MITSUBISHI Low-Voltage Air Circuit Breakers type AE
 CC-Link Interface unit (BIF-CC) INSTRUCTION MANUAL

ACB types covered in this manual

```
AE630-SW AE1000-SW AE1250-SW AE1600-SW
AE2000-SWA
AE2000-SW AE2500-SW AE3200-SW
AE4000-SWA
AE4000-SW AE5000-SW AE6300-SW
```

IMPORTANT NOTE: Before using these Series AE breakers, please read these instructions carefully, and make sure that all actual users also read them.

SAFETY PRECAUTIONS

Make sure to observe the following matters of safety

- Before using the device, make sure to read these safety precautions and instruction manual thoroughly. The cautionary items noted herein are of the utmost importance for the safe use of this device, and should always be strictly followed.
- Make sure that the final user receives this manual.
- This instruction manual is prepared for an electrical expert.

The following symbols have been used:

DANGER	Failure to follow these instructions may result in dangerous conditions, which in turn could lead to severe personal injury or even death.

CAUTION	Failure to follow these instructions may result in dangerous conditions, which could result in moderate to slight personal injury or damage to equipment and facilities

	This means prohibition. Never ignore this indication.
\square	Make sure to follow these instructions without fail.

© DANGER

- Do not use the device on the conditions over range. Failure to do so may result in fire.
- Do not touch the terminals. There is a risk of electrical shock.

\triangle CAUTION

A qualified electrician should install this equipment.

- Make sure to tighten the terminal screws to the torque specified in this manual. Failure to do so may result in malfunction or fire.
- Do not install in areas subject to high temperatures, high humidity, dust, corrosive gas, vibrations, shocks, etc. To do so may result in malfunction or fire.
- Install so that trash, concrete dust, iron filings or rainwater cannot get into the device interior. Failure to do so may result in malfunction or fire.

EMC Directive

In IEC60947-2, following EMC tests are required.

1) Radiated radio frequency emission
2) Radiated radio frequency electromagnetic field immunity

BIF-CC is confirmed to IEC60947-2 in accordance with following conditions.

1) BIF-CC shall be installed in the panel board. It effects not only for safe against electric shock but also to interrupt noise emission from the device.
2) When attaching the panel's top plate or base plate, mask painting and weld so that good surface contact can be made between the panel and plate.
3) To ensure good electrical contact with the panel board, mask the paint on the installation bolts of the inner plate in the panel board so that contact between surfaces can be ensured over the widest possible area.
4) Earth the panel board with a thick wire so that a low impedance connection to ground can be ensured even at high frequencies (*ground resistance: 100 ohm or less).
5) Provide an earthing point near the BIF-CC. Earth the FG terminal of BIF-CC with the thickest and shortest wire possible (*ground resistance: 100 ohm or less). The FG terminal function is to pass the noise generated in the BIF-CC or the noise from outside to the ground, so an impedance that is as low as possible must be ensured. Also, in case that the CC-Link cable is extracted to the outside of the panel board, earth it at point close to the exit of panel board. An appropriate installation has the effect of suppressing the generation of the electromagnetic induction and the high frequency noise.
6) If the measure described above does not provide sufficient shielding effects, fit ferrite cores to the power supply line of BIF-CC. We recommend ferrite core made by TDK (type: ZCAT2032-0930). For CC-Link cables, however, do not use ferrite cores.
7) CC-Link cable, Internal transmission cable and BIF-CON cable shall be kept distance more than 100 mm from the power distribution circuit. However, when parallel installation with the power distribution circuit is required, it is necessary to increase to 300 mm .

Dielectric voltage test

The dielectric voltage test should be executed according to the table below. Do not test in points other than a following table because unit is damaged.

Measuring point	Condition	Notes
Between main circuit and BIF-CC terminals (P1 and P2)	2500VAC 1min.	
Between main circuit and BIF-CC terminals (DA, DB, DG, SLD and FG)		1. Connect terminals (DA, DB, DG, SLD and FG) to the earth side. 2. Apply voltage across the entire terminals (DA, DB, DG, SLD and FG).
$\begin{aligned} & \text { Between BIF-CC terminals (P1 and P2) } \\ & \text { and BIF-CC terminals (DA, DB, DG, SLD and FG) } \end{aligned}$	1500VAC 1min.	
Between main circuit and BIF-CON terminals (C1, C2, A1, A2, U1 and U2)	2500VAC 1min.	
Between BIF-CC terminals (P1 and P2) and BIF-CON terminals (C1, C2, A1, A2, U1 and U2)	1500VAC 1min.	
Between BIF-CC terminals (DA, DB, DG, SLD and FG) and BIF-CON terminals (C1, C2, A1, A2, U1 and U2)		1. Connect terminals (DA, DB, DG, SLD and FG) to the earth side. 2. Apply voltage across the entire terminals (DA, DB, DG, SLD and FG).
BIF-CON terminals (C1 and C2), BIF-CON terminals (A1 and A2), BIF-CON terminals (U1 and U2), each other		

Guarantee

The period of guarantee is for 1 year from the sale date except in case of the failure has been caused by bad handling of the device.

- Table of Contents -

1. System Overview 5
2. Specifications
2.1 BIF-CC 6
2.2 BIF-CON (Option) 7
3. Part Names and Settings
3.1 BIF-CC 8
3.2 BIF-CON (Option) 12
4. Installation
4.1 IEC rail installation 16
4.2 Bracket installation 17
5. Communication items
5.1 Communication items 18
5.2 Measurement items (detail) 21
5.3 Setting items (detail) 21
6. Troubleshooting
6.1 Errors detected by BIF-CC 22
6.2 Errors detected by CC-Link master station 22
7. Outline dimensions 23
8. SERVICE NETWORK 24

1. System Overview

BIF-CC (CC-Link Interface unit) is used for monitoring and operating ACB with CC-Link network.

- Monitoring:

- Measurement items (current, voltage, power, harmonics, energy, etc)
- Trip and alarm information (present status, history)
- Breaker status (Breaker ON/OFF status, Position of Breaker (*BIF-CON and BIF-CL is required)).

Operating:

- Breaker control (ON/OFF/Spring charge) (*CC/SHT/MD and BIF-CON is required).
- Reset (Trip indicator, Maximum and Minimum measurement, history information).

Fig 1.1 System Overview

2. Specifications

2.1 BIF-CC

The general specifications of BIF-CC are shown in table 2.1.
Table 2.1 General specification of BIF-CC

Item	Specifications
Type name	BIF-CC
Power supply	100-240V AC•DC ($50 / 60 \mathrm{~Hz}$)
Power consumption	3VA (not including BIF-CON) 5VA (including BIF-CON)
External dimensions	100(H) \times 90(W) $\times 65(\mathrm{D})$
Operating ambient temperature	-5 to $+40^{\circ} \mathrm{C}$ (However, the average of temperature per 24 hours must not exceed $+35^{\circ} \mathrm{C}$)
Storage ambient temperature	-20 to $+60^{\circ} \mathrm{C}$ (However, the average of temperature per 24 hours must not exceed $+35^{\circ} \mathrm{C}$)
Operating/Storage ambient humidity	max. $85 \% \mathrm{RH}$ (no condensation) at the max. $+40^{\circ} \mathrm{C}$ in the clean air conditions.
Operating/Storage ambience	Do not use and store in atmospheres with sulfide gas, ammonia gas, etc. ($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO}_{2} \leq 0.1 \mathrm{ppm}, \mathrm{NH}_{3} \leq 0.25 \mathrm{ppm}$)
Operating altitude	max. 2000m (6600ft.)
Installation	35 mm IEC rail/Bracket

The functional specifications of BIF-CC are shown in table 2.2.
Table 2.2 specifications of BIF-CC

Item	
Number of occupied station	1 station
Station type	Remote device station
CC-Link version	CC-Link Ver. 1.10

1): The above data indicates the case that the Ver. 1.10 compatible CC-Link dedicated cable (110 ohm type) is used.

Maximum transmission distance depends on communication speed and/or kinds of CC-Link cable.
As for details, please refer to "CC-Link Cable Wiring Manual" published by CC-Link Partner Association (CLPA).
(2): If the system is configured by only BIF-CC, up to 42 units can be connected.

■3): CC-Link dedicated high-performance cables cannot be used with other cables such as CC-Link dedicated cables or Ver. 1.10 compatible CC-Link dedicated cables. As for details, refer to "CC-Link Cable Wiring Manual" published by CC-Link Partner Association (CLPA).

2.2 BIF-CON (Option)

The general specifications of BIF-CON are shown in table 2.3.

Table 2.3 General specifications of BIF-CON

Item		Specifications
Type name		BIF-CON
Power supply		Supplied from BIF-CC
Digital input	Number of channel	3 channels (INPUT1, INPUT2, INPUT3 general use)
	Isolation	Photo coupler isolation
	Signal level	12VDC, 30mA
Digital output	Number of channel	3 channels (*SHT ${ }^{1)} / \mathrm{CC} / \mathrm{MD}$ exclusive use)
	Isolation	Relay isolation
	Contact capacity	8A at 250V AC•DC (resistive load) ${ }^{1)}$
External dimensions		100(H) x 90(W) x 65(D)
Operating ambient temperature		-5 to $+40^{\circ} \mathrm{C}$ (However, the average of temperature per 24hours must not exceed $+35^{\circ} \mathrm{C}$)
Storage ambient temperature		-20 to $+60^{\circ} \mathrm{C}$ (However, the average of temperature per 24 hours must not exceed $+35^{\circ} \mathrm{C}$)
Operating/Storage ambient humidity		max. $85 \% \mathrm{RH}$ (no condensation) at the max. $+40^{\circ} \mathrm{C}$ in the clean air conditions.
Operating/Storage ambience		Do not use and store in atmospheres with sulfide gas, ammonia gas, etc. ($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO}_{2} \leq 0.1 \mathrm{ppm}, \mathrm{NH}_{3} \leq 0.25 \mathrm{ppm}$)
Operating altitude		max. 2000m (6600ft.)
Installation		35 mm IEC rail/Bracket

1): SHT (AC380-500V) cannot be used.

3. Part Names and Settings

3.1 BIF-CC

The unit overview is shown as below.

Fig 3.1: Front view

Fig 3.2: Side view
(A) LED

Name	Indication	
POWER	ON	Power is supplied correctly
	OFF	Power is not supplied
T ERR.	Flashing	Internal transmission error ${ }^{1)}$ has occurred
	OFF	Normal operating state
L RUN	ON	Normal operating state
	OFF	CC-Link error ${ }^{1)}$ has occurred
L ERR.	ON	Invalid baud rate or station number setting
	Flashing	CC-Link error ${ }^{1)}$ has occurred
	OFF	Normal operating state
SD	Flashing	Data sending state
	OFF	There is no data sent to the master station, or CC-Link error ${ }^{1)}$ has occurred
RD	ON	Data receiving state
	OFF	CC-Link error ${ }^{1)}$ has occurred

1): To check the cause of these errors, see "6 Troubleshooting".

(B) RESET Switch

RESET Switch is used to reset the BIF-CC without power supply off.
After changing the STATION NO. switch or B RATE switch while power supply is on, push this switch.

(C) Terminals

Name ${ }^{1)}$	Description	Screw ${ }^{2)}$ (Tighten torque)	Notes
P1, P2	100-240V AC•DC	$\begin{gathered} \text { M3 } \\ (0.5 \text { to } 0.6 \mathrm{~N} . \mathrm{m}) \end{gathered}$	1. Fuse or Circuit Breaker shall be installed in power supply line. 2. Do not connect to main circuit of breaker directly.
FG	Frame ground		1. This terminal has to be grounded to the protective ground conductor by a thick wire of low impedance (*ground resistance: 100 ohm or less). 2. Connect the FG terminal of each BIF-CC independently. If not use ground independently, use common ground according to the figure 3.3.
$\mathrm{DA}^{3)}$	CC-Link DA		CC-Link cable (CC-Link dedicated cable, CC-Link dedicated high-performance
$\mathrm{DB}^{3)}$	CC-Link DB		cable or Ver. 1.10 compatible CC-Link dedicated cable) should be used.
$\mathrm{DG}^{3)}$	CC-Link DG		Also, in wiring, satisfy the requirements of maximum transmission distance and
SLD ${ }^{3)}$	CC-Link SLD		cable. As for details, refer to "CC-Link Cable Wiring Manual" published by CC-Link Partner Association (CLPA).

1): Terminal assignment is shown in "7. Outline dimensions".
1): These terminals should be connected with wire using crimp-type terminal. The available crimp-type terminal is shown in figure 3.4
13): When BIF-CC is at the ends of the CC-Link line, the terminal resistor (*attached to CC-Link master unit) should be connected between "DA" and "DB" shown in figure 3.5. The terminal resistor varies depending on the types of cables used in the CC-Link system. As for details about CC-Link cable or terminal resistor, refer to "CC-Link System Master/Local Module User's Manual" or "CC-Link Cable Wiring Manual" published by CC-Link Partner Association (CLPA).

Fig 3.3: Ground connection

max. 6 mm

Fig 3.4: Crimp-type terminal

Keep distance more than 100 mm from the power distribution circuit.

Common ground \cdots NG

CC-Link dedicated high-performance cables cannot be used with other cables such as CC-Link dedicated cables or Ver. 1.10 compatible CC-Link dedicated cables. If used together, correct data transmission will not be guaranteed.

Fig 3.5: Connection of terminal resistor

(D) STATION NO. Switch

The BIF-CC supports the station number range from 1 through 64.
The station number is set in binary form shown as below sample.
The setting of switches is effective when power supply is turned ON.
After changing the switch while power supply is on, push RESET switch (see also "(B) RESET switch").

Sample setting:
ON: 20, 8, 1
Station number: $20+8+1=29$

Do not change the knobs with mechanical pencil. It may cause malfunction by carbon dust.

STATION NO

(E) B RATE Switch

This switch is used for baud rate setting.

Number	Baud rate	Notes
0	156 kbps	Factory setting
1	625 kbps	
2	2.5 Mbps	
3	5 Mbps	
4	10 Mbps	
5 to 9	Unusable	If the switch is set in these position, the "L ERR." LED lights up.

1): If the switch is changed during operation, it should be pushed RESET switch after changing the switch settings (see also "(B) RESET switch").

(F) Connector for AE-SW internal transmission

This connector is used for internal transmission with AE-SW.
Wiring connection is shown as below.
Note: Only one BIF-CC can be connected to AE-SW.

Internal transmission cable
(*attached to BIF-CC)

Fig 3.6: Wiring Connection
(G) Connector for I/O unit (BIF-CON) connection This connector is used for connection to I / O unit (BIF-CON). Wiring connection is shown as below.

Fig 3.7: Wiring Connection
(H) IEC rail latch

This is used to attach the BIF-CC to a IEC mounting rail. IEC rail installation is shown in "4.1 IEC rail installation".

3.2 BIF-CON (Option)

The unit overview is shown as below.

Fig 3.7: Front view

Fig 3.8: Side view
(A) LEDs

Name	Indication	
POWER	ON	Power is supplied from BIF-CC correctly
	OFF	Power is not supplied
SHT	ON	1a contact for SHT $^{1)}$ is closed (500ms)
	OFF	1a contact for SHT $^{1)}$ is open
CC	ON	1a contact for $\mathrm{CC}^{2)}$ is closed (500ms)
	OFF	1a contact for $\mathrm{CC}^{2)}$ is open
MD	ON	1a contact for $\mathrm{MD}^{3)}$ is closed (5s)
	OFF	1a contact for $\mathrm{MD}^{3)}$ is open
INPUT1	ON	INPUT1 signal is ON
	OFF	No INPUT1 signal
INPUT2	ON	INPUT2 signal is ON
	OFF	No INPUT2 signal
	ON	INPUT3 signal is ON
	OFF	No INPUT3 signal

1): SHT is a type name of $A E-S W$ Shunt trip device which open the main contact via remote control.

For details about SHT, please see "AE-SW INSTRUCTION MANUAL".
\square 2): CC is a type name of $A E-S W$ Closing coil which close the main contact via remote control.
For details about CC, please see "AE-SW INSTRUCTION MANUAL".
■3): MD is a type name of $A E-S W$ Motor charging device which charges the closing spring for motor operating. For details about MD, please see "AE-SW INSTRUCTION MANUAL".
(B) Terminals

Name ${ }^{1)}$	Description	Screw ${ }^{2)}$ (Tighten torque)
C1, C2 ${ }^{3)}$	Output terminals for SHT	$\begin{gathered} \mathrm{M} 3 \\ (0.5 \text { to } 0.6 \mathrm{~N} . \mathrm{m}) \end{gathered}$
A1, A2 ${ }^{3)}$	Output terminals for CC	
$\mathrm{U} 1, \mathrm{U} 2^{3)}$	Output terminals for MD	
K12	Digital input1 terminal	
K22	Digital input2 terminal	
K32	Digital input3 terminal	
K11	Input common	

1): Terminal assignment is shown in "7. Outline dimensions".
\square 2): These terminals should be connected with wire using crimp-type terminal. The available crimp-type terminal is shown in figure 3.10.
■3): These output terminals are exclusive to SHT/CC/MD.
■4): About the remote control via the CC-Link network, or local control with pushbuttons, the sample of user's wiring with BIF-CON and AE-SW is shown in figure 3.11.

Pushbuttons ${ }^{1)}$ are required only if $\mathrm{SHT} / \mathrm{CC} / \mathrm{MD}$ are driven by local operation ${ }^{2)}$
■1): Pushbuttons are not attached to BIF-CON.
Therefore, these should be prepared by the user.
■2): In case of local operation by pushbuttons,
REMOTE/LOCAL switch placed on the BIF-CON should be in LOCAL position for safety. (see also "(C) REMOTE/LOCAL switch").

These connection cables ${ }^{1)}$ are required if SHT/CC/MD are driven by remote control ${ }^{2)}$.
1): These cables are not attached to BIF-CON. Therefore, these should be prepared by the user. -2): In case of remote control, REMOTE/LOCAL switch placed on the BIF-CON should be in REMOTE position. (see also "(C) REMOTE/LOCAL switch"). are required if digital input functions are used.

■1): The switch that can

max. 6 mm

Fig 3.10: Crimp-type terminal

(C) REMOTE/LOCAL switch

The REMOTE/LOCAL switch is used for change over of remote/local control of AE-SW.
When this switch is in REMOTE position, the remote control (ACB ON/OFF and charging the spring) are available via CC-Link network.
When this switch is in LOCAL position, the remote control cannot be operated.
-(D) Connector for AE-SW Drawout position switch (BIF-CL) connection This connector is used for connection to BIF-CL (*Option).
For details about BIF-CL, see "Instruction Manual for AE-SW Drawout position switch".
Wiring connection is shown as below.

Fig 3.12: Wiring Connection
(E) Connector for BIF-CC connection

This connector is used for connection to BIF-CC.
Wiring connection is shown as below.

Fig 3.13 Wiring Connection
(F) IEC rail latch

This is used to attach the BIF-CON to a IEC mounting rail. IEC rail installation is shown in "4.1 IEC rail installation".

4. Installation

4.1 IEC rail installation

The 35 mm IEC rail (DIN rail) installing and removing procedure of BIF-CC and BIF-CON are shown as below.
The applicable IEC rail is shown in figure 4.1.
(A) Installing

Fig 4.1: 35 mm IEC rail

Fig 4.2: Installing
(B) Removing

Fig 4.3: Removing

4.2 Bracket installation

The mounting bracket installation of BIF-CC and BIF-CON are shown as below.

Fig 4.5: Mounting bracket Installation of BIF-CC/BIF-CON

5. Communication items

5.1 Communication items

In the table 5.1 shown below, the available communication items using BIF-CC are presented. Especially, the details of a measuring and setting items are described in "5.2 Measurement items (detail)" and " 5.3 Setting items (detail)", respectively.
As for programming by using MITSUBISHI PLC, refer to "Programming manual for $A E-S W$ CC-Link interface unit (BIF-CC)"

Table 5.1: Communication items ($1 / 3$)

Communication items			Required option ${ }^{1)}$	Descriptions
- Items for measurement (*For details, see "5.2 Measurement items (detail)").				
Load current	each phase	instantaneous	-	The meaning of terms used in left column are as follows. Oeach phase: phase 1 /phase $2 /$ phase 3 /pole N (*except for voltage) phase $1-\mathrm{N} /$ phase $2-\mathrm{N} /$ phase $3-\mathrm{N}$ (*in case of voltage) - each line: line $1-2$ /line $2-3$ /line $3-1$
		max. instantaneous		
		demand		
		max. demand		
	max. phase	demand		
		max. demand		
Leakage current		instantaneous	E1 and ZCT	Omax. phase/line: the maximum value of the each phase/line values - demand: approximately average of instantaneous value during a demand time -max. instantaneous/demand:
		max. instantaneous		
		demand		
		max. demand		
Voltage	each line	instantaneous	VT	max. instantaneous/demand value since last reset
		max. instantaneous		total harmonic rms (THR):
	each phase	instantaneous		total value from $2^{\text {nd }}$ to $20^{\text {th }}$ order harmonic rms
		max. instantaneous		total harmonic distortion (THD):
	max. line	instantaneous		This value is calculated as follows.
		max. instantaneous		THD=THR/(fundamental harmonic rms)
	max. phase	instantaneous		$\mathrm{n}^{\text {th }}$ order harmonic ratio:
		max. instantaneous		This value is calculated by (n - order harmonic rms)
Active power	total	instantaneous	VT	-The all min./max. values are stored in the EEPROM of Extension module (EX1) every 2 hours. ■The active and reactive energy are stored in the EEPROM of Extension module (EX1) when the power supply form Power supply module (P1-P5) is cut off.
		max. instantaneous		
		demand		
		max. demand		
Reactive power	total	instantaneous		
		max. instantaneous		
		demand		
		max. demand		
Apparent power	total	instantaneous		
		max. instantaneous		
		demand		
		max. demand		
Power factor		instantaneous	VT	
		min. instantaneous		
		max. instantaneous		
Active energy			VT	
Reactive energy		lag		
		lead		
Frequency		instantaneous	VT	
Harmonic rms current (total/fundamental $/ 3^{\text {rd }} / 5^{\text {th }} / \cdots / 19^{\text {th }}$)	each phase	instantaneous	VT	
	max. phase	max. instantaneous		
Harmonic distortion/ratio current (total $/ 3^{\text {rd }} / 5^{\text {th }} / \cdots / 19^{\text {th }}$)	each phase	instantaneous		
Trip current	LTD/STD/INST		-	Transmitted the trip current when trip has occurred. In the case of UVT trip, however, it is not measured (trip current set to 0).
	GFR		G1	
	ER		E1 and ZCT	

Table 5.1: Communication items (2/3)

Communication items		Required option ${ }^{1)}$	Descriptions
■Items for ETR			
Trip cause	LTD	-	Transmitted the cause using bit data when trip has occurred.
	STD		
	INST		
	GFR	G1	
	ER	E1 and ZCT	
	UVT	UVT	
Trip history	fault cause	-	The trip information (last 10 trips) are stored in the EEPROM. However, when Power supply module (P1-P5) is off, any trip information are not stored. Also, when the trip cause is UVT, current data is set to 0 .
	current		
	date and time of occurrence		
Alarm cause	PAL1 P.U.	-	Transmitted the cause using bit data when alarm has occurred.
	PAL1 OUT		
	PAL2 P.U.	AP	
	PAL2 OUT		
	OVER	-	
	GFR	G1	
	EPAL	E1 and ZCT	
	ER		
	TAL	TAL SENSOR	
Alarm history	alarm cause date and time of occurrence	-	When a setting of alarm holding method is "Self-Holding", the alarm information (last 10 alarms) except for PAL1 P.U., PAL2 P.U. and OVER can be stored in the EEPROM. On the other hand, when a setting of alarm holding method is "Auto Reset", any alarm information are not stored. Also, when Power supply module (P1-P5) is off, any alarm information are not stored.
Module info.	main setting module	-	Transmitted the kinds of module attached to the ETR.
	optional setting module		
	NP (Neutral pole protection level)		
Characteristics	In (CT rating)	-	Transmitted the setting of adjustable switches on the face of the ETR. As for Iep and Tep settings, it is able to change from BIF-CC.
	Ir (current setting)		
	Ip (pre-alarm pickup current)		
	Ip2 (2 ${ }^{\text {nd }}$ additional pre-alarm pickup current)	AP	
	Tp2 (2 ${ }^{\text {nd }}$ additional pre-alarm delay time)		
	Iu/IL (uninterrupted/LTD pickup current)	-	
	TL (LTD delay time)		
	Isd (STD pickup current)		
	Tsd (STD delay time)		
	Ii (INST pickup current)		
	Ig (GFR pickup current)	G1	
	Tg (GFR delay time)		
	Iep (EPAL pickup current)	E1 and ZCT	
	Tep (EPAL delay time)		
	I $\Delta \mathrm{n}$ (ER pickup current)		
	Te (ER delay time)		
Self diagnosis	A/D converter error	-	Transmitted the error information detected by ETR. If these error happens, please contact your nearest MITSUBISHI representative.
	EEPROM error		
	clock IC (RTC) error		
	main setting module error		
	option setting module error		
	CT Connector error		
	MCR switch error	MCR-SW	
	TAL sensor error	TAL SENSOR	
\square Items for breaker			
State of breaker	ACB ON	-	Transmitted the state of breaker.
	ACB OFF		
Position of breaker	connected	$\begin{aligned} & \mathrm{BIF}-\mathrm{CON} \\ & \text { and } \\ & \text { BIF-CL } \end{aligned}$	Transmitted the position of breaker in the cradle using BIF-CON and BIF-CL. These information can be monitored even if internal transmission error has occurred.
	test		
	disconnected		

Table 5.1: Communication items (3/3)

Communication items		Required option ${ }^{1)}$	Descriptions
■Items for setting (*For details, see "5.3 Setting items (detail)").			
Date and time	year/month/day/hour/minute/second	-	Monitoring and setting of date and time are available.
Demand time	load current	-	Set the demand time used for demand measuring values.
	leakage current	E1 and ZCT	
	power (active/reactive/apparent)	VT	
Alarm holding method		-	Set the alarm holding method. When a setting of alarm holding method is "auto reset", the active alarm status will return to normal state automatically if load current falls below the pickup level. On the other hand, when a setting of alarm holding method is "self-holding", the alarm status will remain until it is reset by reset order even if load current falls below the pickup level. However, PAL1 P.U., PAL2 P.U., OVER and TAL are always returned to normal state automatically whether "auto reset" or "self-holding".
EPAL	Iep	E1 and ZCT	Sets the EPAL setting values.
	Tep		
-Items for resetting			
Trip and alarm status		-	Reset the active trip and alarm status.
Trip and alarm history			Reset the trip and alarm history. In this case, the active trip and alarm status are also reset.
All max./min. measuring values			Reset all max./min. measuring values. However, the energy values are not reset.
Energy values			Reset energy values (Wh and varh values).
All items			All items that can be reset (all items described above) are reset
-Items for input/output contacts			
Inputs	digital input (*3 channels)	BIF-CON	These information can be monitored even if internal transmission error has occurred.
Outputs	for SHT drive	BIF-CON and SHT	By using BIF-CON, it is able to drive the SHT/CC/MD via CC-Link network. In case that the internal transmission error has occurred, these orders are not available.
	for CC drive	BIF-CON and CC	
	for MD drive	BIF-CON and MD	

■1): For details about these accessories, please see "AE-SW CATALOG" or "AE-SW INSTRUCTION MANUAL".

5.2 Measurement items (detail)

The detailed specifications for measurement items are shown in table 5.2.

Table 5.2: Detailed specifications for measurement items

Items (Accuracy)		Unit	Measurement range	Phase-Wire ${ }^{1)}$		Cut off	
		3 ${ }^{\text {3 }}$ W		$3 \phi 4 \mathrm{~W}$			
Load current ($\pm 2.5 \%{ }^{5}$)			[0.1A] ($*$ In $<500 \mathrm{~A}$)	0 to $2 \times \ln$ [A]	\triangle	\bigcirc	$2.0 \%{ }^{5}$
		[A] (*In $\geq 500 \mathrm{~A})$					
Earth leakage ${ }^{2), 4)}\left(\pm 15 \%{ }^{5}\right)$		[mA]	0 to $2 \times I \Delta$ n_max [A]	\bigcirc	\bigcirc	3.0\% ${ }^{5}$	
Voltage ${ }^{4)}\left(\pm 2.5 \%{ }^{5}\right)$	line	[V]	0 to 725 [V]	\bigcirc	\bigcirc	10 V	
	phase	[V]	0 to 420 [V]	\times	\bigcirc	10V	
Power ${ }^{4}\left(\pm 2.5 \%{ }^{5}\right)$	active	[0.1kW] (*In< 1000A)	$\begin{aligned} & -\sqrt{3} \times(2 \times \operatorname{In}[\mathrm{A}]) \times 725[\mathrm{~V}] \\ & \text { to }+\sqrt{ } 3 \times(2 \times \operatorname{In}[\mathrm{A}]) \times 725 \\ & {[\mathrm{~V}]} \end{aligned}$	\bigcirc	\bigcirc	2.0\% ${ }^{5)}$	
		[kW] (*In $\geq 1000 \mathrm{~A})$					
	reactive	[0.1kvar] (*In< 1000A)	$\begin{aligned} & -\sqrt{3} \times(2 \times \operatorname{In}[\mathrm{A}]) \times 725[\mathrm{~V}] \\ & \text { to }+\sqrt{3} 3 \times(2 \times \operatorname{In}[\mathrm{A}]) \times 725 \\ & {[\mathrm{~V}]} \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	2.0\% ${ }^{5)}$	
		[kvar] (*In $\geq 1000 \mathrm{~A})$					
	apparent ${ }^{3)}$	[0.1kVA] (*In< 1000A)	0 to $+\sqrt{3} \times(2 \times \ln [\mathrm{A}]) \times 725[\mathrm{~V}]$	\bigcirc	\bigcirc	2.0\% ${ }^{5}$	
		[kVA] (*In $\geq 1000 \mathrm{~A})$					
Power factor ${ }^{4,7)}$ ($\left.\pm 5.0 \%{ }^{5}\right)^{\text {) }}$		[0.1\%]	$-50[\%]$ to $100[\%]$ to $+50[\%]$	\bigcirc	\bigcirc	-	
Energy ${ }^{4)}\left(\pm 2.5 \%{ }^{6}\right)$	active	[kWh]	0 to 99999999 [kWh]	\bigcirc	\bigcirc	0.4\% ${ }^{5)}$	
	reactive	[kvarh]	0 to 99999999 [kvarh]	\bigcirc	\bigcirc	0.4\% ${ }^{5)}$	
Harmonic current ($\pm 2.5 \%{ }^{5}$)	rms	[0.1A] (*) $\mathrm{n}<500 \mathrm{~A})$	0 to $2 \times \ln$ [A]	\triangle	\bigcirc	$2.0 \%{ }^{5)}$	
		[A] (*In $\geq 500 \mathrm{~A})$					
	distortion/ratio	[0.1\%]	0 to 200 [\%]	\triangle	\bigcirc	-	
Frequency ($\pm 2.5 \%{ }^{6}$)		[Hz]	45 to 65 [Hz$]$	\bigcirc	\bigcirc	-	
Trip current ($\pm 20 \%{ }^{6}$)		[A] (*cause=LTD/STD/INST/GFR)	0 to $20 \times$ In [A]	\bigcirc	\bigcirc	-	
		[mA] (*cause=ER)	0 to $2 \times I \Delta$ n_max [A]				

1): "○", " \times " and " \triangle " represents "available", "not available" and "available on phase 1 to phase 3 ", respectively.

■2): Including the accuracy of ZCT.
■3): When using at $3 \phi 3 \mathrm{~W}$ system, the apparent power is calculated by $(\sqrt{3} / 2) \times(\mathrm{I} 1 \times \mathrm{V} 12+\mathrm{I} 3 \times \mathrm{V} 23)$
Therefore, the accuracy may not be ensured in the unbalanced circuit.
■4): Rated voltage of measurement is 440 V . Rated power and energy of measurement is $\sqrt{3} \times \ln \times 440 \mathrm{~V}$
Rated earth leakage current of measurement is $I \Delta n_{_} \max (=10 \mathrm{~A})$. Rated power factor is 90 degrees.
5): Accuracy and cut off are defined as percentage of rated value.

■6): Accuracy is defined as percentage of true value.
-7): Power factor is measured for only fundamental wave. A waveform distortion is not included for power factor calculation.

5.3 Setting items (detail)

The detailed specifications for setting items are shown in table 5.3.

Table 5.3: Detailed specifications for setting items

Items		Setting range	Setting for shipment
Date and time	Year	00(2000) to 99(2099)	04(2004)
	Month	01 to 12	01
	Day	01 to 31	01
	Hour	00 to 23	00
	Minute	00 to 59	00
	Second	00 to 59	00
Demand time	Load current	```0s to 50s (*step: 10s)/ 1min to 15min (*step: 1min)/ 20min}/30\textrm{min```	2 min
	Leakage current		2 min
	Power		2 min
Alarm holding method		Auto reset/Self-holding	Auto reset
EPAL	Iep	$0^{1)} / 500 \mathrm{~mA} / 600 \mathrm{~mA} / 700 \mathrm{~mA} / \cdots / \mathrm{I} \Delta \mathrm{n}^{2)}(*$ step: 100 mA$)$	0(=OFF)
	Tep	$100 \mathrm{~ms} / 200 \mathrm{~ms} / \cdots / 3000 \mathrm{~ms}$ (*step: 100 ms)	3000 ms

1): When Iep is set to 0 , the EPAL function is disabled (*default setting).
(2): Iep must be set to I $\Delta \mathrm{n}$ or less.

6. Troubleshooting

In this chapter, the causes and corrective actions for errors that may occur when using BIF-CC are described. Please take action appropriately according to the following when the error occurs.
If the error is not canceled by the following actions, please contact your nearest MITSUBISHI representative.

6.1 Errors detected by BIF-CC

The errors detected by BIF-CC (LED indication) are shown in table 6.1.

Table 6.1: Causes and corrective actions for errors

Division	LED indication ${ }^{1)}$					Cause	Corrective action
	T ERR.	L RUN	L ERR.	SD	RD		
Internal transmission	(0)	-	-	-	-	Internal transmission error has occurred	Check the power supply of Power supply module (P1-P5). Check that there is no wire breakage in the internal transmission cable. Check that the internal transmission cable is wired properly.
CC-Link	-	0 0	0 0	0 0	0 0	CRC error has occurred	Check that the kinds of CC-Link cable, overall distance, station-to-station distance and terminal resistor are within the specified range. \square Check for wire breakage, a short, reversed connection of CC-Link cable. \square Earth the FG terminal of BIF-CC without fail.
	-	\bigcirc	(0)	(0)	\bigcirc	Invalid baud rate or station number setting	\square Check that the STATION NO. or B RATE switch is not outside the setting range.
		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	-	\bigcirc	\bigcirc	(\bigcirc	Hardware fault	\square Switch power on again.

6.2 Errors detected by CC-Link master station

The errors detected by CC-Link master station (detected by the reply data from BIF-CC) are shown in table 6.2.

Table 6.2: Causes and corrective actions for errors

Error code ${ }^{1)}$		Cause	Corrective action
Decimal	Hexadecimal		
16	10h	Hardware error has occurred.	\square Check whether the internal transmission error ${ }^{2)}$ occurs. If it occurs, check the following: Power supply of Power supply module (P1-P5). There is no wire breakage in the internal transmission cable. The internal transmission cable is wired properly.
64	40h	The command number is outside the range.	\square After correcting the command number, send data again.
65	41h	The data group number is outside the range.	\square After correcting the data group number, send data again.
66	42h	The data channel number is outside the range.	Correct the data channel number and send data again, if it has mistaken. \square Check the power supply of Power supply module (P1-P5). Check that there is no wire breakage in the internal transmission cable. \square Check that the internal transmission cable is wired properly.
69	45h	The unit number is outside the range.	\square After correcting the unit number, send data again.
81	51h	The setting data set by setting command is outside the range.	\square After correcting the setting data, send data again.

1): About the errors other than described above, refer to manual of master station.

■2): When the power supply of BIF-CC is turned on under the state that the power supply is not supplied to ETR, the CC-Link communication is not started for 1 minute. After 1 minute, CC-Link communication will start, but internal transmission error will occur (T ERR. LED blinks).

7. Outline dimensions

-BIF-CC

-BIF-CON

8. SERVICE NETWORK

Country/Region	Corporation Name	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777
Bangladesh	PROGRESSIVE TRADING CORPORATION	Haque Tower, 2nd floor, 610/11, Jubilee Road, Chittagong, Bangladesh	+880-31-624-307
	ELECTRO MECH AUTOMATION\& ENGINEERING LTD.	Purana Paltan Lane, (VIP Road), Rokeya Mansion(6th floor), Room\#702,Dhaka-1000, Bangladesh	+880-28-321-791
Belarus	Tennikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375(0)17/210 4626
Belgium	Koning \& Hartman B.V.	Woluwelaan 31, BE-1800 Vilvoorde, Belgium	+32(0)/22570240
Cambodia	DHINIMEX CO.,LTD	\#245, St. Tep Phan, Phnom Penh, Cambodia	+855-23-997-725
Chile	Rhona S.A.	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600
China	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No. 1386 Hongqiao Road, Shanghai, 200336	+86-21-2322-3030
	Mitsubishi Electric Automation (China) Ltd. Beiding Branch	9/F, Office Tower1 Henderson Centre 18 Jianguomennei Dajie DongCheng district Beiling 100005	+86-10-6518-8830
	Mitsubishi Electric Automation (China) Ltd. ShenZhen Branch	Room 2512--2516, Great China International Exchange Square, Jintian Rd.S., Futian District, Shenzhen, 518034	+86-755-2399-8272
	Mitsubishi Electric Automation (China) Ltd. GuangZhou Branch	Room 1609, North Tower, The Hub Center, No. 1068, Xing Gang East Road, Haizhu District, Guang Zhou, China 510335	+86-20-8923-6730
	Mitsubishi Electric Automation (China) Ltd. ChengDu Branch	Block B, Room 407-408, Shangri-La Center Office Builiding, No. 9 BinJiang East Road, Chengdu, China 610021	+86-28-8446-8030
	Mitsubishi Electric Automation (Hongkong) Ltd.	10/F., Manulife Tower, 169 Electric Road, North Point, Hong Kong	+852-2887-8810
Colombia	Proelectrico Representaciones S.A.	Carrera 42 \# 75-367 Bod 109 Itagui Colombia	+57-4-4441284
Czech Republic	AUTOCONT CONTROL SYSTEMS S.R.O	Technologická 374/6, Cz-708 00 Ostrava - Pustkovec	+420 595691150
Denmark	BEIJER ELECTRONICS A/S	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE	+45(0)46/75 7666
Egypt	Cairo Electrical Group	9 , Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab, Cairo - Egypt	+20-2-27961337
France	Mitsubishi Electric Europe B.V.	25, Boulevard des Bouvets, F-92741 Nanterre Cedex	+33(0)1/55 685568
Germany	Mitsubishi Electric Europe B.V.	Gothaer Str. 8, 40880 Ratingen, Germany	+49(0) 2102486 -0
Greece	KALAMARAKIS - SAPOUNAS S.A.	IONIAS \& NEROMILOU STR., CHAMOMILOS ACHARNES, ATHENS, 13678 Greece	+30-2102 406000
	UTECO	5, MAVROGENOUS STR., 18542 PIRAEUS, Greece	+30-211-1206-900
Hungary	Meltrade Ltd.	Fertö utca 14. HU-1107 Budapest, Hungary	+36(0) 1-431-9726
India	Mitsubishi Electric India Private Limited	2nd Floor, Tower A\&B, Cyber Greens, DLF Cyber City, DLF Phase-III, Gurgaon - 122022 Haryana, India	+91-124-4630300
Indonesia	P. T. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	+353(0)1-4198800
Israel	Gino Industries Ltd.	26, Ophir Street IL-32235 Haifa, Israel	+972(0)4-867-0656
Italy	Mitsubishi Electric Europe B.V.	Viale Colleooni 7, I-20041 Agrate Brianza (MI), Italy	+39 039-60531
Kazakhstan	Kazpromavtomatika	ul. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000
Korea	Mitsubishi Electric Automation Korea Co., Ltd	1480-6, Gayang-Dong, Gangseo-Gu, Seoul, Korea	+82-2-3660-9572
Laos	AROUNKIT CORPORATION IMPORT. EXPORT SOLE CO., LTD	SAPHANMO VILLAGE. SAYSETHA DISTRICT, VIENTIANE CAPITAL, LAOS	+856-20-415899
Lebanon	Comptoir d'Electricite Generale-LLiban	Cebaco Center - Block A Autostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+961-1-240445
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370(0)45-582-728
Malaysia	Mittric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam, Selangor, Malaysia	+603-5569-3748
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356(0)21-697-816
Maroco	SCHIELE MAROC	KM 7,2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+212661 451596
Myanmar	Peace Myanmar Electric Co.,Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161, Yangon, Myanmar	+95-(0)1-202589
Nepal	Watti Volt House	KHA 2-65, Volt House Dililibazar Post Box: 2108, Kathmandu, Nepal	+977-1-4411330
Netherlands	Imtech Marine \& Offshore B.V.	Sluisjesdijk 155, NL-3087 AG Rotterdam, Netherlands	+31(0)10-487-19 11
North America	Mitsubishi Electric Automation, Inc.	500 Corporate Woods Parkway, Vernon Hills, IL 60061 USA	+847-478-2100
Norway	Scanelec AS	Leirvikasen 43B, NO-5179 Godvik, Norway	+47(0)55-506000
Middle East Arab Countries \& Cyprus	Comptoir d'Electricite Generale-International- S.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430
Pakistan	Prince Electric Co.	2-P, GULBERG II, LAHORE - 54660 PAKISTAN	$\begin{aligned} & +92-(0) 42-35752323 \\ & +92-(0) 42-35753373 \\ & \hline \end{aligned}$
	AL-KAMAL GROUP	Office No. 7 \& 8, 1st Floor, Barkat Ali Khan Center, 101 Circular Road, Lahore. Pakistan	+92-(0)42-37631632
Philippines	Edison Electric Integrated, Inc.	24th Fl. Galleria Corporate Center, Edsa Cr. Orrigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 50,32 -083 Balice, Poland	+48(0)12 6304700
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373(0)22-66-4242
Romania	Sirius Trading \& Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06
Russia	Mitsubishi Electric Europe B.V. Moscow Branch	52, bld. 3 Kosmodamianskaya Nab. 115054, Moscow, Russia	+7495 721-2070
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308
Slovakia	PROCONT, Presov	Kupelna 1, SK - 08001 Presov, Slovakia	+421(0)51-7580611
	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421(0)32 7430472
Slovenia	Inea RBT d.o.o.	Stegne 11, Sl-1000 Ljubljana, Slovenia	+386(0)1-513-8116
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubi 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34(0)93-565-3131
Sweden	Euro Energy Components AB	Järnvägsgatan $36, \mathrm{~S}-43424$ Kungsbacka, Sweden	+46(0)300-690040
Switzerland	TriElec AG	Muehlentalstrasse 136, CH-8201 Schafthausen	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd	5th FI., No.105, Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889
Thailand	United Trading \& Import Co., Ltd.	77/12 Bamrungmuang Road, Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074-EI Mourouj III Ben Arous, Tunisia	+216-71 474599
Turkey	GTS	Bayraktar Bulvarı Nutuk Sok. No:5, Posta Kutusu34384, TR-34775 Yukan Dudullu-Uemraniye, Istanbul, Turkey	+90(0)216 5263990
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatield, Herts. AL10 8XB, United Kingdom	+44(0) $1707-276100$
Uruguay	Fierro Vignoli S.A.	Avda. Uruguay 1274 Montevideo Uruguay	+598-2-902-0808
Venezuela	Adesco S.A.	Calle 7 La Urbina Edificio Los Robles Locales C y D Planta Baja, Caracas - Venezuela	+58-212-241-9952
Vietnam	Mitsubishi Electric Vietnam Co., Ltd. Head Office	Unit01-04, 10th Floor, Vincom Center, 72 Le Thanh Ton Street, District 1, Ho Chi Minh City, Vietnam	+84-8-3910-5945
	Mitsubishi Electric Vietnam Co., Ltd. Hanoi Branch	6 th Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi City, Vietnam	+84-4-3937-8075

三菱低圧気中遮断器 AE 形

MITSUBISH Low－Voltage Air Circuit Breakers type AE

三菱低压空气断路器

CC－Link インタフェースユニット（BIF－CC）
 CC－Link Interface unit（BIF－CC） CC－Link 接口模块（BIF－CC）

MITSUBISHI ELECTRIC CORPORATION

東京都千代田区丸の内 2－7－3（東京ビル）〒100－8310
HEAD OFFICE：TOKYO BLDG．，MARUNOUCHI，2－7－3，CHIYODAKU，TOKYO 100－8310．TELEX：J24532 CABLE：MELCO TOKYO
三菱電機株式会社 福山製作所
〒720－8647 広島県福山市緑町1番8号 TEL（084）921－3211 FAX（084）931－4714
MITSUBISHI ELECTRIC FUKUYAMA WORKS

