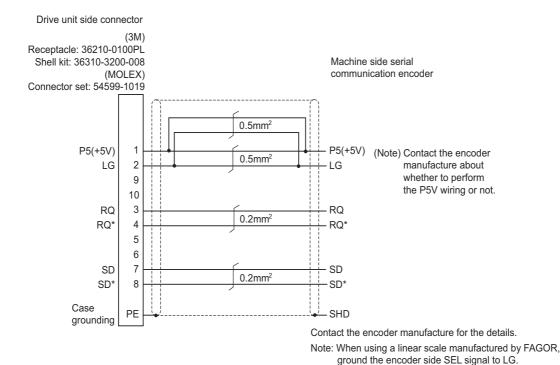
<CNV2E-8P, CNV2E-9P cable connection diagram>


<CNV2E-HP cable connection diagram>

<Cable connection diagram between scale I/F unit and scale (CNLH3 cable, etc.) >


Encoder conversion unit side connector (Hirose Electric)

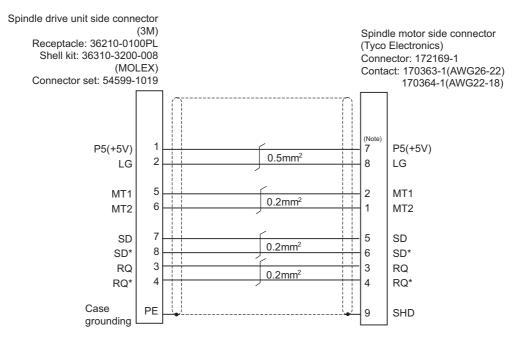
Plug: RM15WTPZ-12P(71) Clamp: JR13WCCA-10(72)


(Note) This cable must be prepared by the user.

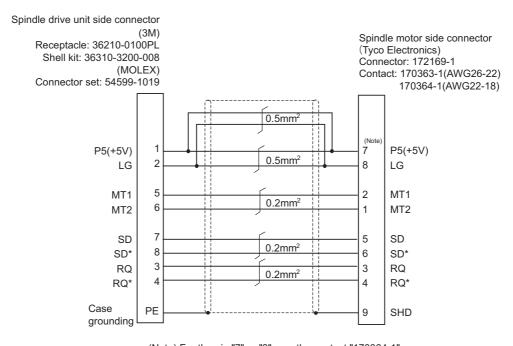
<Rectangular wave communication encoder (linear scale, etc.) cable connection diagram>

(Note) This cable must be prepared by the user.

<Serial communication encoder (linear scale, etc.) cable connection diagram>

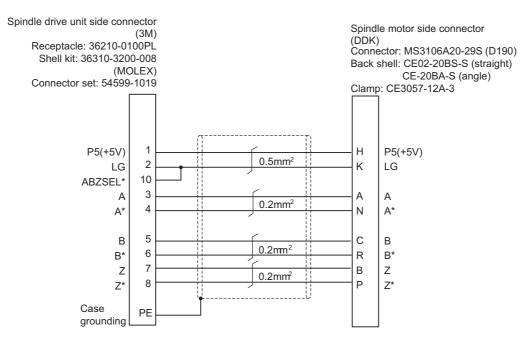

(Note) This cable must be prepared by the user.

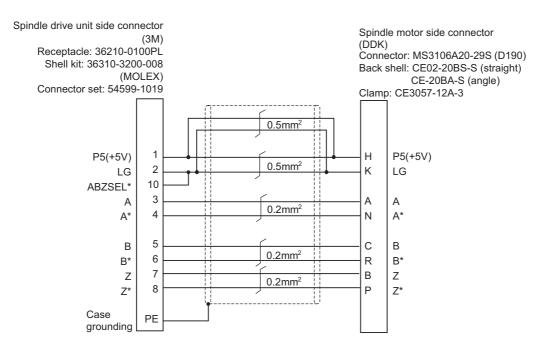
For compatible encoder, refer to the section "Servo option" in Specifications Manual.


Appendix 1.2.5 Spindle Encoder Cable

< CNP2E-1 cable connection diagram >

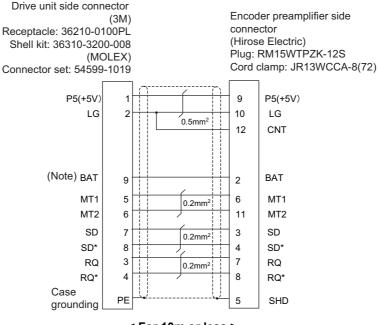
(Note) For the pin "7" or "8", use the contact "170364-1". For the other pins, use the contact "170363-1".

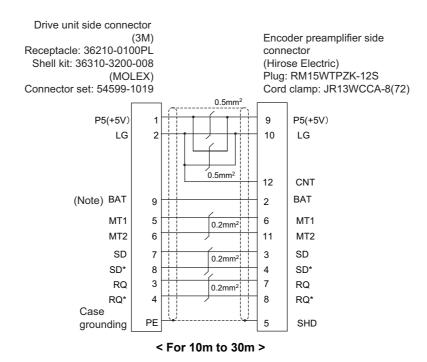

< For 15m or less >


(Note) For the pin "7" or "8", use the contact "170364-1". For the other pins, use the contact "170363-1".

< For 15m to 30m >

< CNP3EZ-2P, CNP3EZ-3P cable connection diagram >


< For 15m or less >


< For 15m to 30m >

Appendix 1.2.6 Twin-head Magnetic Encoder Cable

< Twin-head magnetic encoder (MBA Series) connection diagram >

< For 10m or less >

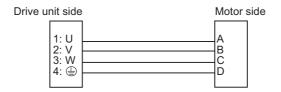
(Note) The above wiring diagrams apply to both MBA405W and MBE405W.
The connection of BT can be omitted for MBE405W (incremental).

Appendix 1.3 Main Circuit Cable Connection Diagram

The methods for wiring to the main circuit are shown below.

<DRSV1/DRSV2/DRSV3 cable connection diagram>

These cables are used to connect the drive unit's CN31L/M/S terminal and HF motor.


This is the power line for the multi axis integrated unit (MDS-DM2-SPV2-, MDS-DM2-SPV3-) L-axis.

• DRSV2 cable:

This is the power line for the multi axis integrated unit (MDS-DM2-SPV2-, MDS-DM2-SPV3-) M-axis.

• DRSV3 cable:

This is the power line for the multi axis integrated unit (MDS-DM2-SPV3-) S-axis.

↑ CAUTION

- 1. The main circuit cable must be manufactured by the user.
- 2. Refer to the section "Specification of Peripheral Devices" in Specifications Manual when selecting the wire material.
- 3. Lay out the terminal block on the drive unit side as shown in "DRIVE SYSTEM DATA BOOK".
- 4. Refer to "DRIVE SYSTEM DATA BOOK" for details on the motor's connectors and terminal block.

Appendix 1.4 Connector Outline Dimension Drawings

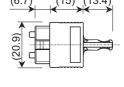
Appendix 1.4.1 Connector for Drive Unit

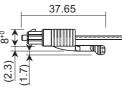
Optical communication cable connector

Optical communication connector

[Unit:mm]

For wiring between drive units


(inside panel)


Manufacturer: Japan Aviation

Electronics Industry

<Type>

Connector: PF-2D103

Cable appearance

<Type>

Connector: PF-2D103 (Japan Aviation

Electronics Industry)
Optical fiber: ESKA Premium

(MITSUBISHI RAYON)

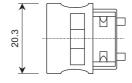
(L≦0.1m)

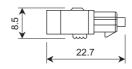
(L≧0.2m)

- (Note 1) The POF fiber's light amount will drop depending on how the fibers are wound. So, try to avoid wiring the fibers.
- (Note 2) Do not wire the optical fiber cable to moving sections.
- (Note 3) Contact: Japan Aviation Electronics Industry, Limited http://www.jae.com/jaehome.htm

Optical communication connector

[Unit:mm]


For wiring between drive units


(outside panel)

Manufacturer: Tyco Electronics

<Type>

Connector: 1123445-1

Cable appearance

<Type>

Connector: 1123445-1 (Tyco Electronics)

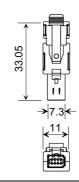
Optical fiber: ESKA Premium (MITSUBISHI RAYON)

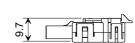
- (Note 1) The PCF fiber's light amount will drop depending on how the fibers are wound. So, try to avoid wiring the
- (Note 2) Do not wire the optical fiber cable to moving sections.

For wiring between NC and drive unit

Refer to the instruction manual for CNC.

STO input connector


Drive unit connector for CN8 (STO input)


[Unit:mm]

Manufacturer: Tyco Electronics

<Type>

Connector set: 2069250-1

Connector for encoder cable

Spindle drive unit connector for CN2

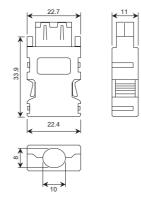
[Unit:mm]

Manufacturer: 3M

<Type>

Receptacle: 36210-0100PL Shell kit: 36310-3200-008

Compatible part (Note 1)


(MOLEX)

Connector set: 54599-1019

(J.S.T.)

Plug connector: XV-10P-03-L-R

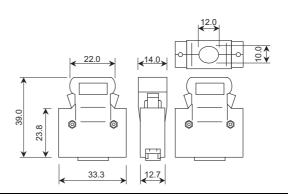
Cable kit: XV-PCK10-R

(Note 1) The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer for more information.

Connector for CN9A/CN9B

[Unit:mm]

Manufacturer: 3M


<Type>

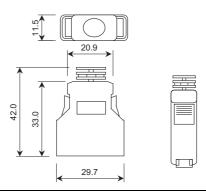
Connector: 10120-3000VE Shell kit: 10320-52F0-008

Compatible part (Note 1)

(J.S.T.)

Connector: MS-P20-L Shell kit: MS20-2B-28

[Unit:mm]


Manufacturer: 3M

<Type>

Connector: 10120-6000EL Shell kit:10320-3210-000

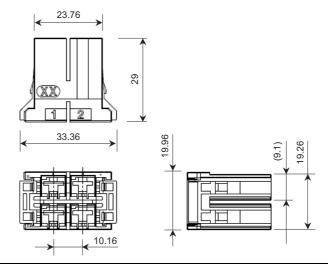
This connector is integrated with the cable, and is not available as a

connector set option.

The names of compatible parts may be changed at the manufacturer's discretion. Contact each manufacturer (Note 1) for more information.

159

Power connector

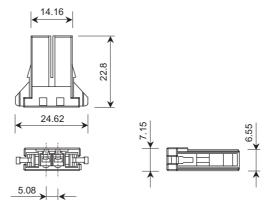

Power connector for drive unit CN31L/M/S, for MDS-DM2-SPV Series

[Unit:mm]

Manufacturer: DDK

<Type>

Connector: DK-5200M-04R


Control power connector for drive unit CN22, for MDS-DM2-SPV Series

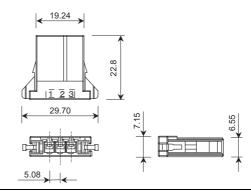
[Unit:mm]

Manufacturer: DDK

<Type>

Connector: DK-3200S-02R

Connector for motor brake control output


Brake connector for motor brake control output

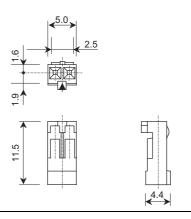
[Unit:mm]

Manufacturer: DDK

<Type>

Connector: DK-3200S-03R

Battery power input connector


Battery connector for drive unit

[Unit:mm]

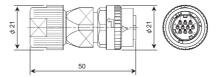
Manufacturer: Hirose Electric

<Type>

Connector: DF1B-2S-2.5R

Appendix 1.4.2 Connector for Servo

Motor encoder connector

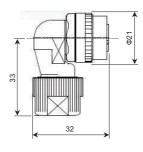

Motor side encoder connector / Ball screw side encoder for connector

[Unit:mm]

Manufacturer: DDK

<Type>

Plug:CMV1-SP10S-M2



[Unit:mm]

Manufacturer: DDK

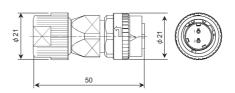
<Type>

Plug:CMV1-AP10S-M2

(Note) For the manufacturing method of CMV1 series connector, refer to the section "Cable and connector assembly" in Instruction Manual.

Contact: Fujikura Ltd. http://www.fujikura.co.jp/eng/

Brake connector

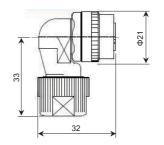

Brake connector

[Unit:mm]

Manufacturer: DDK

<Type>

Plug: CMV1-SP2S-2



[Unit:mm]

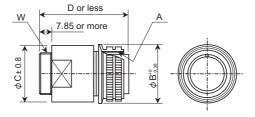
Manufacturer: DDK

<Type>

Plug: CMV1-AP2S-S

(Note) For the manufacturing method of CMV1 series connector, refer to the section "Cable and connector assembly" in Instruction Manual.

161

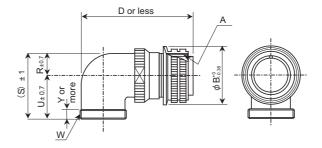

Contact: Fujikura Ltd. http://www.fujikura.co.jp/eng/

Motor power connector

Motor power connector

[Unit:mm]

Manufacturer: DDK

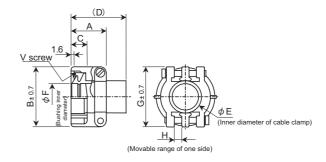


Plug:

Туре	А	B +0 -0.38	C±0.8	D or less	w
CE05-6A18-10SD-C-BSS	1 ¹ / ₈ -18UNEF-2B	34.13	32.1	57	1-20UNEF-2A
CE05-6A22-22SD-C-BSS	1 ³ / ₈ -18UNEF-2B	40.48	38.3	61	1 ³ / ₁₆ -18UNEF-2A
CE05-6A32-17SD-C-BSS	2-18UNS-2B	56.33	54.2	79	1 ³ / ₄ -18UNS-2A

[Unit:mm]

Manufacturer: DDK



Plug:

Туре	Α	В	+0 -0.38	D or less	w	R±0.7	U±0.7	(S)±1	Y or more
CE05-8A18-10SD-C-BAS	1 ¹ / ₈ -18UNEF-2B	3	34.13	69.5	1-20UNEF-2A	13.2	30.2	43.4	7.5
CE05-8A22-22SD-C-BAS	1 ³ / ₈ -18UNEF-2B	4	10.48	75.5	1 ³ / ₁₆ -18UNEF-2A	16.3	33.3	49.6	7.5
CE05-8A32-17SD-C-BAS	2-18UNS-2B	5	6.33	93.5	1 ³ / ₄ -18UNS-2A	24.6	44.5	61.9	8.5

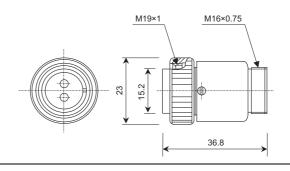
[Unit:mm]

Manufacturer: DDK

Clamp:

Туре	Shel I size	Total length A	Outer dia. B	Avail. screw length C	D	E	F	G	н	Fitting screw V	Bushing	Applicable cable
CE3057-10A-1(D240)	18	23.8	30.1	10.3	41.3	15.9	14.1	31.7	3.2	1-20UNEF-2B	CE3420-10-1	Ф10.5 to Ф14.1
CE3057-12A-1(D240)	20	23.8	35	10.3	41.3	19	16.0	37.3	4	1 ³ / ₁₆ -18UNEF-2B	CE3420-12-1	Ф12.5 to Ф16.0
CE3057-20A-1(D240)	32	27.8	51.6	11.9	43	31.7	23.8	51.6	6.3	1 ³ / ₄ -18UNS-2B	CE3420-20-1	Ф22.0 to Ф23.8

MDS-B-HR connector

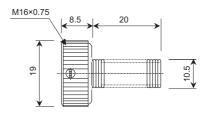

MDS-B-HR connector

[Unit:mm]

Manufacturer: Hirose Electric

<Type>
Plug:

RM15WTPZ-8S(71) (for CON1,2) RM15WTPZ-12P(71) (for CON3) RM15WTPZ-10P(71) (for CON4)



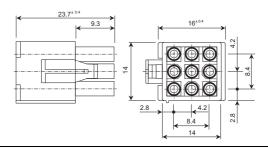
[Unit:mm]

Manufacturer: Hirose Electric

<Type>

Clamp: JR13WCCA-10(72)

Appendix 1.4.3 Connector for Spindle


Motor encoder connector

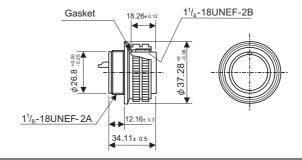
Motor side PLG (TS5690) connector

[Unit:mm]

Manufacturer: Tyco Electronics

<Type>
Plug: 172169-1

Spindle side encoder connector (for OSE-1024)

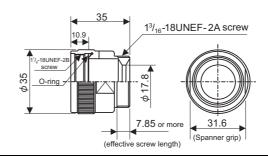

Spindle side encoder connector (for OSE-1024)

[Unit:mm]

Manufacturer: DDK

<Type>

Connector: MS3106A20-29S(D190)

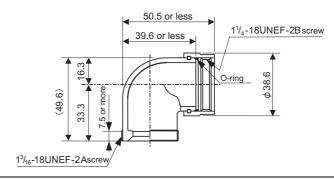


[Unit:mm]

Manufacturer: DDK

<Type>

Straight back shell: CE02-20BS-S

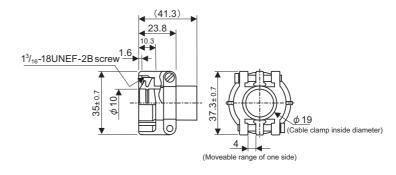


[Unit:mm]

Manufacturer: DDK

<Type>

Angle back shell: CE-20BA-S



[Unit:mm]

Manufacturer: DDK

<Type>

Cable clamp:CE3057-12A-3

Appendix 2

Restrictions for Lithium Batteries

Appendix 2.1 Restriction for Packing

When transporting lithium batteries with means such as by air transport, measures corresponding to the United Nations Dangerous Goods Regulations (hereafter called "UN Regulations") must be taken.

The UN Regulations classify the batteries as dangerous goods (Class 9) or not dangerous goods according to the lithium metal content. To ensure safety during transportation, lithium batteries (battery unit) directly exported from Mitsubishi are packaged in a dedicated container (UN package) for which safety has been confirmed.

When the customer is transporting these products with means subject to the UN Regulations, such as air transport, the shipper must follow the details explained in the section "Transportation Restrictions for Lithium Batteries: Handling by User". The followings are restrictions for transportation. Each restriction is specified based on the recommendation of the United Nations.

Area	Transportation method	Restriction	Special clause
World	Air	ICAO, IATA	-
World	World Marine		188
United States	All (air, marine, land)	DOT	49 CFR 173.185
Europe	Europe land		-

Appendix 2.1.1 Target Products

The following Mitsubishi NC products use lithium batteries. If the lithium metal content exceeds 1g for battery cell and 2g for battery, the battery is classified as dangerous good (Class9).

In order to avoid an accidental actuation during the transportation, all lithium battery products incorporated in a machinery or device must be fixed securely and must be shipped with wrapped over the outer package as to prevent damage or short-circuits.

(1) Materials falling under Class 9

Mitsubishi type (Type for arrangement)	Battery type	Lithium metal content	Number of incorporated batteries	Application (Data backup)	Battery class	Outline dimension drawing
CR23500SE-CJ5	CR23500SE-CJ5	1.52g	•	For NC SRAM (M500)	Battery cell	Refer to "Battery Option" in the specification manual for drive unit you are using for the outline dimension drawing for servo.

(2) Materials not falling under Class 9

Mitsubishi type (Type for arrangement)	Battery type	Lithium metal content	Number of incorporated batteries	Application (Data backup)	Battery class	Outline dimension drawing
CR2032 (for built-in battery)	CR2032	0.067g	-	For NC SRAM/		
CR2450 (for built-in battery)	CR2450	0.173g	-	For NC SRAM	Battery	Refer to "Battery Option" in
ER6, ER6V series (for built-in battery)	ER6, ER6V	0.65g	-	For NC SRAM/ servo encoder	cell	the specification manual for drive unit you are using for the outline dimension
A6BAT(MR-BAT)	ER17330V	0.48g	-	For servo encoder		drawing for servo.
Q6BAT	Q6BAT	0.57g	-	For NC SRAM		
MDS-BAT6V1SET MR-BAT6V1SET	2CR17335A	1.2g	2	For servo encoder	Battery	

(Note) If the number of batteries exceeds 24 batteries for the battery cell or 12 batteries for the battery, the dedicated packing (for materials falling under Class 9) is required.

Appendix 2.1.2 Handling by User

The shipper must confirm the latest IATA Dangerous Goods Regulations, IMDG Codes and laws and orders of the corresponding export country.

These should be checked by the company commissioned for the actual transportation.

IATA: International Air Transport Association

http://www.iata.org/

IMDG Code: A uniform international code for the transport of dangerous goods by seas determined by IMO (International Maritime Organization).

http://www.imo.org/

Appendix 2.1.3 Reference

Refer to the following materials for details on the regulations and responses. Guidelines regarding transportation of lithium batteries and lithium ion batteries Battery Association of Japan http://www.baj.or.jp/e/

Appendix 2.2 Products Information Data Sheet (ER Battery)

MSDS system does not cover the product used in enclosed state. The ER battery described in this section applies to that product.

This description is applied to the normal use, and is provided as reference but not as guarantee.

This description is based on the lithium battery's (ER battery) hazardous goods data sheet (Products Information Data Sheet) which MITSUBISHI has researched, and will be applied only to the ER batteries described in "Transportation Restrictions for Lithium Batteries: Restriction for Packing".

(1) Outline of hazard

Principal hazard and effect	Not found.
Specific hazard	As the chemical substance is stored in a sealed metal container, the battery itself is not hazardous. But when the internal lithium metal attaches to human skin, it causes a chemical skin burn. As a reaction of lithium with water, it may ignite or forms flammable hydrogen gas.
Environmental effect	Not found.
Possible state of emergency	Damages or short-circuits may occur due to external mechanical or electrical pressures.

(2) First-aid measure

Inhalation	If a person inhales the vapor of the substance due to the battery damage, move the person immediately to fresh air. If the person feels sick, consult a doctor immediately.
Skin contact	If the content of the battery attaches to human skin, wash off immediately with water and soap. If skin irritation persists, consult a doctor.
Eye contact	In case of contact with eyes due to the battery damage, rinse immediately with a plenty of water for at least 15 minutes and then consult a doctor.
Ingestion	If swallowed, consult a doctor immediately.

(3) Fire-fighting measure

Appropriate fire-extinguisher	Dry sand, dry chemical, graphite powder or carbon dioxide gas
Special fire-fighting measure	Keep the battery away from the fireplace to prevent fire spreading.
Protectors against fire	Fire-protection gloves, eye/face protector (face mask), body/skin protective cloth

(4) Measure for leakage

Environmental precaution	Dispose of them immediately because strong odors are produced when left for a long time.
How to remove	Get them absorbed into dry sand and then collect the sand in an empty container.

(5) Handling and storage

Handling	Cautions for safety handling	Do not peel the external tube or damage it. Do not dispose of the battery in fire or expose it to heat. Do not immerse the battery in water or get it wet. Do not throw the battery. Do not disassemble, modify or transform the battery. Do not short-circuit the battery.
Storage	Appropriate storage condition Material to avoid	Avoid direct sunlight, high temperature and high humidity. (Recommended temp. range: +5 to +35°C, humidity: 70%RH or less) Flammable or conductive material (Metal: may cause a short-circuit)

(6) Physical/chemical properties

	Physical form	Solid
	Shape	Cylinder type
	Smell	Odorless
Appearance	рН	Not applicable (insoluble)
Арреагапсе	Boiling point/Boiling range, Melting point, Decomposition temperature, Flash point	No information

(7) Stability and reactivity

Stability	Stable under normal handling condition.		
Condition to avoid	Do not mix multiple batteries with their terminals uninsulated. This may cause a short-circuit, resulting in heating, bursting or ignition.		
Hazardous decomposition products	Irritative or toxic gas is emitted in the case of fire.		

(8) Toxicological information

As the chemical substance is stored in a sealed metal container, the battery has no harmfulness. Just for reference, the table below describes the main substance of the battery.

< Lithium metal >

Acute toxicity	No information
Local effect	Corrosive action in case of skin contact

< Thionyl chloride >

Acute toxicity	Lc ₅₀ : 500ppm (inhaled administration to rat)	
Local effect	The lungs can be damaged by chronic cough, dyspnea and asthma.	

< Aluminum chloride >

Acute toxicity	L _{D50} : 3700ppm (oral administration to rat)
Local effect	Not found.

< Lithium chloride >

Acute toxicity	L _{D50} : 526ppm (oral administration to rat)
Local effect	The central nerves and kidney can be influenced.

< Carbon black >

Acute toxicity	L _{D50} : 2,000mg/kg > (rat)
Carcinogenicity	LARC group 2 (suspected of being carcinogenic)

(9) Ecological information

Mobility, Persistence/ Decomposability, Bio-	Not found.
accumulation potential, Ecological toxicity	

(10) Caution for disposal

Dispose of the battery following local laws or regulations.

Pack the battery properly to prevent a short-circuit and avoid contact with water.

Appendix 2.3 Forbiddance of Transporting Lithium Battery by Passenger Aircraft Provided in the Code of Federal Regulation

This regulation became effective from Dec.29, 2004. This law is a domestic law of the United States, however it also applies to the domestic flight and international flight departing from or arriving in the United States. Therefore, when transporting lithium batteries to the United State, or within the United State, the shipper must take measures required to transport lithium batteries. Refer to the Federal Register and the code of Federal Regulation for details.

When transporting primary lithium battery by cargo aircraft, indicate that transportation by passenger aircraft is forbidden on the exterior box.

"Lithium Metal batteries forbidden for transport aboard Passenger aircraft"

Appendix 2.4 California Code of Regulation "Best Management Practices for Perchlorate Materials"

When any products that contain primary lithium batteries with perchlorate are shipped to or transported through the State of California, they are subject to the above regulation. The following information must be indicated on the package, etc. of the products that contain primary lithium batteries (with a perchlorate content of 6 ppb or higher).

"Perchlorate Meterial-special handling may apply. See http://www.dtsc.ca.gov/hazardouswaste/perchlorate"

Appendix 2.5 Restriction Related to EU Battery Directive

EU Battery Directive (2006/66/EC) has been enforced since September 26th in 2008. Hereby, battery and machinery incorporating battery marketed in European Union countries must be in compliance with the EU Battery Directive. Lithium battery provided by MITSUBISHI are subjected to this restriction.

Appendix 2.5.1 Important Notes

Follow the instruction bellow as shipping products incorporating MITSUBISHI device.

- (1) When shipping products incorporating MITSUBISHI device any time later than September 26th, 2008, the symbol mark shown as Figure 1 in section "Information for End-user" is required to be attached on the machinery or on the package. Also, the explanation of the symbol must be added.
- (2) Machinery with battery and maintenance battery produced before the EU Battery Directive are also subjected to the restriction. When shipping those products to EU countries later than September 26th, 2008, follow the instruction explained in (1).

Appendix 2.5.2 Information for End-user

Figure 1

Note: This symbol mark is for EU countries only.

This symbol mark is according to the directive 2006/66/EC Article 20 Information for end-users and Annex II.

Your MITSUBISHI ELECTRIC product is designed and manufactured with high quality materials and components which can be recycled and/or reused. This symbol means that batteries and accumulators, at their end-of-life, should be disposed of separately from your household waste.

If a chemical symbol is printed beneath the symbol shown above, this chemical symbol means that the battery or accumulator contains a heavy metal at a certain concentration. This will be indicated as follows:Hg: mercury (0,0005%), Cd: cadmium (0,002%), Pb: lead (0,004%)

In the European Union there are separate collection systems for used batteries and accumulators. Please, dispose of batteries and accumulators correctly at your local community waste collection/recycling centre.

Please, help us to conserve the environment we live in!

Appendix 2 Restrictions for Lithium Batteries

Revision History

Date of revision	Manual No.	Revision details		
May 2013	IB(NA)1501136-A	First edition created.		
Apr. 2017	IB(NA)1501136-B	- The words "detector" were replaced by "encoder".		
		- "Introduction" was revised.		
		- "Servo Motor Type", "Drive Unit Type" and "Spindle Motor Type" were		
		revised.		
		- Specifications lists of servo motor were revised.		
		- "Multi Axis Drive Unit" and "AC Reactor" were revised.		
		- "Function Specifications list" was revised.		
		- "Speed Command Synchronous Control" was revised.		
		- "Deceleration and Stop Function at Power Failure" and "Retraction Function		
		at Power Failure" were added.		
		- "Shaft Characteristics", "Oil / Water Standards" and "Installation of Servo		
		Motor" in "Servo Motor" were revised.		
		- "Environmental Conditions" in "Drive Unit" was revised.		
		- "Servo Options" was revised.		
		- Manufacturer names and the contact information were updated.		
		- "Battery Option (ER6V-C119B, A6BAT, MDS-BTBOX-36)", "Ball Screw Side		
		Encoder (OSA105ET2A)" and "Machine Side Encoder" were revised.		
		- "Twin-head Magnetic Encoder (MBA Series)" was revised.		
		- "Spindle Options" was revised.		
		- "Twin-head Magnetic Encoder (MBE Series)" was revised.		
		- "Machine Side Encoder" was added in "Spindle Options".		
		- Example of wiring was added in "Serial Output Interface Unit for ABZ Analog Encoder MDS-B-HR".		
		- "List of Cables and Connectors" and "Optical Communication Cable		
		Specifications" were revised.		
		- "Example of Wires by Unit" and "Selection of Contactor" was revised.		
		- "Noise Filter" was revised.		
		- "Selection of the Servo Motor" was revised.		
		- "Cable and Connector Specifications" was revised.		
		- "Restrictions for Lithium Batteries" was revised.		
		- "EMC Installation Guidelines" and "Compliance with Restrictions in China"		
		were deleted.		
		- "EC Declaration of Conformity" was revised.		
		- "Instruction Manual for Compliance with UL/c-UL Standard" was added.		
		- "Global Service Network" was revised.		
		- Miswrite is corrected.		
Sep. 2022	IB(NA)1501136-C	- "Introduction" was revised.		
	, ,	- "Precautions for Safety" was revised.		
		- "1 Introduction" was revised.		
		- "2 Specifications" was revised.		
		- "3 Function Specifications" was revised.		
		- "4 Characteristics" was revised.		
		- "5 Dedicated Options" was revised.		
		- "6.2 Selection of Circuit Protector and Contactor" was revised.		
		- "6.3 Selection of Earth Leakage Breaker" was revised.		
		- "7.1 Selection of the Servo Motor" was revised.		
		l .		

Date of revision	Manual No.	Revision details
Sep. 2022	IB(NA)1501136-C	- "Appendix 1.1 Selection of Cable" was revised.
		- "Appendix 2.1 Restriction for Packing" was revised.
		- "Appendix 3 EC Declaration of Conformity" was deleted.
		- "Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard" was
		deleted.
		- "Global Service Network" was revised.
		- Miswrite is corrected.
		Michinic to corrected.

Global Service Network

AMERICA

MITSUBISHI ELECTRIC AUTOMATION INC. (AMERICA FA CENTER)

Central Region Service Center (Chicago)
500 CORPORATE WOODS PARKWAY, VERNON HILLS, ILLINOIS 60061, U.S.A

TEL: +1-847-478-2500 / FAX: +1-847-478-2650

EL: +1-84 (-4/8-2001) FAX: +1-84 (-4/8-2001)

South/East Region Service Center (Georgia)

1845 SATELLITE BOULEVARD STE. 450, DULUTH, GEORGIA 30097, U.S.A.
TEL +1-678-258-4529 / FAX +1-678-258-4519
Charleston, SC Service Satellite
Charlotte, NC Service Satellite
Raleigh, NC Service Satellite
Dallas, TX Service Satellite
Houston, TX Service Satellite
Houston, TX Service Satellite
Houston, TX Service Satellite
Hartford, CT Service Satellite
Kanavijite, TN Service Satellite

Hartford, CT Service Satellite Knoxville, TN Service Satellite Nashville, TN Service Satellite Baltimore, MD Service Satellite Pittsburg, PA Service Satellite Tampa, FL Service Satellite Syracuse, NY Service Satellite Orlando, FL Service Satellite Lafayette, LA Service Satellite Philadelphia, PA Service Satellite

Western Region Service Center (California)
5900-B KATELLA AVE. - 5900-A KATELLA AVE. CYPRESS, CALIFORNIA 90630, U.S.A.
TEL: +1-714-699-2625 / FAX: +1-847-478-2650
San Jose, CA Service Satellite
Seattle, WA Service Satellite
Denver, CO Service Satellite

Canada Region Service Center (Toronto) 4299 14TH AVENUE MARKHAM, ONTARIO L3R OJ2, CANADA TEL: +1-905-475-7728 / FAX: +1-905-475-7935

Edmonton, AB Service Satellite Montreal, QC Service Satellite

Mexico Region Service Center (Queretaro)
Parque Tecnológico Innovación Querétaro, Lateral Carretera Estatal 431, Km 2+200, Lote 91 Modulos 1 y 2
Hacienda la Machorra, CP 76246, El Marqués, Querétaro, México

TEL: +52-442-153-6050

Monterrey, NL Service Satellite Mexico City, DF Service Satellite

BRAZIL

MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA.

Votorantim Office
AV. GISELE CONSTANTINO, 1578, PARQUE BELA VISTA, VOTORANTIM-SP, BRAZIL CEP:18.110-650
TEL: +55-15-3023-9000

Blumenau, Santa Catarina Office

MITSUBISHI ELECTRIC EUROPE B.V.

European Service Headquarters (Dusseldorf, GERMANY)
Mitsubishi-Electric-Platz 1 40882 RATINGEN, GERMANY

TEL: +49-2102-486-5000 / FAX: +49-2102-486-5910

South Germany Service Center (Stuttgart)
SCHELMENWASENSTRASSE 16-20, 70567 STUTTGART, GERMANY
TEL: + 49-711-770598-0 / FAX: +49-711-770598-141

France Service Center (Paris)
2 RUE DE L'UNION, 92565 RUEIL-MALMAISON CEDEX, FRANCE

TEL: +33-1-41-02-83-13 / FAX: +33-1-49-01-07-25

France Service Satellite (Lyon)
240, ALLEE JACQUES MONOD 69800 SAINT PRIEST FRANCE
TEL: +33-1-41-02-83-13 / FAX: +33-1-49-01-07-25

Italy Service Center (Milan)
VIA ENERGY PARK 14, VIMERCATE 20871 (MB) ITALY
TEL: +39-039-6053-342 / FAX: +39-039-6053-206

Italy Service Satellite (Padova)
VIA G. SAVELLI, 24 - 35129 PADOVA, ITALY
TEL: +39-039-6053-342 / FAX: +39-039-6053-206

U.K. Service Center
TRAVELLERS LANE, HATFIELD, HERTFORDSHIRE, AL10 8XB, U.K.
TEL: +44-1707-288-780 / FAX: +44-1707-278-695

Spain Service Center CTRA. RUBI, 76-80 8174 SAINT CUGAT DEL VALLES, BARCELONA, SPAIN TEL: 343-935-65-2236 / FAX: +34-935-89-1579

Poland Service Center UL.KRAKOWSKA 50, 32-083 BALICE, POLAND TEL: +48-12-347-6500 / FAX: +48-12-630-4701

Hungary Service Center
BUDAÖRS OFFICE PARK, SZABADSÁG ÚT 117., 2040 BUDAÖRS, HUNGARY

TEL: +48-12-347-6500 / FAX: +48-12-630-4701

Turkey Service Center
MITSUBISHI ELECTRIC TURKEY ELEKTRİK ÜRÜNLERİ A.Ş
SERIFALI MAHALLESI KALE SOKAK. NO.41 34775
UMRANIYE, ISTANBUL, TURKEY
TEL: +90-216-969-2500 / FAX: +90-216-661-44-47

Czech Republic Service Center

AutoCont Control Systems s.r.o (Service Partner) KAFKOVA 1853/3, 702 00 OSTRAVA 2, CZECH REPUBLIC

TEL: +420-59-5691-185 / FAX: +420-59-5691-199

Russia Service Center
MITSUBISHI ELECTRIC RUSSIA LLC
LETNIKOVSKAYA STREET 2, BLD.1, 5TH 115114 MOSCOW, RUSSIA
TEL: +7-495-721-2070 / FAX: +7-495-721-2071

weuen Service Lenter HAMMARBACKEN 14, P.O.BOX 750 SE-19127, SOLLENTUNA, SWEDEN TEL: +46-8-6251200 / FAX: +46-8-6251014

Bulgaria Service Center AKHNATON Ltd. (Service Partner) 4 ANDREJ LJAPCHEV BLVD. POB 21, BG-1756 SOFIA, BULGARIA TEL: +359-2-8176009 / FAX: +359-2-9744061

Ukraine Service Center (Kiev)

CSC Automation Ltd. (Service Partner)
4 B, YEVHENA SVERSTYUKA STR., 02002 KIEV, UKRAINE TEL: +380-44-494-3346

Belarus Service Center TECHNIKON Ltd. (Service Partner) NEZAVISIMOSTI PR.177, 220125 MINSK, BELARUS TEL: +375-17-393-1177 / FAX: +375-17-393-0081

South Africa Service Center

Oddi Amica Service Center Adroit Technologies (Service Partner) 20 WATERFORD OFFICE PARK, WATERFORD DRIVE, CNR OF WITKOPPEN ROAD, FOURWAYS, JOHANNESBURG SOUTH AFRICA TEL: +27-11-658-8100 / FAX: +27-11-658-8101

MITSUBISHI ELECTRIC ASIA PTE. LTD. (ASEAN FA CENTER)

Singapore Service Center 307 ALEXANDRA ROAD MITSUBISHI ELECTRIC BUILDING SINGAPORE 159943 TEL: +65-6473-2308 / FAX: +65-6476-7439

PHILIPPINES

MELCO FACTORY AUTOMATION PHILIPPINES INC.

Head Office
128 LOPEZ RIZAL STREET, BRGY., HIGHWAY HILLS, MANDALUYONG CITY, MM PHILIPPINES 1550 TEL: +63-2-8256-8042 / FAX: +632-8637-2294

KM.23 WEST SERVICE ROAD SSH, CUPANG ,MUNTINLUPA CITY, PHILIPPINES TEL: +63-2-8807-0420 / FAX: +63-2-8842-5202

VIETNAM

MITSUBISHI ELECTRIC VIETNAM CO., LTD.

Vietnam Ho Chi Minh Service Center

11TH & 12TH FLOOR, VIETTEL TOWER B, 285 CACH MANG THANG 8 STREET, WARD 12, DISTRICT 10, HO CHI MINH CITY, VIETNAM

TEL: +84-28-3910-5945 / FAX: +84-28-3910-5947

Vietnam Hanoi Service Center 14TH FLOOR, CAPITAL TOWER, 109 TRAN HUNG DAO STREET, CUA NAM WARD, HOAN KIEM DISTRICT, HA NOI CITY, VIETNAM TEL: +84-24-3937-8075 / FAX: +84-24-3937-8076

PT. MITSUBISHI ELECTRIC INDONESIA Indonesia Service Center (Cikarang) JL. KENARI RAYA BLOK G2-07A, DELTA SILICON 5, LIPPO CIKARANG - BEKASI 17550, INDONESIA TEL: +62-21-2961-7797 / FAX: +62-21-2961-7794

MALAYSIA

MITSUBISHI ELECTRIC SALES MALAYSIA SDN. BHD.

Malaysia Service Center (Kuala Lumpur Service Center)
LOT 11, JALAN 219, P.O BOX 1036, 46860 PETALING JAYA, SELANGOR DARUL EHSAN, MALAYSIA
TEL: +60-3-7626-5032

Johor Bahru Service Satellite

Pulau Pinang Service Satellite

THAILAND

MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD.
Thailand Service Center (Bangkok)
101, TRUE DIGITAL PARK OFFICE, 5TH FLOOR, SUKHUMVIT ROAD, BANGCHAK, PHRA KHANONG, BANGKOK, 10260 THAILAND

TEL: +66-2-092-8600 / FAX: +66-2-043-1231-33

INDIA

MITSUBISHI ELECTRIC INDIA PVT., LTD.

MITSUBSHI ELECTRIC INDIA PYT., LTD.
CNC Technical Center (Bangalore)
PLOT NO. 56, 4TH MAIN ROAD, PEENYA PHASE 3,
PEENYA INDUSTRIAL AREA, BANGALORE 560058, KARNATAKA, INDIA

TEL: +91-80-4655-2121

Chennai Service Satellite

Coimbatore Service Satellite

Hyderabad Service Satellite

North India Service Center (Gurgaon)
PLOT 517, GROUND FLOOR, UDYOG VIHAR PHASE-III, GURUGRAM 122008, HARYANA, INDIA
TEL: +91-124-463-0300

Ludhiana Service Satellite

Panthnagar Service Satellite

Delhi Service Satellite

Jamshedpur Service Satellite

West India Service Center (Pune)
ICC-Devi GAURAV TECHNOLOGY PARK, UNIT NO.402, FOURTH FLOOR, NORTH WING,
SURVEY NUMBER 191-192 (P), NEXT to INDIAN CARD CLOTHING COMPANY Ltd,
OPP. VALLABH NAGAR, PIMPRI, PUNE- 411 018, MAHARASHTRA, INDIA

TEL: +91-20-6819-2274

Kolhapur Service Satellite Aurangabad Service Satellite Mumbai Service Satellite

West India Service Center (Ahmedabad)
204-209, 2ND FLOOR, 31FIVE, CORPORATE ROAD PRAHLADNAGAR,
AHMEDABAD -380015, GUJARAT, INDIA
TEL: + 91-79-6777-7888

Raikot Service Satellite

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. (CHINA FA CENTER) CNC Call Center TEL: +86-400-921-5130

Shanghai Service Center ihanghai Service Center
NO. 1386 HONG QIAO ROAD, CHANG NING QU, SHANGHAI 200336, CHINA
TEL: +86-21-2322-3030 / FAX: +86-21-2322-3000*8422
Qingdao Service Center
Suzhou Service Center
Wuhan Service Center

Ningbo Service Center

Hefei Service Center Beijing Service Center

Tianiin Service Center

Xian Service Center
Dalian Service Center
Chengdu Service Ce

ihenzhen Service Center LEVEL8, GALAXY WORLD TOWER B, 1 YABAO ROAD, LONGGANG DISTRICT, SHENZHEN 518129, CHINA

TEL: +86-755-2399-8272 / FAX: +86-755-8229-3686

Dongguan Service Cente Xiamen Service Center

MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. (KOREA FA CENTER)

8F GANGSEO HANGANG XI-TOWER A. 401 YANGCHEON-RO. GANGSEO-GU.

SECUL 07528 KOREA

GEOOL 0/528 KOREA TEL: +82-2-3660-9631 / FAX: +82-2-3664-8668 Korea Daegu Service Satellite

TAIWAN

MITSUBISHI ELECTRIC TAIWAN CO., LTD. (TAIWAN FA CENTER)

Taiwan Taichung Service Center
NO. 8-1, GONGYEQU 16th RD., XITUN DIST., TAICHUNG CITY 40768, TAIWAN

TEL: +886-4-2359-0688 / FAX: +886-4-2359-0689

Taiwan Taipei Service Center
11F, NO.88, SEC.6, ZHONGSHAN N. RD., SHILIN DIST., TAIPEI CITY 11155, TAIWAN TEL: +886-2-2833-5430 / FAX: +886-2-2833-5433

Taiwan Tainan Service Center
11F.-1, NO.30, ZHONGZHENG S. RD., YONGKANG DIST., TAINAN CITY 71067, TAIWAN TEL: +886-6-252-5030 / FAX: +886-6-252-5031

OCEANIA

MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD.

Oceania Service Center 348 VICTORIA ROAD, RYDALMERE, N.S.W. 2116 AUSTRALIA

TEL: +61-2-9684-7269/ FAX: +61-2-9684-7245

Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible.

Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

Duplication Prohibited

This manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 2013-2022 Mitsubishi Electric Corporation ALL RIGHTS RESERVED

MITSUBISHI ELECTRIC CORPORATION HEAD OFFICE: TOKYO BLDG.,2-7-3 MARUNOUCHI,CHIYODA-KU,TOKYO 100-8310,JAPAN

MODEL	MDS-DM2 Series
MODEL CODE	100-356
Manual No.	IB-1501136