Electronic Multi-Measuring Instrument

MODEL

ME96SSEB-MB

User's Manual: Detailed Edition

- Before use, you should read this user's manual carefully to properly use this instrument.
Be sure to forward the manual to the end user.

The following table shows a list of the instrument accessories.
When unpacking your package, check all the contents.

Contents	Quantity	Specification
User's Manual (Digest version)	1	\square
	2	
Attachment lug (with a screw)	2	

Optional plug-in module

The optional plug-in modules cannot be attached to this product.
If you need a function such as analog output, CC-Link communication, digital input/output, MODBUS TCP communication, or logging function, use other model, ME96SSHB-MB or ME96SSRB-MB which can be combined with the optional plug-in modules.

- The instrument measures load status by wiring the secondary sides of VT (Voltage Transformer) and CT (Current Transformer) in the power receiving and distribution system and displays various measured values.
- The instrument supports Active Energy Class 0.5S.
- The password protection prevents undesired setting change and measured data deletion.
- The transmission function, MODBUS RTU communication, transmits measured data to superior monitoring systems.
- The instrument fulfills the requirements of the CE marking, UL standards, KC mark, and FCC/IC.
- The support function for checking input wiring enables to determine the wiring condition in the test mode. When either a voltage input or current input is incorrectly wired, the incorrect wiring part is displayed on the screen and it also shows a current phase angle, a voltage phase angle, and each value of active power, voltage, and current.

Trademark

MODBUS is a trademark of Schneider Electric USA Inc.
Other company and product names herein are trademarks or registered trademarks of their respective owners. In the text, trademark symbols such as "TM" and "®" may not be written.
Check your delivery 1
Optional plug-in module 1
Features 2
Trademark 2
Table of Contents 3
Safety Precautions 5
EMC Directive Instruction 9
Precautions for KC mark. 9
Table for measuring element code 10

1. Name and Function of Each Section 11
1.1. Name of Each Part 11
1.2. LCD Function. 12
1.3. Function of Operation Buttons 13
2. Each Mode Function 15
3. How to Set up 16
3.1. Setting Flow 16
3.2. Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current) 19
3.3. Setting Menu 2: Communication Settings (MODBUS RTU Communication Settings) 23
3.4. Setting Menu 3: Display Settings (Settings for Display of Active/Reactive Energy and Harmonic Measurement) 24
3.5. Setting Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Update Time). 25
3.6. Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function) 26
3.7. Setting Menu 6: No Settings 29
3.8. Setting Menu 7: No Settings 29
3.9. Setting Menu 8: Special Settings (Settings for Operating Time and IEC Mode) 30
3.10. Setting Confirmation Menu 1 to 9: How to Confirm the Settings in the Setting Menu 1 to 8, 9 Test Mode32
3.11. Initialization of Related Items by Changing a Setting 33
3.12. Initialization of All Settings 33
3.13. Settings for Special Display Pattern P00 34
3.14. Example for Easy Setup 36
4. How to Use Test Mode 38
4.1. Test Menu 1: Communication Test 39
4.2. Test Menu 2 to 5 : No Test Menu 40
4.3. Test Menu 6: Functions for Determining Incorrect Wiring 40
4.3.1. Incorrect Wiring Patterns Detected by (1)Pattern display of incorrect wiring 43
5. Operation 46
5.1. Basic Operation 46
5.1.1. How to Switch the Measurement Screen 46
5.1.2. How to Switch Phase Display 46
5.1.3. How to Display in Cyclic Mode 47
5.1.4. Harmonics Display 47
5.1.5. Maximum/Minimum Value Display 48
5.1.6. How to Display Maximum/Minimum values 48
5.1.7. How to Clear the Maximum/Minimum Values 48
5.1.8. Active Energy/Reactive Energy/Apparent Energy Display 49
5.1.9. How to Change the Display Digit of Active/Reactive/Apparent Energy 49
5.1.10. How to Reset Active/Reactive/Apparent Energy to Zero 50
5.1.11. How to Measure Reactive Energy (2 quadrant/4 quadrant measurement) 50
5.1.12. Each Measuring Item Display during Power Transmission 51
5.1.13. Demand Time Period and Demand Value of Current demand 51
5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.) 52
5.2.1. Upper/Lower Limit Alarm Display and Action 52
5.2.2. How to Cancel the Upper/Lower Limit Alarm 53
5.2.3. How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm 53
5.2.4. Operating Time Display 53
5.2.5. How to Reset Operating Time to Zero 53
5.2.6. How to Prevent the Maximum Value Update by Motor Starting Current 54
5.2.7. Password Protection Setting 54
6. Others 55
6.1. Display Pattern List 55
6.2. Standard Value 57
6.3. Measuring Item 59
6.4. Instrument Operation 61
6.5. Troubleshooting 62
7. Installation 63
7.1. Dimensions 63
7.2. How to Install 64
7.2.1. Mounting Hole Dimensions 64
7.2.2. Mounting Position 64
7.2.3. Mounting and Fixing 64
7.3. How to Connect Wiring 65
7.3.1. Specifications on the Applicable Electrical Wire 65
7.3.2. Wiring of the Unit 65
7.3.3. Check the connection 65
7.4. Wiring Diagram 67
8. Specifications 72
8.1. Product Specifications 72
8.2. Compatible Standards 73
8.3. MODBUS RTU Communication Specifications 73
8.4. Setting Table (Factory Default Settings and Customer's Notes Settings) 74
9. Appendix 75
9.1. ME96SS Calculation Method (3-phase Unbalanced System with Neutral) 75
9.2. A List of Examples for Incorrect Wiring Display 76
9.2.1. 3-phase 4-wire System 76
9.2.2. 3-phase 3-wire System 85
9.2.3. 1-phase 3-wire System 92

Before use, read these instructions carefully to properly operate the instrument.
Be sure to follow the precautions described here for personnel and product safety.
Keep this manual ready to hand and accessible for future use at all times.
Be sure to forward the manual to the end user.
If you consider using the instrument for a special purpose such as nuclear power plants, aerospace, medical care, or passenger vehicles, consult with our sales representative.

The instructional icon in the manual is described as follows.

The caution icon (\triangle) on the main unit indicates that incorrect handling may cause hazardous conditions. Always follow the subsequent instructions (\triangle cammon) because they are important to personal safety. Failure to follow them may result in an electric shock, a fire, erroneous operation, or damage to the instrument. If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.

\triangle CAUION

The terminals of auxiliary power (MA, MB) and voltage input (P1, P2, P3, PN) have hazards of electric shock, explosion, or arc flash. Turn off the power supply of auxiliary power and input circuit and then handle the instrument.

Precautions on use environment and conditions
Do not use the instrument in the following circumstances:
Failure to follow the instruction may cause a malfunction or reduced product life time.

- The ambient temperature exceeds the range $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
- The average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- The relative humidity exceeds the range 0 to $85 \% \mathrm{RH}$, or condensing.
- The altitude exceeds 2000 m .
- Pollution Degree: more than 2 *Note 1
- Exposed to much dust, corrosive gas, salty environment, or oil mist
- Transient over voltage: 4000 V *Note 1
- Exposed to excessive vibration or impact
- Exposed to rain or water drops
- Exposed to direct sunlight
- Pieces of metal or inductive substances are scattered.
- Exposed to strong magnetic fields or large exogenous noise
*Note1: For details about the Pollution Degree and the Transient over voltage category, refer to EN61010-1:2010.
Grit, dust, and small insects cause poor contact or a failure such as insulation decline that caused by deposition and moisture absorption. Furthermore, in the area where the air contains conductive dust, a failure such as a product malfunction or insulation deterioration occurs in a relatively short time. In this case, you must take measures against it such as putting the instrument in an enclosed board. In addition, if the temperature inside the board rises, the measures must be undertaken as well.

Precautions on Installation and wiring
Be sure to read the instructions carefully before installation and wiring.

- A qualified electrician must install and wire the instrument for safety.
- Supply power to the instrument after completing its assembly work on a cabinet door.
- The instrument is to be mounted on the cabinet door. All connections must be kept inside the cabinet.
- The following table shows the specifications on the input/output terminal.
-Auxiliary power supply and measuring element

Auxiliary power supply		$\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \mathrm{AC}(\pm 15 \%) 50 \mathrm{~Hz} \text { to } 60 \mathrm{~Hz} \\ & 100 \text { to } 240 \mathrm{~V} \text { DC }(-30 \%+15 \%) \end{aligned}$		MA, MB terminals
Measuring element	Voltage	3-phase 4-wire: max 277 V AC/480 V AC 3-phase 3-wire: (DELTA) max 220 V AC (STAR) max 440 V AC 1-phase 3-wire: max 220 V AC/440 V AC 1-phase 2-wire: (DELTA) max 220 V AC (STAR) max 440 V AC	Category III	P1, P2, P3, PN terminals
	Current	5 A (CT secondary side), $\max 30 \mathrm{~V}$ AC	Category III	$\begin{aligned} & +\mathrm{C} 1, \mathrm{C} 1,+\mathrm{C} 2, \\ & \mathrm{C} 2,+\mathrm{C} 3, \mathrm{C} 3 \\ & \text { terminals } \end{aligned}$
	Frequency	50 Hz or 60 Hz		

The current input terminals must be connected to a CT, external equipment, with basic insulation.
Be sure to continuously connect the terminals for voltage-measuring purpose and currentmeasuring purpose during operation.

■Others

MODBUS RTU communication	T/R+,T/R-,SG terminals	$\max 35 \mathrm{~V}$ DC

- Keep the protection sheet affixed to the front of the instrument during installation and wiring.
- Do not drop the instrument from high place. If it is dropped and the display cracks, do not touch the liquid leaking from the broken LCD or do not get it in your mouth. If you touch the liquid, rinse it off with soapy water at once.
- Do not work under live-line condition. Otherwise, an instrument failure, an electric shock, or a fire may be caused.
- When tapping or wiring, take care not to enter any foreign objects such as chips or wire pieces into the instrument.
- If you pull the wires with a strong force when connecting them to the terminals, the terminals may come off. (Tensile load: 39.2 N or less)
- Check the wiring diagram carefully. Inappropriate wiring can cause a failure of the instrument, an electric shock, or a fire.
- Use appropriate size wires. The use of an inappropriate size wire can cause a fire due to heat generation.
- Use crimp-type terminals compatible with the wire size. For details, refer to 7.3.1 Specifications on the Applicable Electrical Wire. The use of an inappropriate terminal can cause a malfunction, failure, or burnout of the instrument or a fire due to damage to the terminal or poor contact.
- Tighten the terminal screws with a specified torque and use a suitable pressure connector. For details, refer to 7.3.1Specifications on the Applicable Electrical Wire. Excessive tightening can cause damage to the terminals and screws.
- Be sure to confirm the wiring connections strictly after the connection. Poor connection can cause a malfunction of the instrument, an electric shock, or a fire.
- In order to prevent invasion of noise, MODBUS RTU communication cables, auxiliary power supply cables, and other signal cables must not be placed close to or bound together with power lines or high voltage lines. When lying parallel to the power lines or high voltage lines, refer to the following table for the separation distance. (Except the input part of the terminal block)

Conditions	Distance
Power lines of 600 V AC or less	300 mm or more
Other power lines	600 mm or more

Precautions on preparation before use

- Observe the use conditions and environment requirements for installation place.
- You must set up the instrument before use. Read the manual carefully to set it up correctly. If the setup is incorrectly done, the instrument will not be properly operated.
- Check the power rating of the instrument and then apply proper voltage.

Precautions on how to use

- When operating the instrument, check that active bare wires do not exist around it. If any bare wire exists, stop the operation immediately and then take appropriate action such as insulation protection.
- If a power outage occurs during the setup, the instrument will not be set up correctly. Set it up again after power recovery.

| - Do not disassemble or modify the instrument to use. Otherwise, a failure, an electric |
| :--- | :--- |
| shock, or a fire can be caused. |
| - Use the instrument within the rating specified in the manual. If you used it outside the |
| rating, it might cause not only a malfunction or failure of the instrument but also ignition |
| or burnout. |
| - Do not open the CT secondary side while the primary current is energized. When the CT |
| secondary side circuit is open, the primary current flows. However, the secondary |
| current does not flow. Therefore, a high voltage is generated at the CT secondary side |
| and the temperature rises, resulting in insulation breakdown in the CT secondary |
| winding. It may lead to burnout. |
| - When external equipment is connected to the external terminals, the instrument and |
| external equipment must not be powered and be used after the definitive assembly on |
| a cabinet door. |
| The rating of the terminal of external equipment should satisfy that of the external |
| terminal of the instrument. |

Precautions on maintenance

- Wipe dirt off the surface with a soft dry cloth.
- Do not leave a chemical cloth in contact with the instrument for a long time or do not wipe it with benzene, thinner, or alcohol.
- In order to properly use the instrument for a long time, conduct the following inspections:
(1) Daily maintenance
(1) No damage in the instrument
(2) No abnormality with LCD indicator
(3)No abnormal noise, smell or heat generation
(2) Periodical maintenance

Inspect the following item every six months to once a year.
(1) No looseness of installation and terminal block connection

\triangle CAUION

Be sure to conduct periodic inspection under the electric outage condition. Failure to follow the instruction may cause a failure of the instrument, an electric shock, or a fire. Tighten the terminals regularly to prevent a fire.

Precautions on storage

To store the instrument, turn off the power supplies of auxiliary power and input circuit, remove the wires from the terminals, and then put them in a plastic bag.
For long-time storage, avoid the following places. Otherwise, there is danger of an instrument failure or reduced product life time.

- The ambient temperature exceeds the range $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
- The average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- The relative humidity exceeds the range 0 to $85 \% \mathrm{RH}$, or condensing.
- Exposed to much dust, corrosive gas, salty environment, or oil mist.
- Exposed to excessive vibration or impact.
- Exposed to rain or water drops.
- Exposed to direct sunlight.
- Pieces of metal or inductive substances are scattered.

Warranty

- The warranty period is for one year from the date of your purchase or 18 months after the manufacturing date, whichever is earlier.
- During the warranty period, if any failure occurred in standard use that the product is used in the condition, method, and environment followed by the conditions and precautions described in the catalog and user's manual, we would repair the product without charge.
- Even within the warranty period, non-free repair is applied to the following cases.
(1) Failures caused by the customer's improper storage, handling, carelessness, or fault.
(2) Failures caused by faulty workmanship
(3) Failures due to faults in use or undue modification
(4) Failures due to force majeure such as a fire or abnormal voltage or due to natural disasters such as earthquakes, windstorms, or floods.
(5) Failures caused by the problem in question that could not be predicted with the technology available at the time the product was shipped.
- Our company shall not be liable to compensate for any loss arising from events not attributable to our company, customers' opportunity loss or lost earnings due to failure of the product, any loss, secondary loss, or accident caused by a special reason regardless of our company's predictability, damage to other products besides our products, or other operations

Replacement cycle of product
It is recommend that you renew the product every ten years although it depends on your use condition. The long-term use of the product may cause discoloration of the LCD or a product malfunction.

Disposal

- Treat the product properly as industrial waste.
- Batteries are not used for this product.

Packaging materials and user's manual
For reduction of environment load, cardboard is used for packaging materials and the manual is printed with recycled papers.

This section summarizes the precautions to have the cabinet constructed with the instrument conform to the EMC Directive.
However, the method of conformance to the EMC Directive and the judgment on whether or not the cabinet conforms to the EMC Directive must be determined finally by the manufacturer.

This instrument complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This instrument may not cause harmful interference, and (2) this instrument must accept any interference received, including interference that may cause undesired operation.
This equipment is class A as per EN 55011. This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

1. EMC Standards

- EN 61326-1
- EN 61000-3-2
- EN 61000-3-3

2. Installation (EMC directive)

The instrument is to be mounted on the panel of a cabinet.
Therefore, the installation to the cabinet is important not only for safety but also for conformance to EMC.
The instrument is examined in the following conditions.

- A conductive cabinet must be used.
- The conductivity of the six surfaces of the cabinet must be all ensured.
- The cabinet must be grounded by thick wires for low impedance.
- The hole drilling dimensions on the cabinet must be 10 cm or less in diameter.
- The terminals for protective earth and functional earth must be grounded by thick wires for low impedance. The use of the terminal for protective earth is important not only for safety but also for conformance to EMC.
- The connecting part of the terminal must be all placed inside the cabinet.
- Wiring outside the cabinet must be conducted with shielded cables, and the cables must be fixed to the panel with clamps. (Strip the covering of shielded cable by a portion of clamp installation and then mask the grounding part of the panel and clamp so as not to be painted.)

Precautions for KC mark

사 용 자 안 내 문
이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서
가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

-Precautionary note written in Korean

(This device has undergone a conformity assessment for use in a commercial environment and may cause radio wave interference when used in a home environment.
-Applicant for KC mark : MITSUBISHI ELECTRIC AUTOMATION KOREA CO.,LTD
■Manufacturer : MITSUBISHI ELECTRIC CORPORATION
Note 1: This is the notification for the KC mark (Korea Certification)

Table for measuring element code

The following table shows a list of measuring element codes used in the manual.

Measuring element code	Measuring element name
A1	Current, 1-phase
A2	Current, 2-phase
A3	Current, 3-phase
AN	Current, N-phase
Aavg	Current, average
DA1	Current demand, 1-phase
DA2	Current demand, 2-phase
DA3	Current demand, 3-phase
DAN	Current demand, N -phase
DAavg	Current demand, average
V12	Voltage, between 1-2 lines
V23	Voltage, between 2-3 lines
V31	Voltage, between 3-1 lines
V ${ }_{\text {AVG }}(\mathrm{L}-\mathrm{L})$	Voltage, average, line to line
V1N	Voltage,1N-phase
V2N	Voltage, 2 N -phase
V3N	Voltage, 3N-phase
$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{N})$	Voltage, average, line to neutral
W1	Active power, 1-phase
W2	Active power, 2-phase
W3	Active power, 3-phase
LW	Active power, total
var1	Reactive power, 1-phase
var2	Reactive power, 2-phase
var3	Reactive power, 3-phase
Evar	Reactive power, total
VA1	Apparent power, 1-phase
VA2	Apparent power, 2-phase
VA3	Apparent power, 3-phase
EVA	Apparent power, total
PF1	Power factor, 1-phase
PF2	Power factor, 2-phase
PF3	Power factor, 3-phase
EPF	Power factor, total
Hz	Frequency
Wh	Active energy
varh	Reactive energy
VAh	Apparent energy
HI	Harmonic current
HIn	Harmonic current, N-phase
HV	Harmonic voltage
THDi	Harmonic current total distortion ratio
THD ${ }_{\text {v }}$	Harmonic voltage total distortion ratio

1.1. Name of Each Part

■The front of the unit

■The back of the unit

1. Name and Function of Each Section

1.2. LCD Function

Note: The above display is an example for explanation.

No.	Name of each part	Function			
1	LEAD display	Light up on the reactive energy (imported lead)/ (exported lead) screen.			
2	LAG display	Light up on the reactive energy (imported lag)/ (exported lag) screen.			
3	Digital element display	Display measuring elements expressed in digital numbers			
4	Digital display	Display measured values in digital numbers			
5	Unit	Display the units of measured values			
6	Setup status	Light up in the setting mode Blink in the setting confirmation mode			
7	Test mode status	Light up in the test mode			
8	Clock status	Light up when operating time is displayed			
9	Upper/Iower limit alarm status	Blink when the upper/lower limit alarm is generating			
10	Communication status	Specification	ON	Blink	OFF
		MODBUS RTU communication	Normal	Communication error such as wrong address *1	Hardware error
		*1. For details, refer to 6.5 Troubleshooting.			
11	Harmonics	Light up when harmonic is displayed			
12	Metering status	Blink when imported active energy is measured *Note 1 *It appears on the active energy (imported) screen only.			

Note 1: The blinking cycle is constant regardless of measuring input size.

1. Name and Function of Each Section

1.3. Function of Operation Buttons

The function of each operation button varies depending on how to press the button.

<Meaning of marks>
O: Press, \square : Press for 1 second or more, ©: Press for 2 seconds or more, ——:Press simultaneously

Mode		Button name							Function	
		SET	-	+	RESET	MAX/MIN	PHASE	DISPLAY		
								\bigcirc	Switch the measurement screen.	
			\bigcirc					O	Switch the measurement screen in the reverse direction.	
							\bigcirc		Switch phase display.	
									Switch between the harmonic RMS value and distortion ratio on the harmonics display screen.	
						\bigcirc			Enter/Exit the Max/Min value screen.	
								(Enter the cyclic display mode for measurement screen. Refer to 5.1.3.	
							(Enter the cyclic display mode for phase. Refer to 5.1.3.	
									Switch between the harmonic RMS value and distortion ratio in cyclic mode on the harmonics display screen.	
									Change the units such as Wh, varh, and VAh or display the lower-digit enlarged view. Refer to 5.1.9.	
					(1)				Clear the maximum and minimum values displayed on the screen.	They are available on the Max/Min value screen.
				((1)				Clear maximum and minimum values for every item in every screen.	
		(0)-			(0)		-(Reset Wh, varh, and VAh to zero. All measured values are reset to zero simultaneously.	
					(1)				Reset operating time to zero. (The operating time displayed on the screen only)	
					\bigcirc				Reset the alarm displayed on the screen.	They are available only when set to manual alarm cancellation.
					(Reset all alarms at once. (For every item in every screen)	
					\bigcirc				Stop the backlight blinking caused by alarm only when set to backlight blinking.	
		(0)			-				Enter the setting mode.	
		(Enter the setting confirmation mode.	
					(0)		-		Enter the password protection screen.	
		\bigcirc							Determine the settings and then shift to the next settings.	
								\bigcirc	Return to the previous setting item.	
			\bigcirc \square	\bigcirc \square					Round up/down the setting value. Pressing for 1 second or more enables fast forward.	
		\square							Skip the settings and return to the setting menu screen.	
		\bigcirc							Reflect the setting change on the END screen.	
		\bigcirc							Cancel the setting change on the CANCEL screen.	
	$\overline{\text { OTO }}$					\square	$\square \square$		Restart the instrument on the CANCEL screen.	
	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \hline 0 \\ & \hline 0 \end{aligned}$				(0)		- ©		Initialize to the factory default settings on the CANCEL screen. Refer to 3.12 .	

Note: During backlight off mode, pressing any operation button first turns on the backlight. In addition, pressing any button again enables the use of the functions in the above table.

1.3. Function of Operation Buttons

§CAUTION	- When you execute a function such as 'Reset Max/Min value' or 'Reset Wh, varh, and VAh to zero', past data is deleted. If you need to keep the data, record the data before the reset operation. - When you execute 'Restart the instrument', the entire measurement function (measurement display, communication) will stop for a few seconds.

2. Each Mode Function

The instrument has the following operation modes.
When auxiliary power is supplied, the operating mode is first displayed.
Depending on the application, switch the operation mode to use.

Mode	Description	Reference
Operating mode	This is a normal operation mode to display each measured value in digital numerical number. In the operating mode, there are 'Present value display' that shows values at present and 'Max/Min value display' that shows maximum and minimum values in the past. In addition, on each display screen, the cyclic display mode, which automatically switches the display screen every 5 seconds, is available.	$\mathbf{5}$ Operation
Setting mode	This is a mode where you can change the settings for measurement function. In addition, on the CANCEL screen, which is the screen to cancel the setting change, the following special operations are available. - Restart the instrument. - Reset the settings to the factory default.	3 How to up Set
Setting confirmation mode (Test mode)	This is a mode where you can confirm the setting of each item. In this mode, you cannot change the settings. Therefore, it is possible to prevent from accidentally changing the settings. The mode provides test function available at startup of systems. - Communication Test: Without measurement input (voltage/current), fixed numerical data can be returned.	$\mathbf{3 . 1 0}$ How to Use Test Mode

Flow of each mode

Press for 2 seconds simultaneously.

3. How to Set up

3.1. Setting Flow

For measurement, you must set settings such as phase wire system, VT/Direct voltage, and CT primary current in the setting mode.
From the operating mode, enter the setting mode and then set necessary items. Any items not set remain in the factory default settings.
For normal use, only set up the items in the setting menu 1. For details on the settings, refer to 3.2 .
For details on the factory default settings, refer to 8.4.

\triangle CAUTION The setting change provides the initialization of the related setting items and measured data. Therefore, check that beforehand. For details, refer to $\mathbf{3 . 1 1}$ Initialization of Related Items by Changing a Setting.

3. How to Set up

3.1. Setting Flow

<Setting Procedure>

(1) Press the SET and RESET buttons simultaneously for 2 seconds to enter the setting mode.
(2) Select the setting menu number with the \oplus or Θ button.
(3) Press the seT button to determine the setting menu number.
(4) Set each setting item. (Refer to 3.2 to 3.9.)
(5) After completing all the settings, select End in the setting menu and then press the sET button.
(6) When the End screen appears, press the SET button again.

3. How to Set up

3.1. Setting Flow

Basic operation for settings

The following table shows a list of basic operations for settings.

Function	Operation	Note
Select a setting	Press \mp or \bigodot button	Fast-forward by pressing for 1 second or more
Determine a setting	Press SET button	When the setting is determined, the screen will shift to the next setting item.
Return to the previous setting item	Press ©ISPLAY button	The setting before return is enabled.
Return to the setting menu during setup	Press SET button for 1 second	

3. How to Set up

3.2. Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

You will set the phase wire system, display pattern, VT/Direct voltage, CT primary current, and demand time period.
In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.

Select 1 in the setting menu.
*Refer to the right figure.

Set the phase wire system according to the measurement target circuit.

3P4: 3-phase 4-wire

3P3. 2CT: 3-phase 3-wire (2CT)
3P3. 3CT: 3-phase 3-wire (3CT)
Note: The underlined shows the default setting.
(The same as below)

1P3. 1N2: 1-phase 3-wire(1N2 display)
1P3. 1N3: 1-phase 3-wire(1N3 display)
1P2: 1-phase 2-wire 4

Set the display pattern.

P02 is not selectable.
The following table shows measuring elements displayed on
 each display pattern. The measuring elements displayed on P01 and P02 are the same. For P01, four elements are displayed in one screen. For P02, each phase is displayed in one screen. For details, refer to 6.1.
P00 is a special display pattern to freely set display items. For details on the settings, refer to $\mathbf{3 . 1 3}$.

O: Displayable only by this setting
Δ : Other additional settings are necessary to display.
\square : Select 'P00' and set up the display order and position.

1) When set to 3-phase 4-wire system

Continued to the next page.

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

(3)VT/Direct voltage

(b) When set to 3-phase 3-wire system (2CT, 3CT) /1-phase 2-wire system (Line voltage)

(c) When set to 1-phase 3-wire system (1N2, 1N3)
(Phase voltage/Line voltage)

3. How to Set up

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

(4) $C T$ current

Continued form the previous page.
(2) For measurement with VT
<Secondary voltage setting>
(a) When set to 3-phase 4-wire system (Phase voltage)

(b) When set to 3-phase 3-wire (2CT, 3CT) /1-phase 2-wire (Line voltage)
$\rightarrow 100 \mathrm{~V} \longleftrightarrow 110 \mathrm{~V} \longleftrightarrow 220 \mathrm{~V} \downarrow$
<Primary voltage setting>
The factory default settings:
-For 3-phase 4-wire system $\Rightarrow 200 \mathrm{~V}$ (Phase voltage)
-For 3-phse 3-wire/1-phase 2-wire system $\Rightarrow 10000$ V
(Line voltage)

- From the upper digit, set the blinking digit with \oplus or \bigodot.
- By pressing (sET), move the setting digit, blinking one, to a lower digit.
- By pressing DISPLAY , move the setting digit, blinking one, to an upper digit.
- The setting ranges from 60 V to 750000 V . The setting unit is V .
*If you set out of range, the error message (E05) will appear.
If the error message appears, press (SET and then review the settings to set it again.
-By pressing SET at the lowest digit, shift to the next setting item.

Set the settings for CT.
You will set the primary and secondary current of CT.
<Secondary current setting>

Note: CT is Current Transformer.
<Primary current setting>
The factory default setting: 5.0 A

- From the upper digit, set the blinking digit with \oplus or Θ. -By pressing (sET, move the setting digit, blinking one, to a lower digit.
-By pressing Displar, move the setting digit, blinking one, to
 an upper digit.
-The setting ranges from 1.0 A to 30000.0 A .
The setting unit is A.
*If you set out of range, the error message (E05) will appear. If the error message appears, press SET and then review the settings to set it again.
-By pressing (seT at the lowest digit, shift to the next setting item.

3. How to Set up

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

If only the settings in the setting menu 1 are necessary to use, move to 5 Operation. If you use an additional function, set it in the setting menu 2 to 8 .

Note	If you change a setting in the setting menu 1, the maximum and minimum values of the related measuring elements will be reset. However, active/reactive energy will not be reset. For details, refer to 3.11 Initialization of Related Items by Changing a Setting.

3. How to Set up

3.3. Setting Menu 2: Communication Settings (MODBUS RTU Communication Settings)

In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.

3. How to Set up

3.4. Setting Menu 3: Display Settings (Settings for Display of Active/Reactive Energy and Harmonic Measurement)

This section describes how to set the special measurement of active/reactive energy and harmonic display. In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.

Set the display combination of active energy and reactive energy (imported/exported, lag/lead) and the measurement method of reactive energy.

Combination (Settings)	Active energy (Wh)		Reactive energy (varh)				Reactive energy measurement method
	Imported	Exported	Imported		Exported		
			lag	lead	lag	lead	
1	\bigcirc		O				2 quadra
II	\bigcirc		\bigcirc	\bigcirc			measurement
III	\bigcirc	\bigcirc	\bigcirc		\bigcirc		4 quadra
IV	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	measurement

Note: For details on how to measure reactive energy, refer to 5.1.11.
Combination I, II \Rightarrow They are suitable for measuring systems without a private power generator or measuring reactive power of capacitor load where power factor is around zero generally.
Combination III, IV \Rightarrow They are suitable for measuring systems with a private power generator.

When 'Wh' or 'varh' is selected in the display pattern of P 00 , it is displayed.

Set the harmonic display.

When you set to "on (Display)", harmonic measured values are displayed on the additional screen of display pattern.

According to 3.1 Setting Flow,
complete the settings or shift to other setting menu.

3. How to Set up

3.5. Setting Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Update Time)

This section describes how to check the model and set the backlight and display update time. These settings are not necessary for normal use
In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.

It is possible to change the setting for display update time of measured values. If the switch timing is too quickly for you to read the display value, set it to 1 second.
*The default setting is 0.5 second.
0.5 second $\longleftrightarrow 1$ second

According to 3.1 Setting Flow, complete the settings or shift to other setting menu.

3. How to Set up

3.6. Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

This section describes how to set the upper/lower limit alarm, backlight blinking during alarm, and motor starting current.
In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.
$\left(\begin{array}{c}\text { For details about each function, refer to the following: } \\ \text { - Upper/lower limit alarm } \rightarrow \text { See } 5.2 .1 \text { to } 5.2 .3 . \\ \text { - Motor starting current } \rightarrow \text { See 5.2.6. }\end{array}\right)$

Set a measuring element of upper/lower limit alarm item 1.
This setting enables upper/lower limit monitoring of measured values.
(1) When set to 3-phase 4-wire system

2) When set to other than 3-phase 4-wire system

Note1. The measuring elements not included in the display pattern you set can be selected.

3.6 Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

Set the alarm value of each of upper/lower limit alarm item 2 to 4.
The setting method is the same as (2)Upper/Lower limit alarm value 1.

Set the alarm delay time if you want to prevent an alarm caused by momentary overload or noise.
If you set this setting, an alarm will occur only when the upper/lower limit alarm value is exceeded and the situation continues for a period of alarm delay time.

Note: When 1 UPper/Lower limit alarm item 1 and 3Upper/Lower limit alarm item 2 to 4 are all set to "non", this setting is skipped.

Set the reset method to cancel an alarm.
Set the reset method to cancel an alarm.

Reset method (Settings)	Description (For details, refer to 5.2.1 to 5.2.2.)
Automatic (Auto)	When alarm-generating conditions disappear, the alarm is automatically reset.
Manual (HoLd)	Even if alarm-generating conditions disappear, the alarm is retained. To cancel the alarm, you must execute button operation.
Note: When 1 (1)Upper/Lower limit alarm item 1 and (3)Upper/Lower limit alarm item 2 to 4	

3. How to Set up

3.6 Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

According to 3.1 Setting Flow,
complete the settings or shift to other setting menu.

3. How to Set up

3.7. Setting Menu 6: No Settings

This setting item is not displayed because there is no corresponding function in this model.

Setting Menu	Even if you select 6 in the setting menu, the item is not displayed.

3.8. Setting Menu 7: No Settings

This setting item is not displayed because there is no corresponding function in this model.

Setting Menu	Even if you select 7 in the setting menu, the item is not displayed.	End 4535

3. How to Set up

3.9. Setting Menu 8: Special Settings (Settings for Operating Time and IEC Mode)

This section describes the settings of the operating time and IEC mode.
In the operating mode, press the SET and RESET buttons simultaneously for 2 seconds or more to enter the following operation.
$\binom{$ For details about each function, refer to the corresponding section. }{ Operating time \Rightarrow See 5.2.4 to 5.2.5. }
Select 8 in the setting menu.
*Refer to the right figure.
End
Setting Menu

Select a count target of operating time 1 from auxiliary power, current, or voltage.

Set the threshold of operating time 1 count.
When you select auxiliary power (AUX) at operating time1, this screen is not displayed.
(1) When you set the counting target of operating time 1 to current:

(Setting step 1\%)
*If you select "min", the operating time will be counted at current display of other than 0 A .

(2) When you set the counting target of operating time 1 to voltage.

*If you select "min", the operating time will be counted at voltage display of other than 0 V .

Select a count target of operating time 2 from auxiliary power, current, or voltage.

The setting method is the same as (2)Operating time 1 Counting target settings.

3. How to Set up

3.9. Setting Menu 8: Special Settings (Settings for Operating Time and IEC Mode)

3. How to Set up

3.10. Setting Confirmation Menu 1 to 9: How to Confirm the Settings in the Setting Menu 1 to

8, 9 Test Mode

1. Setting Confirmation

In the operating mode, press \square for 2 seconds or more to execute the operation.

Setting confirmation menu

In the setting confirmation menu, the screen switching and operation methods are the same as the setting menu 1 to 8 . For details, refer to each setting menu.

Note: In the setting confirmation mode, setting change is not possible.

Fnd?
 123
 455789

2. Test Mode

In the operating mode, press SET for 2 seconds or more and then set the setting confirmation menu number to ' 9 ' to enter the test mode.
For details on how to use the test mode, refer to 4 How to Use Test Mode.
3. How to Set up

3.11. Initialization of Related Items by Changing a Setting

When you change a setting, the related setting items and measured data (maximum and minimum values) will be initialized. For details, refer to the following table.

			Menu 1				Menu 5	Menu 8			
			$\begin{aligned} & \varepsilon \\ & 0 \\ & \omega \\ & \omega \\ & \omega \\ & \omega \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$		CT current						
	Menu 1	Phase wire system									
		Display pattern	\bigcirc								
		VT/Direct voltage	\bigcirc								
	Menu 5	Upper/Lower limit alarm item	\bigcirc								
		Upper/Lower limit alarm value	\bigcirc				\bigcirc				
	Menu 8	Threshold of Operating time 1 count target						\bigcirc			
		Threshold of Operating time 2 count target							\bigcirc		
	Current, Maximum/Minimum value		\bigcirc		\bigcirc	\bigcirc					
	Current demand, Maximum/Minimum value		\bigcirc		\bigcirc	\bigcirc					
	Voltage, Maximum/Minimum value		\bigcirc	\bigcirc							
	Active power, Maximum/Minimum value		\bigcirc	\bigcirc	\bigcirc	\bigcirc					
	Reactive power, Maximum/Minimum value		\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	
	Apparent power, Maximum/Minimum value		\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	
	Power factor, Maximum/Minimum value		\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	
	Frequency, Maximum/Minimum value		\bigcirc								
	Harmonic current, Maximum value		\bigcirc		\bigcirc	\bigcirc					
	Harmonic voltage, Maximum value		\bigcirc	\bigcirc							

- It turns to the default setting.

O: It turns to the default setting according to the phase wire system.
Note: For 1-phase 3-wire system, the setting change between '1N2 display' and '1N3 display' does not cause initialization.

3.12. Initialization of All Settings

The following operation enables to reset all settings to the factory default. It is only for the settings. Measured active energy, reactive energy, and operating time are not changed.
For details on the initialization of maximum and minimum values, refer to $\mathbf{3 . 1 1}$ Initialization of Related Items by Changing a Setting.
*For example, if the phase wire system is changed by initializing all settings, all maximum and minimum values will be reset.

To initialize all settings, display the CANCEL screen in the setting mode and then execute the following operation.
For details on how to display the CANCEL screen, refer to 3.1 Setting Flow.

3. How to Set up

3.13. Settings for Special Display Pattern P00

If you want to set a display pattern other than P01 or P02, P00 is available to freely set display items. This setting is conducted in the setting menu 1. The explanation here begins with the settings for P00 at 2)Display pattern in the setting menu 1. For other operations, which are not explained here, refer to 3.2.
(1) A maximum of 16 measuring items in four screens are available.

From the first line to the third line, each selectable item is A, DA, V, W, var, VA, PF, or Hz.
At the fourth line, Wh, - Wh, varh, and VAh are selectable.
(2) As an example, the following display pattern is used for explanation.

(3) How to set up

You will set up a display pattern.
(1) Select "P00."

Select "P00" with \bigodot or \bigodot and then press \subseteq.
(2) Set the first line to "DM A" in the screen 4-1. Select "DM A" with \dagger or \bigodot and then press SET.
(3) Set the second line to " V " in the screen 4-1 Select " V " with \dagger or \bigodot and then press SET. .
(4) Set the third line to no display in the screen 4-1. Select "---" with \dagger or \bigodot and then press SET.
(5) Set the fourth line to no display in the screen 4-1. Select "---" with \oplus or \bigodot and then press sET.

121月 4-1

3. How to Set up

3.13. Settings for Special Display Pattern P00

Continued form the previous page.
(6) You will set up the display of screen 4-2. Select "yES" with \oplus or \bigodot and then press SET.
*When the screen 2 is not necessary to display, select "no" and press sET.
(7) Set the first line to " W " in the screen 4-2. Select "W" with \oplus or \bigodot and then press SET .
(8) Set the second line to "var" in the screen 4-2. Select "var" with \dagger or \bigodot and then press SET .
(9) Set the third line to "PF" in the screen 4-2. Select "PF" with \bigodot or \bigodot and then press SET.
(10) Set the fourth line to " Wh " in the screen 4-2. Select "Wh" with \dagger or \bigodot and then press SET .

Return to the setting of the upper line in the screen 4-1.

3. How to Set up

3.14. Example for Easy Setup

The following example illustrates an easy setup.

Setting Example

- Model: ME96SSEB-MB
- Phase wire system: 3-phase 4-wire
- Measuring element: A, V, W, PF
- Input Voltage:

220/380 V

- CT primary current: 200 A
- CT Secondary current: 5 A
- MODBUS RTU: Address: 1, Baud rates: 19.2kbps, Parity: even, Stop bit: 1

Setting Procedure

\square shows the item where setting change is necessary.

4. How to Use Test Mode

The test mode has function useful for startup of systems.
The following table shows a list of functions in the test mode.

Test menu	Description
1. Communication test	For MODBUS RTU communication function, it is possible to return fixed numerical data without measurement (voltage/current) input. Use this for checking with the host system.
2. to 5. No function	-
	11Pattern display for incorrect wiring When either a voltage input or current input is incorrectly wired, this function automatically determines incorrect wiring and displays its
	part on the screen. It is easier to find out the incorrect part and
useful to check the connection. *Note	

*Note: The function cannot determine all incorrect wiring. If both a voltage input and a current input are incorrectly wired, a different pattern may be displayed.

Test procedure
(1) Press SET for 2 seconds to enter the setting confirmation mode.
(2) With \dagger or Θ, select ' 9 ' in the setting confirmation menu number
(3) Press SET to enter the test mode.
(4) Execute the test in each test menu. For details, refer to 4 How to Use Test Mode.

Test mode flow

Note: The screen momentarily goes off.

4. How to Use Test Mode

4.1. Test Menu 1: Communication Test

Set the setting confirmation menu number to ' 9 ' to enter the test mode In the test mode, the following operation is available.

Note: When executing the communication test, read the following document as well as this user's manual.
-Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Reference No. LSPM-0075)

[^0]4. How to Use Test Mode

4.2. Test Menu 2 to 5: No Test Menu

This test menu is not displayed because there is no corresponding function in this model.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

In the test mode, the following operation is available.
Set the test menu number to 6
*Refer to the right figure.

MERTI
 End

12345 雚

When either a voltage input or a current input is incorrectly wired, this function automatically determines incorrect wiring and the incorrect part is displayed on the screen. After checking it, press SET to return to the test menu.

Example of incorrect wiring:
Reverse connection of 1 side CT
*1. For 1-phase 3-wire system, the PN terminal is displayed as 'P2' on the screen. Read as 'PN.'
■Select a power factor condition (For 3-phase 3-wire system)
For 3-phase 3-wire system, the following screen may be displayed to select a power factor condition depending on the incorrect wiring situation.
With \dagger or Θ, select the power factor condition and then press SET.
When the settings are determined, the incorrect wiring part is displayed on the screen

Power factor: LAG
Power factor: Around
Note: Select a power factor condition by referring to the following points:
-Power factor: LAG $\rightarrow \quad$ Power factor is lagging for load of inductive machines. Assume 1 to lag 0.5.
-Power factor: Around $1 \rightarrow$ Power factor is around 1 due to resistance load or power factor improvement. Assume lead 0.866 to lag 0.866 .
-Power factor: LEAD $\rightarrow \quad$ Power factor is leading for capacitor panel. Assume lead 0 to 1.
*If the Err display appears at the bottom line of the LCD, press \bigodot and then select the power factor condition again.
■Check multiple alternatives (For 3-phase 3-wire/1-phase 3-wire/1-phase 2-wire system) There may be multiple patterns of incorrect wiring depending on the incorrect wiring situation. For the above three systems, press Displar to switch the screen and check the incorrect wiring patterns.

-There are multiple incorrect wiring parts (For 3-phase 4-wire system)
For this phase wire system, multiple incorrect wiring parts of voltage or those of current are detected and displayed on each screen.

Continued to the next page.

4.3. Test Menu 6:Functions for Determining Incorrect Wiring

Continued from the previous page. It is not possible to detect incorrect wiring If the screen is displayed as the following, it is not possible to detect incorrect wiring. Check measurement (voltage/current) input or press to check (2)Support display for determining incorrect wiring.	
Display	Description
01	This is low voltage. Apply about 70 percent or more of the direct voltage or secondary voltage setting.
not found$\| 02$	This is low current. Apply about 5 percent or more of the rated current of the instrument.
國	This is in the unbalanced state. For 3-phase 3-wire system, it is not possible to detect incorrect wiring if there is a 10 percent or more difference between values in 1-phase and 3-phase of current.
04	There may be multiple incorrect wiring parts. Check (2)Support display for determining incorrect wiring.

Phase angle, active power, voltage, and current will be displayed.
<For 3-phase 4-wire system>

Voltage
<For 3-phase 3-wire system>

Continued to the next page.
4.3. Test Menu 6:Functions for Determining Incorrect Wiring

Continued from the previous page.
-Phase angle
The phase angle is displayed clockwise based on V_{12} (0 degree).

$\angle \mathrm{V}_{32}$: Phase angle between V_{32} and V_{12}
$\angle l_{1}$: Phase angle between I_{1} and V_{12}
$\angle I_{3}$: Phase angle between I_{3} and V_{12}
Note: For 1-phase 3-wire, read each phase as follows.
$\mathrm{V}_{12} \rightarrow \mathrm{~V}_{1 \mathrm{~N}}$
$V_{32} \rightarrow V_{3 N}$
$\mathrm{I}_{3} \rightarrow \mathrm{I}_{2}$ or I_{3}

■ Display examples for incorrect wiring support function
For display examples of each incorrect wiring, refer to 9.2 A List of Examples for Incorrect Wiring Display.

Test Menu	<To shift to other test menu> \Rightarrow Select other test menu number and then press sET]. <To end the test mode> \Rightarrow Select End in the test menu number and then press The screen will return to the operating mode.

4. How to Use Test Mode

4.3. Test Menu 6:Functions for Determining Incorrect Wiring

4.3.1. Incorrect Wiring Patterns Detected by (1)Pattern display of incorrect wiring

This function is designed with the assumption that either a current input or a voltage input is incorrectly wired in positive phase sequence. It is not possible to determine all incorrect wiring
Dashed lines indicate incorrect wiring parts.
For 3-phase 4-wire system

*1. Correct measurement is possible even in reversed phase sequence.
*2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

4.3. Test Menu 6 : Functions for Determining Incorrect Wiring

4.3.1. Incorrect wiring patterns detected by (1)Pattern display of incorrect wiring

For 3-phase 3-wire system

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram
1	Normal	6	Reverse connection between terminals P1 and P2	11	Reverse connection of 1 side VT
2	Reverse connection of 1 side CT	7	Reverse connection between terminals P2 and P3	12	Reverse connection of 3 side VT
3	Reverse connection of 3 side CT	8	Reverse connection between terminals P1 and P3	13	Reverse connection of 1 side VT and 3 side V
4	Reverse connection of 1 side and 3 side CT	9	P2, P3, and P1 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order.	14	Reversed phase sequence *1
5	Switch between 1 side CT and 3 side CT	10	P3, P1, and P2 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order		

[^1]
4.3. Test Menu 6:Functions for Determining Incorrect Wiring

4.3.1. Incorrect wiring patterns detected by (1)Pattern display of incorrect wiring

For 1-phase 3-wire system *1

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram
1		5	Switch between 1 side CT and 3 side CT	8	Reverse connection between terminals P1 and P3
2		6	Reverse connection between terminals P1 and PN	9	$\mathrm{PN}, \mathrm{P} 3$, and P1 are connected to P1, PN, and P3 terminals of the instrument in that order.
3		7	Reverse connection between terminals PN and P3	10	P3, P1, and PN are connected to P1, PN, and P 3 terminals of the instrument in that order.
4	Reverse connection of 1 side and 3 side CT				

*1. On the screen, the PN terminal is displayed as 'P2'. Read as 'PN.'
■For1-phase 2-wire system

5.1. Basic Operation

The following charts illustrate how to use basic operation.

5.1.1. How to Switch the Measurement Screen

Press oisplar to switch the measurement screen.

The display item and order vary depending on the phase wire system, display pattern, and additional screen.
For details on the display pattern, refer to 6.1 Display Pattern List. In addition, by pressing oispLAr and Θ, the measurement screen is switched in reverse.

5.1.2. How to Switch Phase Display

Press PHASE to switch the phase of voltage/current.

The phase switching is not available in the following cases:

- Measuring element without phase (Frequency)
- Active power, reactive power, apparent power, and power factor for other than 3-phase 4-wire system - 1-phase 2 -wire system setting

Example for display switching of phase (Phase wire system: 3-phase 4-wire)

5. Operation

5.1. Basic Operation

5.1.3. How to Display in Cyclic Mode

In the cyclic mode, the measurement screen or phase display automatically switches every 5 seconds.
When you press DISPLAY for 2 seconds, the screen enters the cyclic display mode of measurement screen.
When you press phase for 2 seconds, the screen enters the cyclic display mode of phase.
To end the cyclic mode, press any button other than SET.
Note 1: Before shift to the cyclic mode, the screen blinks 3 times.
Note 2: In the cyclic display mode of measurement screen, the screen number is not displayed at switching display.
Note 3: On the Max/Min value screen, the cyclic mode is available.

Example of cyclic display (Phase wire system: 3P4W, Display pattern: P01)

5.1.4. Harmonics Display

The harmonic RMS value and distortion ratio (content rate) can be displayed.
To display them, you must set the harmonics display. For details on the settings, refer to 3.4.

	Harmonic current		Harmonic current N-phase		Harmonic voltage	
	Degree	RMS	Distortion Ratio value (Content rate)	RMS value	Distortion Ratio (Content rate)	RMS value
Distortion Ratio (Content rate)						
Harmonic total	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc

Display example
<Harmonic current total>

Note: Degree total is displayed as "ALL."

■How to switch the phase (Phase wire system: 3-phase 4-wire)
By pressing PHASE , the RMS value and distortion ratio (content rate) are switched.

Note: For harmonics measurement, the following phases are not measured to display.

Phase wire system		Harmonic current	Harmonic voltage
3-phase 3-wire	3CT	-	31-phase
	2CT	2-phase	31-phase
1-phase 3-wire	1N2 display	N-phase	12-phase
	1N3 display	N-phase	13-phase

5. Operation

5.1. Basic Operation

5.1.5. Maximum/Minimum Value Display

On the Max/Min value screen, a maximum value, present value, and minimum value are displayed in one screen by measuring item.

$$
\left(\begin{array}{l}
\text { However, for harmonics, the following maximum value only is displayed. } \\
\cdot \text { Harmonic current: The total RMS value of the phase where a value was the largest in every phase. } \\
\text { - Harmonic voltage: The total distortion ratio of the phase where a value was the largest in every phase. }
\end{array}\right)
$$

Display examples

5.1.6. How to Display Maximum/Minimum values

When you press Max/min , the screen switches to the Max/Min value display. By pressing (max/min again, the screen returns to the present value display.

Example for display switching between the present value and Max/Min value

On the Max/Min value screen, the following display switching is available as the present value screen.

Button operation	Function
Press	Measuring items are switched in the following order. However, measuring items that are not included in the phase wire system, display pattern, and additional screen are not displayed. $\square \mathrm{A} \rightarrow \mathrm{A}_{N} \rightarrow \mathrm{DA} \rightarrow \mathrm{DAN} \rightarrow \mathrm{V} \rightarrow \mathrm{W} \rightarrow$ var

5.1.7. How to Clear the Maximum/Minimum Values

On the Max/Min value screen, pressing RESET for 2 seconds clears the maximum and minimum values of the displayed measuring item and turns to the present values.
In addition, pressing RESET and \dagger simultaneously for 2 seconds on the screen clears all maximum and minimum values and turns to the present values.
When password protection is enabled, the maximum and minimum values are cleared after you enter the password.
Communication function also enables to clear all maximum and minimum values. In this case, password input is not necessary.

5. Operation

5.1. Basic Operation

5.1.8. Active Energy/Reactive Energy/Apparent Energy Display

Display type

The following table shows the display type of active/reactive/apparent energy based on full-load power.
Full-load power $[\mathrm{kW}]=\frac{\alpha \times(\text { VT primary voltage }) \times(\text { CT primary current })}{1000}$
*1. For 3-phase 4-wire system, VT primary voltage and direct voltage are calculated using phase voltage.

$$
\left(\begin{array}{rl}
\alpha: 1 & \text { 1-phase 2-wire } \\
2 & \text { 1-phase 3-wire } \\
\sqrt{3} & \text { 3-phase 3-wire } \\
3 & \text { 3-phase 4-wire }
\end{array}\right)
$$

*2. For 1-phase 3-wire system, VT primary voltage is calculated using phase voltage.
*3. For the direct voltage setting, direct voltage is used for calculation instead of VT primary voltage.
*4. For reactive energy and apparent energy, 'kW' in the above equation is read as 'kvar' and ' kVA ' respectively.

Full-load power [kW]	Display type	
	$\begin{array}{l}\text { Digital } \\ \text { Display }\end{array}$	Unit

*The unit can be

changed to 'M or none.'\end{array}\right]\)

at measuring active energy (imported). It becomes OFF or ON at no measuring point.
Display examples

(imported lag)

Reactive energy (imported lead) *1

Reactive energy (exported lag)*1

To display the screen of *1, you must change the settings for active/reactive energy measurement in 3.4 .

Reactive energy (exported lead)*1

5.1.9. How to Change the Display Digit of Active/Reactive/Apparent Energy

By changing the unit (M, k, or none) of active/reactive/apparent energy or by displaying the lower enlarged view, you can check the upper or lower digit of a measured value.
Press \mp and \bigodot simultaneously for 2 seconds to switch.
Example of switching active energy (imported): $012,345,678,901,234.567 \mathrm{~Wh}$

Note1: Active, reactive, and apparent energy that are not displayed on the screen will be also all changed to the same unit.
Note2: If the set value of VT primary voltage or that of CT primary current is large, the lower digit less than the measurement range will indicate ' 0 .'

5. Operation

5.1. Basic Operation

5.1.10. How to Reset Active/Reactive/Apparent Energy to Zero

Pressing SET, RESET, and PHASE simultaneously for 2 seconds resets active, reactive, and apparent energy values to zero.
When password protection is enabled, the values are reset after you enter the password.
In addition, communication function enables to reset all active, reactive, and apparent energy values to zero.
In this case, password input is not necessary.
(Note1: This function is available on the present value screen only.
Note2: The values that are not displayed on the screen will be also all reset to zero.

5.1.11. How to Measure Reactive Energy (2 quadrant/4 quadrant measurement)

For measurement of reactive energy, there are two types on how to take a quadrant as follows.
The measurement method of reactive energy can be switched at the active/reactive energy measurement setting in the setting menu 3.
In addition, when you set to IEC mode in the setting menu 8, 2 quadrant measurement is executed even if you set to 'Combination III' or 'Combination IV', which executes 4 quadrant measurement, at the active/reactive energy measurement setting.

When you select 4 quadrant measurement and IEC mode at each setting, 'Imported lag' and 'Exported lead' of reactive energy are displayed on the additional screen. However, they are not integrated.
For details on how to switch 2 quadrant/4 quadrant measurement, refer to 3.4 .
For details on how to switch the IEC mode setting, refer to 3.9.

Measurement method	Description
4 quadrant measurement	Each of four quadrants (Imported lag, Imported lead, Exported lag, and Exported lead) is measured as one division. It is suitable to measure systems with a private power generator. However, a dead region occurs at the boundary of each division. Accordingly, reactive energy cannot be measured at where power factor is near 1 or zero.
2 quadrant measurement	'Imported lag' and 'Exported lead' are measured as one division, and in the same way, 'Imported lead' and 'Exported lag' are measured as one division. Therefore, a dead region does not occur at where power factor is near zero, and reactive energy can be measured even there. It is suitable to measure systems without a private power generator and reactive energy of capacitor load where power factor is zero generally.

5. Operation

5.1. Basic Operation

5.1.12. Each Measuring Item Display during Power Transmission

The following table shows symbol display (\pm) for each measured value according to the power transmission state.
For details on how to switch 2 quadrant/4 quadrant measurement, refer to 3.4 .
For details on how to switch the IEC mode setting, refer to 3.9.

5.1.13. Demand Time Period and Demand Value of Current demand

The demand time period (t_{0}) represents a time period until a measured value (l_{0}) displays 95% of the input (I) when continuously energized by constant input (I). To display 100% of the input (I), approximately three times the time period (to) is required.

The demand value represents a measured display value with the above feature on time period and it indicates the overall average value within the demand time period.
The demand value changes over a relatively long time period. Therefore, it is not affected by input change for a short time. Accordingly, it is suitable to monitor overload of transformer.

5. Operation

5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

The following shows how to use the instrument depending on the application.

5.2.1. Upper/Lower Limit Alarm Display and Action

When the set upper/lower limit alarm value is exceeded, the display starts to blink.
*For details on how to set the upper/lower limit alarm, refer to 3.6.

Action in case of alarm

Alarm generating: When the set alarm value is exceeded, the display blinks. *Note
Alarm cancellation: When an alarm is cancelled, the display turns to the normal mode.
Note: When you set the alarm delay time, an alarm will generate if the set upper/lower limit alarm value is exceeded and this situation continues for the alarm delay time.

Alarm reset method		Measured value > Upper limit alarm value Measured value < Lower limit alarm value	Measured value < Upper limit alarm valueMeasured value > Lower limit alarm value	
Automatic (Auto)	Screen		Normal 2 $2-3$ 2 z	
Manual (HoLd)	Screen	ALARM and [HI or <LO blink (Alarm generating)	ALARM and $\overline{H I}\rangle$ or \langle LO light up (Alarm retention)	

Note1: If measuring elements of alarm generating are displayed on the screen, the digital value, unit (A, V, W, PF, Hz, \%, DM, and THD), and phase ($1,2,3$, and N) will be displayed according to the alarm status as the following table.

Alarm status	Digital value	Unit	Phase *
Alarm generating	Blink	Blink	Blink *
*When the phase of no alarm is			
displayed on the screen, it does not			
Alarm retention	Light up	Blink	Blink *
Alarm cancellation	Light up	Light up	Light up
blink.			

Note2: When the backlight blinking is set to 'on' in case of alarm, the backlight blinks at generating alarm.
Note3: On the Max/Min value screen, the present value, which is displayed at the middle line of digital display,
ALARM and $\overline{H I}$) or <LO blink.
Monitored phase of upper/lower limit alarm item
The phase for monitoring the upper/lower limit alarm varies depending on the measuring item.
For details, refer to the following table.

Upper/Lower limit alarm item	Monitored phase			
	3-phase 4-wire	3-phase 3-wire (3CT, 2CT)	1-phase 3-wire (1N2)	1-phase 3-wire (1N3)
A upper limit, DA upper limit	1, 2, 3	1, 2, 3	1, N, 2	1, N, 3
A lower limit, DA lower limit	1, 2, 3	1, 2, 3	1,2	1,3
A_{N} upper limit, DA_{N} upper limit	N	-	-	-
A_{N} lower limit, DAN lower limit	N	-	-	-
V (L-L) upper limit Note1	12, 23, 31	12, 23, 31	1N, 2N, 12	1N, 3N, 31
V (L-L) lower limit Note1	12, 23, 31	12, 23, 31	1N, 2N, 12	1N, 3N, 31
V (L-N) upper limit	1N, 2N, 3N	-	-	-
V (L-N) lower limit	1N, 2N, 3N	-	-	-
W upper limit, var upper limit, PF upper limit	Total	Total	Total	Total
W lower limit, var lower limit, PF lower limit	Total	Total	Total	Total
Hz upper limit	1N	12	1N	1N
Hz lower limit	1N	12	1N	1N
HI total upper limit	1, 2, 3	1, 2, 3 *Note2	1,2	1,3
HIN total upper limit	N	-	-	-
THDv upper limit	1N, 2N, 3N	12, 23	1N, 2N	1N, 3N

Note1: For 12-phase or 31-phase of 1-phase 3-wire system, alarm monitoring is executed based on twice the set upper/lower limit alarm value.
Note2: Harmonic current 2-phase is measured for 3-phase 3-wire system (3CT) only.
5. Operation
5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

5.2.2. How to Cancel the Upper/Lower Limit Alarm

The alarm cancellation method differs depending on the alarm reset setting. In addition to the following methods, communication function is available to cancel the upper and lower limit alarm.

Alarm reset method	How to cancel
Automatic (Auto)	When a measured value is below the set upper/lower limit alarm value, the alarm is automatically reset.
Manual (HoLd)	Even after a measured value is below the set upper/lower limit alarm value, the alarm is retained. After the measured value is below the alarm value, operate the following alarm reset. *Note: On the Max/Min value screen, it is not possible to operate the alarm reset. <To cancel the alarm of a selected item> Display the item of alarm generating and then press RESET to cancel the alarm. For the item that has phases such as current or voltage, you must press RESET on each phase to cancel the alarm. <To cancel alarms of all items> In the operating mode, press RRESET for 2 seconds to cancel all alarms at once.

Note: To prevent chattering, the determination whether a measured value is below the upper/lower limit alarm value is conducted out of dead region below the setting step of the alarm value.

5.2.3. How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm Press RESET to stop the backlight blinking.

5.2.4. Operating Time Display

According to the value set to the operating time count target (AUX, A, and V), measuring time is counted and displayed as operating time of load. To display it, you must set the operating time display.
Even when the operating time display is set to 'oFF (Not display)', operating time is counted.
*For details on the settings, refer to 3.9.
When the threshold of the following items you set for operating time count target is exceeded, operating time 1 and 2 are counted.

Item	3-phase 4-wire	1-phase 2-wire	Others
AUX (Auxiliary power)	AUX	AUX	AUX
A (Current)	Aavg	A	Aavg
V (Voltage)	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{N}$)	V	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{L})$

In the operating mode, when you are switching the measurement screen with DispLAY, operating time is displayed.

5.2.5. How to Reset Operating Time to Zero

When operating time 1 or operating time 2 is displayed on the screen, pressing RESET for 2 seconds resets the operating time to zero.
*The operating time displayed on the screen only is reset to zero.
When password protection is enabled, it is reset to zero after you enter the password.
In addition, communication function enables to reset all operating time to zero. In this case, password input is not necessary.

5. Operation

5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

5.2.6. How to Prevent the Maximum Value Update by Motor Starting Current

For motor current monitoring, the use of motor starting current delay function prevents the maximum value update of current, active power, reactive power, apparent power, and power factor and alarm generating that are caused by motor starting current. To use the motor starting current delay function, you must set it. For details on the settings, refer to 3.6.
-The action with motor starting current delay function

Note1: For motor starting current threshold, set a value lower than the lower limit value, considering a change in load current during operation.
Note2: When an input current value is below the motor starting current threshold, the minimum value update stops.

5.2.7. Password Protection Setting

In the operating mode, when you press RESET and PHASE simultaneously for 2 seconds or more and then enter the password, the password protection can be set.
The password of the factory default is '0000.' If you enter the wrong password, the screen will return to the password input display, where the highest digit blinks.
To switch from the password input screen to the operating mode, press DISPLAY at the highest digit in password input.
When the password protection is enabled, you must input the password when executing the following item such as setting mode switching or Max/Min value reset.

Password protected item

No.	Item
1	Enter the setting mode
2	Clear Max/Min values
3	Reset Wh, var, etc. to zero
4	Reset operating time to zero

- Password protection settings
(1) Set the password protection.
oFF \longleftrightarrow on
(Disable protection) (Enable protection)
(2) Change the password.
$\underset{\text { (Not change) }}{\text { no }} \underset{\text { (Change) }}{\longrightarrow} \mathrm{yES}$
Note1: When you select "no", the screen returns to the operating mode. Note2: When you select "yES", the setup password appears.
(3) Input a new password.
- Set the number for the blinking digit from the highest digit by pressing \dagger or \bigodot.
-Press SET to move the setting digit, blinking one, to a lower digit.
- Press Displar to move the setting digit, blinking one, to a higher digit.
-Press (SET to determine the password change.
-The setting range is 0000 to 9999 .

Important

If you forgot your password, you could not unlock the password by yourself in the field. Please contact your supplier.

6. Others

6.1. Display Pattern List

When you set the display pattern in the setting menu 1 and the additional screens in the setting menu 3 and 8 , the screen is switched from No. 1 in the following table in ascending order by pressing Displar
[When set to 3-phase 4-wire system]

Display pattern		Screen set by display pattern									
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
P01	First	A	A	A	W	A	DA				
	Second	V	V	V	var	AN	DAN				
	Third	W	var	VA	PF	Hz	V				
	Fourth	Wh	varh	VAh	Wh	Wh	Wh				
P02	First	A1	DA1	V1N	W1	var1	VA1	PF1	A	A	DA
	Second	A2	DA2	V2N	W2	var2	VA2	PF2	Hz	AN	DAN
	Third	A3	DA3	V3N	W3	var3	VA3	PF3	W	var	VA
	Fourth	Aavg	DAavg	VLN avg	W Σ	var \sum	VA乏	PF「	Wh	varh	VAh
P00	First	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
	Second	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
	Third	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
	Fourth	Arbitrary 2	Arbitrary 2	Arbitrary 2	Arbitrary 2						

Note1: For arbitrary 1, selectable items are A, AN, DA, DAN, V, W, var, VA, PF, and Hz.
For arbitrary $2, \mathrm{~Wh},-\mathrm{Wh}$, varh, and VAh are selectable.

Display pattern		Additional screen (Set in the setting menu 3 and 8)											
		No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17	No. 18	No. 19	No. 20	No. 21	No. 22
		Wh	$\left\|\begin{array}{c} \mathrm{Wh} \\ \text { (exported) } \end{array}\right\|$	varh	varh imported (lead)	varh exported (lag)	varh exported (lead))	VAh	Harmonic current	Harmonic current N-phase	Harmonic voltage	Operating time 1	Operating time 2
	First	-	-	-	-	-	-	-	1-phase value	N-phase value	1-phase value	-	-
	Second	Wh	Wh exported	varh	$\begin{gathered} \text { varh } \\ \text { imported } \\ (\text { lead }) \end{gathered}$	varhexported(lag)	varh exported (lead)	VAh	2-phase value	-	2-phase value	hour 1	hour 2
	Third								3-phase value	-	3-phase value	-	-
	Fourth								Degree	Degree	Degree	Operating time	Operating time

Note 2: When you add an additional screen, the screen number is added.
Note 3: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively. Note 4: The additional screens of Wh, varh, and VAh of POO are displayed by setting each item as display element.

6. Others

6.1. Display Pattern List

[When set to other than 3-phase 4-wire system]

Display pattern		Screen set by display pattern					
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
P01	First	A	A	A	W	A	
	Second	V	V	V	var	DA	
	Third	W	var	VA	PF	Hz	
	Fourth	Wh	varh	VAh	Wh	Wh	
P02	First	A1	DA1	V12	W	A	A
	Second	A2	DA2	V23	var	Hz	V
	Third	A3	DA3	V31	PF	var	VA
	Fourth	Aavg	DAavg	Vavg	Wh	varh	VAh
P00	First	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	Second	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	Third	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	Fourth	Arbitrary 2	Arbitrary 2	Arbitrary 2	Arbitrary 2		

Note1: For 1-phase 2-wire system, it is not possible to set the display pattern of P02.
Note2: For arbitrary 1, selectable items are A, DA, V, W, var, VA, PF, and Hz.
For arbitrary $2, \mathrm{~Wh},-\mathrm{Wh}$, varh, and VAh are selectable.
Note3: The phase shown in the display pattern of P02 is displayed on the screen according to the phase wire system as the following table.

Phase wire system				1-phase 3-wire (1N2)
Phase display	1-phase 3-wire (1N3)	3-phase 3-wire		
	1	1	1	1
	2	N	N	2
	3	2	3	3
	12	1 N	1 N	12
	23	2 N	3 N	23
	31	12	13	31

Display pattern		Additional screen (Set in the setting menu 3 and 8)										
		No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17
		Wh	$\left\|\begin{array}{c} \mathrm{Wh} \\ \text { (exported) } \end{array}\right\|$	varh	$\begin{gathered} \text { varh } \\ \text { imported } \\ \text { (lead) } \end{gathered}$	varh exported (lag)	$\begin{gathered} \text { varh } \\ \text { exported } \\ \text { (lead) } \end{gathered}$	VAh	Harmonic current	Harmonic voltage	Operating time 1	Operating time 2
	First	-	-	-	-	-	-	-	1-phase value	1-phase value	-	-
	Second	Wh	Wh exported	varh	$\begin{gathered} \text { varh } \\ \text { imported } \\ \text { (lead) } \end{gathered}$	varh exported (lag)	$\begin{gathered} \text { varh } \\ \text { exported } \\ \text { (lead) } \end{gathered}$	VAh	2-phase value	3-phase value	hour 1	hour 2
	Third								3-phase value	-	-	-
	Fourth								Degree	Degree	Operating time	Operating time

Note4: When you add an additional screen, the screen number is added.
Note5: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively.
Note6: The additional screens of Wh, varh, and VAh of P00 are displayed by setting each item as display element.
Note7: The display of additional screens of No. 14 and 15 in the above table varies depending on the setting of the phase wire system as the following table.

Phase display	Phase wire system	1-phase 2-wire	1-phase 3-wire	3-phase 3-wire (2CT)	3-phase 3-wire (3CT)
	1-phase value	O	O	O	0
	2-phase value	-	-	-	0
	3-phase value	-	O	O	0
Harmonic voltage	1-phase value	O	O	O	0
	3-phase value	-	O	O	0

Others

6.2. Standard Value

When you set active power and reactive power as alarm element, the setting range is determined by the standard value calculated using the following calculation formula.
-The standard value of active power/reactive power

Measuring element	Calculation method for standard value
Active power	VT ratio \times CT ratio \times Intrinsic power (100\%) kW
Reactive power	

Note1: When you set to 'Without VT (Voltage direct input)', the VT ratio is 1. For intrinsic power, refer to the following table. Note2: The calculated value is round to the nearest number as the table in the next page.

- Intrinsic power

Phase wire system	CT secondary current	Rated voltage		Intrinsic power value (100\%)
1-phase 2-wire	5 A	Direct input (Line voltage)	110 V	0.5 kW
			220 V	1.0 kW
			440 V	2.0 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.5 kW
			220 V	1.0 kW
	1 A	Direct input (Line voltage)	110 V	0.1 kW
			220 V	0.2 kW
			440 V	0.4 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.1 kW
			220 V	0.2 kW
1-phase 3-wire	5 A	Without VT (Line voltage)	220 V	1.0 kW
			440 V	2.0 kW
	1 A		220 V	0.2 kW
			440 V	0.4 kW
3-phase 3-wire	5 A	Direct input (Line voltage)	110 V	1.0 kW
			220 V	2.0 kW
			440 V	4.0 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	1.0 kW
			220 V	2.0 kW
	1 A	Direct input (Line voltage)	110 V	0.2 kW
			220 V	0.4 kW
			440 V	0.8 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.2 kW
			220 V	0.4 kW
3-phase 4-wire	5 A	Direct input	63.5/110 V	1.0 kW
			$\begin{aligned} & \hline 100 / 173 \mathrm{~V} \\ & 110 / 190 \mathrm{~V} \end{aligned}$	2.0 kW
			$\begin{aligned} & 220 / 380 \mathrm{~V} \\ & 230 / 400 \mathrm{~V} \\ & 240 / 415 \mathrm{~V} \\ & 254 / 440 \mathrm{~V} \end{aligned}$	4.0 kW
			$277 / 480 \mathrm{~V}$	5.0 kW
		With VT (Phase voltage)	63.5 V	1.0 kW
			$\begin{aligned} & 100 \mathrm{~V}, 110 \mathrm{~V}, \\ & 115 \mathrm{~V}, 120 \mathrm{~V} \end{aligned}$	2.0 kW
	1 A	Direct input	$63.5 / 110 \mathrm{~V}$	0.2 kW
			$\begin{aligned} & \hline 100 / 173 \mathrm{~V} \\ & 110 / 190 \mathrm{~V} \end{aligned}$	0.4 kW
			$\begin{aligned} & 220 / 380 \mathrm{~V} \\ & 240 / 415 \mathrm{~V} \\ & 254 / 440 \mathrm{~V} \end{aligned}$	0.8 kW
			$277 / 480 \mathrm{~V}$	1.0 kW
		With VT (Phase voltage)	63.5 V	0.2 kW
			$\begin{aligned} & 100 \mathrm{~V}, 110 \mathrm{~V}, \\ & 115 \mathrm{~V}, 120 \mathrm{~V} \\ & \hline \end{aligned}$	0.4 kW

Note: For reactive power and apparent power, read 'kW' in the above table as 'kvar' and 'kVA' respectively.

6. Others

6.2. Standard Value

The calculated value in the previous page is rounded to the nearest number as the following table.

Unit: W	Unit: W	Unit: kW	Unit: kW	Unit: MW	Unit: MW
8 W	300 W	9 kW	320 kW	9 MW	320 MW
9 W	320 W	9.6 kW	360 kW	9.6 MW	360 MW
9.6 W	360 W	10 kW	400 kW	10 MW	400 MW
10 W	400 W	12 kW	450 kW	12 MW	450 MW
12 W	450 W	15 kW	480 kW	15 MW	480 MW
15 W	480 W	16 kW	500 kW	16 MW	500 MW
16 W	500 W	18 kW	600 kW	18 MW	600 MW
18 W	600 W	20 kW	640 kW	20 MW	640 MW
20 W	640 W	22 kW	720 kW	22 MW	720 MW
22 W	720 W	24 kW	750 kW	24 MW	750 MW
24 W	750 W	25 kW	800 kW	25 MW	800 MW
25 W	800 W	30 kW	900 kW	30 MW	900 MW
30 W	900 W	32 kW	960 kW	32 MW	960 MW
32 W	960 W	36 kW	1000 kW	36 MW	1000 MW
36 W	1000 W	40 kW	1200 kW	40 MW	1200 MW
40 W	1200 W	45 kW	1500 kW	45 MW	1500 MW
45 W	1500 W	48 kW	1600 kW	48 MW	1600 MW
48 W	1600 W	50 kW	1800 kW	50 MW	1800 MW
50 W	1800 W	60 kW	2000 kW	60 MW	2000 MW
60 W	2000 W	64 kW	2200 kW	64 MW	2200 MW
64 W	2200 W	72 kW	2400 kW	72 MW	2400 MW
72 W	2400 W	75 kW	2500 kW	75 MW	2500 MW
75 W	2500 W	80 kW	3000 kW	80 MW	3000 MW
80 W	3000 W	90 kW	3200 kW	90 MW	3200 MW
90 W	3200 W	96 kW	3600 kW	96 MW	3600 MW
96 W	3600 W	100 kW	4000 kW	100 MW	4000 MW
100 W	4000 W	120 kW	4500 kW	120 MW	4500 MW
120 W	4500 W	150 kW	4800 kW	150 MW	4800 MW
150 W	4800 W	160 kW	5000 kW	160 MW	5000 MW
160 W	5000 W	180 kW	6000 kW	180 MW	6000 MW
180 W	6000 W	200 kW	6400 kW	200 MW	6400 MW
200 W	6400 W	220 kW	7200 kW	220 MW	7200 MW
220 W	7200 W	240 kW	7500 kW	240 MW	7500 MW
240 W	7500 W	250 kW	8000 kW	250 MW	8000 MW
250 W	8000 W	300 kW		300 MW	

Note: For reactive power and apparent power, read 'W' in the above table as 'var' and 'VA' respectively.

6. Others

6.3. Measuring Item

The following table shows measuring items.

6. Others

6.3. Measuring Item

Note1: For harmonics, the total RMS value and total distortion ratio are measured.
Note2: Reactive energy (imported) represents a positive value, which is imported lag + exported lead.
Reactive energy (exported) represents a negative value, which is imported lead + exported lag.
Note3: For the measuring items monitored by communication function, refer to the user's manual of each communication function.
Note4: The phase angle can be measured only with the support function for determining incorrect wiring.
Note5: For 1-phase 3-wire system, the phases of measuring items are read as the following table.

Phase wire system	1-phase	2-phase	3-phase	12-phase	23-phase	31-phase
1-phase 3-wire (1N2)	1-phase	N-phase	2-phase	1N-phase	2N-phase	12-phase
1-phase 3-wire (1N3)	1-phase	N-phase	3-phase	1N-phase	3N-phase	13-phase

6. Others

6.4. Instrument Operation

The instrument operation in other than operating mode

Situation	Measurement	Display
For a few seconds just after turning on auxiliary power *The backlight is lit and the LCD is not lit.	Not measure	Not display
In the setting mode In the setting confirmation mode In the password protection screen	The action is the same in the operating mode.	Not display a measured value
Under power failure	Not measure	Not display

The instrument operation under input

Measuring element	Instrument action	
Current (A) Current demand (DA)	The CT secondary current setting is 5 A . When input current is below $0.005 \mathrm{~A}(0.1 \%), 0 \mathrm{~A}$ is displayed. The CT secondary current setting is 1 A . When input current is below $0.005 \mathrm{~A}(0.5 \%), 0 \mathrm{~A}$ is displayed.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Voltage (V)	When input voltage (Line voltage) is below $11 \mathrm{~V}, 0 \mathrm{~V}$ is displayed. -For 1-phase 3 -wire system, when the voltage between P 1 and P 3 is below $22 \mathrm{~V}, 0 \mathrm{~V}$ is displayed. -For 3-phase 4 -wire system, when phase voltage is below 11 V or line voltage is below $19 \mathrm{~V}, 0 \mathrm{~V}$ is displayed.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Active power (W) Reactive power (var) Apparent power (VA)	-When each of three phases of current is 0 A or when each of three phases of voltage is $0 \mathrm{~V}, 0 \mathrm{~W}, 0$ var, and 0 VA are displayed. - When current N -phase is 0 A or when voltage N phase is $0 \mathrm{~V}, 0 \mathrm{~W}, 0$ var, and 0 VA are displayed for each N -phase.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Power factor (PF)	-When each of three phases of current is 0 A or when each of three phases of voltage is $0 \mathrm{~V}, 1.0$ is displayed. -When current N -phase is 0 A or when voltage N -phase is $0 \mathrm{~V}, 1.0$ is displayed for each N -phase.	
Frequency (Hz)	-When voltage 1-phase is low voltage, --- is displayed. Apply a voltage above approximately 22 V .	When frequency is below 44.5 Hz and above $99.5 \mathrm{~Hz},---$ - is displayed.
Harmonic current	For RMS value measurement: -When current is 0 A, 0 A is displayed. (for each phase) -When voltage 1-phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.	For distortion ratio (content rate) measurement: -When harmonic current $1^{\text {st }}$ is $0 \mathrm{~A}, 0 \mathrm{~A}$ is displayed. (for each phase) -When voltage 1-phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},---$ - is displayed for every phase.
Harmonic voltage	For RMS value measurement: -When voltage is $0 \mathrm{~V}, 0 \mathrm{~V}$ is displayed. (for each phase) -When voltage 1-phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.	For distortion ratio (content rate) measurement: -When voltage is $0 \mathrm{~V},---$ - is displayed. (for each phase) -When voltage 1 -phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},---$ - is displayed for every phase.
Operating Time	When the count exceeds 999999-hour, it is fixed at 999999-hour.	

Note1: Current/voltage/active power input represents input to the instrument. It does not input to the primary side of VT/CT.
Note2: The expression of 'When current is 0 A' includes the case when the measured value described in the item of Current (A) is 0 A .

Note3: The expression of 'When voltage is 0 V ' includes the case when the measured value described in the item of Voltage (V) is 0 V .
Note4: Use the instrument within the rating of the instrument.

6.5. Troubleshooting

If you observe abnormal sound, odor, smoke, or heat generation from the instrument, turn off the power at once.
In addition, if you consider sending the instrument in for repair, check the following points before it.

Situation		Possible cause	Solution
$\begin{gathered} \frac{\lambda}{0} \\ \frac{0}{0} \\ \overline{0} \end{gathered}$	The display does not light up.	Auxiliary power is not applied to MA and MB terminals.	Apply auxiliary power supply.
	When auxiliary power is applied, the display does not light up for a short time.	This is not an error. For a few seconds after charging auxiliary power, the internal circuit is being initialized.	Use it as it is.
	The backlight does not light up.	The backlight may be set to 'auto off (Auto).' *When it lights up by pressing any operation button, it is set to 'auto off.'	When it is set to auto off, it automatically goes off in 5 minutes. Use it as it is or change the setting to 'ON (Hold).' For details, refer to 3.5.
	The display becomes black.	It may become black due to static electricity.	It will go off after a while.
	The 'End' display remains.	It is in the setting mode.	Press the SET button.
$\begin{aligned} & \frac{1}{0} \\ & \frac{0}{0} \\ & \vdots \\ & \vdots \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	The current and voltage errors are large.	The settings for VT/Direct voltage and CT primary current may be incorrect.	Check the settings for VT/Direct voltage and CT primary current.
	Current and voltage are correct, but active power and power factor errors are large.	The wiring for VT/CT and the instrument may be incorrect.	Check the wiring for VT/CT and the instrument.
	The power factor error is large.	If input current is smaller than the rating, the error will become large. (approximately 5% or less of the rated current)	This is not an error. Use it as it is, or if the error is troublesome, change the CT according to the actual current.
	The displayed active power is different from that calculated by multiplying the displayed current, voltage, and power factor.	If the current and voltage AC waveforms distort due to harmonics, the value will not be the same as the calculated value. (For current waveforms without harmonics, the calculated value matches with the displayed value.)	Use the instrument as it is.
	The total harmonic RMS value of harmonic current is quite different from the current value.	The distortion ratio (content rate) is well over 100\%. (For measurement of inverter secondary side output)	Check the measured item.
	The current value measured by this instrument is different from that measured by other measuring instrument, such as a clamp meter. The difference exceeds an acceptable level.	If the comparative measuring instrument uses the average value method, the AC waveform will distort due to harmonics, and the error of the comparative instrument will become large. (This instrument uses the RMS value method.)	Compare with a current value of a measuring instrument that uses the RMS value method.
	On the Max/Min value screen, the present value is displayed beyond the range of maximum and minimum values.	During the starting current delay time, the maximum value is not updated. Therefore, the displayed present value may exceed the maximum value.	Use the instrument as it is.
	In the setting mode, setting change is not possible.	When SET blinks at the bottom left of the screen, it is in the setting confirmation mode. Therefore, setting change is not possible.	Enter the setting mode to change the settings.
	When the screen enters the setting mode, the PASS 0000 display appears	The password protection is enabled.	Enter the password you set up. The factory default password is '0000.' For details, refer to 5.2.7 Password Protection Setting.
	Maximum and minimum values change.	The values will be cleared if you change a setting such as phase wire system, VT/Direct voltage, or CT primary current.	It is necessary to record the data before changing the setting.
	The settings you have not changed change.	If you change a setting such as phase wire system, VT/Direct voltage, or CT primary current, some items will return to the default settings.	Set up the item, where settings have returned to the default, again. For details, refer to 3.11 Initialization of Related Items by Changing a Setting
	When Max/Min value or active energy values are cleared, the PASS 0000 display appears	The password protection is enabled.	Enter the password you set up. The factory default password is '0000.' For details, refer to 5.2.7 Password Protection Setting.
	COM on the LCD blinks. (ON for 0.25 second/OFF for 0.25 second)	Communication errors may be occurring in MODBUS RTU such as register address error or communication rate setting error	Check the register address and communication settings. If a correct MODBUS RTU communication message is received, COM will light up.

7. Installation

7.1. Dimensions

■ME96SSEB-MB

7. Installation

7.2. How to Install

7.2.1. Mounting Hole Dimensions

The right figure shows the hole drilling dimensions of the panel. The instrument can be installed on a panel with a thickness of 1.6 mm to 4.0 mm .

7.2.2. Mounting Position

The contrast of LCD display changes depending on the angle of view. Install the instrument in a location where you can easily see it.

Side view

Top view

[mm]

7.2.3. Mounting and Fixing

You will install the instrument on a panel according to the following procedure.
(1)Install the two attachment lugs on the top and bottom of the unit.

(2)Tighten the screws of the attachment lugs to fix them to the panel.

The mounting screw type: M3

Note	To prevent damage to the panel and screws, do not overtighten the screws. Tighten the two screws evenly. The recommended torque for this product is 0.3 N•m to 0.5 $\mathrm{N} \cdot \mathrm{m}$ (about half the normal torque).

	Protection sheet
Note	The protection sheet is attached to the LCD display to prevent scratches on the display during installation. Before starting operation, remove the sheet. When you remove the sheet, the LCD display may light up due to static electricity generation. However, this is not abnormal. After a while, the lighting will go off due to self-discharge.
Mounting position	
When you install the instrument on the edge of the panel, check the work space for wiring to determine the mounting position.	

7. Installation

7.3. How to Connect Wiring

7.3.1. Specifications on the Applicable Electrical Wire

Parts	Screw type	Wire for use	Tightening torque
The terminals of the unit: - Auxiliary power - Voltage input - Current input - MODBUS RTU communication	M3	- Used with crimp-type terminals: AWG 26 to 14 *Two-wire connection is possible. Applicable crimp-type terminals: For M3 screw with an outer diameter of 6.0 mm or less. Outer diameter	$0.5 \mathrm{~N} \cdot \mathrm{~m}$

7.3.2. Wiring of the Unit

Be sure to securely tighten the terminal screws to the terminal block.

©CAUTION	- Do not connect three or more electric wires to one terminal. This can cause heat generation or a fire due to imperfect contact. - If you use a bare crimp-type terminal, you should secure a necessary insulation distance using an insulation tube not to expose the charging part for prevention of electric shock and short circuits.

7.3.3. Check the connection

After wiring, check the following points:
-The electric wires are securely connected.
-There is no wrong wiring.

7.3. How to Connect Wiring

Do not work under live wires

Do not work for wiring under live line conditions.
It may cause an electric shock, burn injury, burnout of the instrument, or a fire.
We recommend that you install protection fuses for VT and auxiliary power unit.

Do not open the secondary side of CT circuit

Connect the CT secondary-side signal correctly to the terminal for CT.
If the CT were incorrectly connected or if the CT secondary side were open, it could result in a high voltage generation at the CT secondary side and insulation breakdown in the CT secondary winding. It might cause burnout.

Do not short the secondary side of VT circuit

Connect the VT secondary-side signal correctly to the terminal for VT.
If the VT were incorrectly connected or if a short occurred at the VT secondary side, an overcurrent would flow through the VT secondary side and it would cause burnout in the VT secondary winding. The burnout of the secondary winding would lead to insulation breakdown in the secondary winding. Finally, it might cause short circuit between phases.

Securely connect to the connection terminal
Connect electrical wires properly to the connection terminal.
Otherwise, heat generation or measurement errors may occur.

$$
\text { Do not forget to connect wiring of ' } \mathrm{C}_{1} \text { ', ' } \mathrm{C}_{2} \text { ' and ' } \mathrm{C}_{3} \text { ' }
$$

When a common wire is used for L side (load side) of the CT circuit of a 3-phase instrument, it is necessary to short-circuit the C1, C2, and C3 terminals of the instrument.

Do not use improper electrical wires

Be sure to use an appropriate size wire compatible with the rated current and voltage. The use of inappropriate size wire may cause a fire.

Do not pull connecting wires with a strong force

If you pulled the terminal wires with a strong force, the input terminal part might come off. (Tensile load: 39.2 N or less)

Do not apply an abnormal voltage.
If the pressure test of a high-pressure device is performed, ground the input lines of CT and VT secondary sides in order to prevent damage to the instrument. If a high voltage of AC 2000 V were applied to the instrument for over one minute, it might cause a failure.

> Do not connect to Non-Connection (NC) terminal.

Do not connect to the Non-Connection (NC) terminal for the purpose of relay.
Supply voltage properly to the auxiliary power source.
Supply proper voltage to the auxiliary power terminal.
If an improper voltage were applied, it might cause a failure of the instrument or a fire.

7. Installation

7.4. Wiring Diagram

Rated voltage for each phase/wire system

Phase/Wire	Connection	Rated voltage	Figure
3-phase 4-wire	Star	max 277 V AC (L-N) /480 V AC (L-L)	Figure 1
3-phase 3-wire	Delta	max 220 V AC (L-L)	Figure 2
	Star	max 440 V AC (L-L)	Figure 3
1-phase 3-wire	-	max 220 V AC (L-N) /440 V AC (L-L)	Figure 4
1-phase 2-wire *1	Delta	max 220 V AC (L-L)	Figure 5
	Star	max 440V AC (L-L)	Figure 6

Note1: The circuit derived from the 3-phase 3-wire delta connection and the 1-phase 2-wire transformer circuit have the maximum rating of 220 V AC.
The circuits derived from the 3-phase 4-wire and 3-phase 3-wire star connections and 1-phase 3-wire connection have the maximum rating of 440 V AC .

Fig.1. 3-phase 4-wire(star)

Fig.2. 3-phase 3-wire(delta)

Fig.4. 1-phase 3-wire

Fig.5. 1-phase 2-wire(delta)

Fig.3. 3-phase 3-wire(star)

Fig.6. 1-phase 2-wire(star)

7. Installation

7.4. Wiring Diagram

3-phase 4-wire system, direct input

(1)Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC
(2) Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC $1,500 \mathrm{~A} / 250 \mathrm{~V}$ DC $1,500 \mathrm{~A}$ (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

3-phase 4-wire system, with VT

(1) Auxiliary power supply
100 to 240 V AC or 100 to 240 V DC
(2) Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4)Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

7. Installation

7.4. Wiring Diagram

3-phase 3-wire system, direct input, 2CT

(1)Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4)Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
*Note2: Do not connect the NC terminal.
3-phase 3-wire system, with VT, 3CT

(1)Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC
(2) Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC $1,500 \mathrm{~A} / 250$ V DC $1,500 \mathrm{~A}$ (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
*Note2: Do not connect the NC terminal.

7. Installation

7.4. Wiring Diagram

1-phase 3-wire system

(1)Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
*Note2: Do not connect the NC terminal.
■1-phase 2-wire system, with VT

(1)Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC $1,500 \mathrm{~A} / 250 \mathrm{~V}$ DC $1,500 \mathrm{~A}$ (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals ' $T / R+$ ' and ' $T / R-$ ' for devices at both ends of MODBUS RTU communication line.
*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
*Note2: Do not connect the NC terminal.

7. Installation

7.4. Wiring Diagram

For Input

Note	1. The voltage input terminals of 3-phase 3-wire system are different from those of other systems. 2. If the VT and CT polarities are incorrect, measurement will not be correctly executed. 3. Do not wire the NC terminal. 4. For low voltage, it is not necessary to ground the VT and CT secondary sides. 5. Be sure to ground the earth terminal ($\mathcal{E})$ to use. The ground resistance is 100 ohm or less. Improper ground may cause a malfunction.

For MODBUS RTU Communication

	1. Use a shielded twisted pair cable for transmission signal line. *For recommended cables, refer to 8.3 MODBUS RTU Communication Specifications. 2. Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note	3. Use wires as thick as possible to ground for low impedance. 4. The transmission signal lines of MODBUS RTU communication must not be placed close to or bound together with high voltage lines. 5. Perform one point grounding for the SLD terminal.

8. Specifications

8.1. Product Specifications

Type			ME96SSEB-MB	
Phase wire system			3-phase 4-wire, 3-phase 3-wire (3CT, 2CT), 1-phase 3-wire, 1-phase 2-wire (common use)	
Rating		Current	5 A AC, 1 A AC (common use)	
		Voltage	3-phase 4-wire: max 277/480 V AC 3-phase 3- wire: (DELTA) max 220 V AC , (STAR) max 440 V AC 1-phase 3- wire: max 220/440 V AC 1-phase 2- wire: (DELTA) max 220 V AC , (STAR) max 440 V AC	
		Frequency	50 Hz or 60 Hz (common use)	
Item			Measuring Item	Class
	Current (A)		A1, A2, A3, AN, A Avg	$\pm 0.5 \%$
	Current demand (DA)		DA1, DA2, DA3, DAN, DAAVg	
	Voltage (V)		V12, V23, V31, Vavg (L-L), V1N, V2N, V3N, VaVg (L-N)	
	Active power (W)		W1, W2, W3, EW	
	Reactive power (var)		var1, var2, var3, Evar	
	Apparent power (VA)		VA1, VA2, VA3, $\mathrm{VVA}^{\text {d }}$	
	Power factor (PF)		PF1, PF2, PF3, EPF	
	Frequency (Hz)		Hz	$\pm 0.2 \%$
	Active energy (Wh)		Imported, Exported	Class 0.5S (IEC62053-22)
	Reactive energy (varh)		Imported lag, Imported lead, Exported lag, Exported lead	Class 1S (IEC62053-24)
	Apparent energy (VAh)		Imported + Exported	$\pm 2.0 \%$
	Harmonic current (HI)		Total	$\pm 2.0 \%$
	Harmonic voltage (HV)		Total	
	Operating time (h)		Operating time 1, Operating time 2	(Reference)
Measuring method		Instantaneous value	A, V: RMS value calculation; W, var, VA, Wh, varh, VAh: Digital multiplication; PF: Power ratio calculation; Hz: Zero-cross; HI, HV: FFT	
		Demand value	DA: Thermal type calculation	
$\begin{aligned} & \frac{7}{0} \\ & \frac{0}{0} \\ & 0.0 \end{aligned}$	Display type		LCD with LED backlight	
	Number of display digits or segments	Digital section	A, DA, V, W, var, VA, PF: 4 digits; Hz: 3 digits; Wh, varh, VAh: 9 digits (6-digit or 12-digit is also possible.); Harmonic distortion ratio/content rate: 4 digits; Harmonic RMS value: 4 digits; Operating time: 6 digits	
	Display update time interval		$0.5 \mathrm{~s}, 1 \mathrm{~s}$ (selectable)	
Communication			MODBUS RTU communication	
Connectable optional plug-in module			Cannot connect optional module	
Power interruption backup			Non-volatile memory is used (Item: Setup value, Max/Min value, Active energy, Reactive energy, Apparent energy, Operating time)	
VA consumption		Voltage circuit	$0.1 \mathrm{VA} /$ phase (at 110 V AC), $0.2 \mathrm{VA} /$ phase (at 220 V AC), $0.4 \mathrm{VA} /$ phase(at 440 V AC)	
		Current circuit	0.1 VA / phase	
		Auxiliary power circuit	4 VA (at 110 V AC$), 5 \mathrm{VA}$ (at 220 V AC), 3 W (at 100 V DC)	
Auxiliary power			100 to 240 V AC ($\pm 15 \%) 50$ to $60 \mathrm{~Hz}, 100$ to 240 V DC ($-30 \%+15 \%$)	
Weight			0.3 kg	
Dimensions W $\times \mathrm{H} \times \mathrm{D}$ [protrusion from cabinet]			$96 \times 96 \times 36 \mathrm{~mm}$ (depth of meter from housing mounting flange) [13 mm]	
Mounting method			Embedded type	
Operating temperature/humidity			$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (average daily temperature: $35^{\circ} \mathrm{C}$ or less), 0 to 85% RH, Non-condensing	
Storage temperature/ humidity			$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (average daily temperature: $35^{\circ} \mathrm{C}$ or less), 0 to 85% RH, Non-condensing	

Note1: The class represents the ratio to the rated value (100\%)
Note2: For measurement where the harmonic distortion ratio (content rate) is 100% or more, the class can exceed $\pm 2.0 \%$.
Note3: Harmonic current cannot be measured without voltage input.
PMD characteristics (specified by IEC61557-12)

Type of characteristic	Characteristic value	Other complementary characteristic
Power quality assessment function according to 4.3	PMD- II	-
Classification of PMD according to 4.4	SD	-
Temperature	K55	-
Humidity + altitude	Standard conditions	-
Active power or active energy function (If function available) performance class	0.5	-

8. Specifications

8.2. Compatible Standards

Electromagnetic Compatibility

| Emissions |
| :--- | :--- |
| Radiated Emission EN61326-1/ EN 55011/CISPR 11,
 FCC Part15 Subpart B Class A
 Conducted Emission EN61326-1/ EN 55011/CISPR 11
 FCC Part15 Subpart B Class A
 Harmonics Measurement EN61000-3-2
 Flicker Meter Measurement EN61000-3-3
 Immunity Electrostatic discharge Immunity
 Radio Frequency Electromagnetic field Immunity EN61326-1, EN IEC 61000-6-2/EN61000-4-2
 Electrical Fast Transient/Burst Immunity EN61326-1, EN IEC 61000-6-2/EN61000-4-3
 Surge Immunity EN61326-1, EN IEC 61000-6-2/EN61000-4-4
 Conducted Disturbances, Induced By Radio Frequency
 Fields Immunity EN61326-1, EN IEC 61000-6-2/EN61000-4-6
 Power Frequency Magnetic Field Immunity
 Voltage Dips and Short Interruptions EN61326-1, EN IEC 61000-6-2/EN61000-4-8 | | EN61326-1, EN IEC 61000-6-2/EN61000-4-11 |
| :--- |

$\|$Safety Europe CE, as per EN61010-1: 2010 (3 rd Edition) U.S. and Canada UL, cUL Recognized as per UL61010-1: 2012 (3rd Edition) IEC61010-1: 2010 (3rd Edition) CCN:PICQ2/8 (*1) Installation Category III Measuring Category III Pollution Degree 2

*1 : PICQ2/8 is intended to be placed in an industrial control panel or similar type of enclosure.
The devices covered under this category are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL. See "UL product iQ (UL certified product search platform)" for details.

8.3. MODBUS RTU Communication Specifications

Item	Specifications
Physical interface	RS-485 2wires half duplex
Protocol	RTU mode
Transfer method	Start-stop synchronization
Transmission wiring type	Multi-point bus (either directly on the trunk cable, forming a daisy-chain)
Baud rate	$2400,4800,9600,19200,38400$ bps (Default is 19200 bps)
Data bit	8
Stop bit	1 or 2 (Default is 1)
Parity	ODD,EVEN or NONE (Default is EVEN)
Slave address	1 to 255 (FFh) (Default is 1, 0 is for broadcast mode)
Distance	1200 m to 255 are reserved)
Max. number	31
Response time	1 s or less (time to response after query data is received)
Terminate	$120 \Omega 1 / 2$ W
Recommended cable	Shielded twisted pair cable, AWG 24 to 14

Read the following document as well as this user's manual.
-Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Ref. No. LSPM-0075)

8. Specifications

8.4. Setting Table (Factory Default Settings and Customer's Notes Settings)

9. Appendix

9.1. ME96SS Calculation Method (3-phase Unbalanced System with Neutral)

The following table shows general calculation definitions of electric energy measurement this instrument employs.

Item	Normal mode	IEC mode	Notes
RMS current in phase p	$I_{p}=\sqrt{\frac{\sum_{k=0}^{M-1} i_{p_{k}}^{2}}{M}}$		
Calculated RMS neutral current	$I_{N}=\sqrt{\frac{\sum_{k=0}^{M-1}\left(i_{1_{k}}+i_{2_{k}}\right.}{M}}$		
Phase p to neutral RMS voltage	$V_{p}=\sqrt{\frac{\sum_{k=0}^{M-1} v_{p_{k}}^{2}}{M}}$		
Phase p to phase g RMS voltage	$U_{p g}=\sqrt{\frac{\sum_{k=0}^{M-1}\left(v_{p_{k}^{2}}^{2}-1\right.}{M}}$		
Active power for phase p	$P_{p}=\frac{1}{M} \cdot \sum_{k=0}^{M-1}\left(v_{p_{k}}\right.$		
Apparent power for phase p	$S_{p}=V_{p} \times I_{p}$		
Reactive power for phase p	$Q_{p}=Q p_{\text {quad }}=\frac{1}{M} \cdot \sum_{k=0}^{M-1}\left(v_{p_{k-N / 4}} \times i_{p_{k}}\right)$	$Q_{p}=\sqrt{S_{p}{ }^{2}-P_{p}{ }^{2}}$	For the sign, refer to 5.1.12.
Power factor for phase p	$P F_{p}=\frac{P_{p}}{\sqrt{P_{p}{ }^{2}+Q_{p}{ }^{2}}}$	$P F_{p}=\frac{P_{p}}{S_{p}}$	For the sign, refer to \| 5.1.12.
Total active power	$P=\sum_{p=1}^{N_{p h}} P_{p}$		
Total reactive power	$Q=\sum_{p=1}^{N_{p h}} Q_{p}$		For the sign, refer to 5.1.12.
Total apparent power	$S=\sum_{p=1}^{N_{p h}} S_{p}$	$S=\sqrt{P^{2}+Q^{2}}$	
Total power factor	$P F=\frac{P}{\sqrt{P^{2}+Q^{2}}}$	$P F=\frac{P}{S}$	For the sign, refer to 5.1.12.

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

*The shaded parts indicate influential parts caused by incorrect wiring.
The dashed lines show incorrect wiring parts.

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.
Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even if the connection is correct.

9. Appendix

9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

*The shaded parts indicate influential parts caused by incorrect wiring. The dashed lines show incorrect wiring parts.

9. Appendix
9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

9. Appendix
9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

9. Appendix
9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

9. Appendix

9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

Note1: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals ' C 3 ' and ' +C 3 ' of CT are connected to the terminals '+C1' and ' C 1 ' of the instrument in that order.
Note2: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals 'C1' and ' +C 1 ' of CT are connected to the terminals ' + C3' and ' C 3 ' of the instrument in that order.
Note3: When the terminals ' C 1 ' and ' +C 1 ' of CT are connected to the terminals ' +C 1 ' and ' C 1 ' of the instrument in that order.
Note4: When the terminals ' C 3 ' and ' +C 3 ' of CT are connected to the terminals ' +C 3 ' and ' C 3 ' of the instrument in that order.
Note5: When '+C1' and 'C3'of CT are connected and it is connected to the ' + C1' terminal of the instrument.
Note6: When ' C 1 ' and ' +C ' of CT are connected and it is connected to the ' +C 3 ' terminal of the instrument.
Note7: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even if the connection is correct.
Note : The above table shows incorrect wiring display examples of 3-phase 3-wire system (2CT). Those of 3-phase 3-wire system (3CT) are also the same. However, it is not possible to detect the incorrect wiring of the CT secondary side.

9. Appendix

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

*The shaded parts indicate influential parts caused by incorrect wiring.
The dashed lines show incorrect wiring parts.

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

MITSUBISHI Electronic Multi-Measuring Instrument

Please refer to our website for service network.
Our website address: https://www.mitsubishielectric.com/fa/

[^0]: <To shift to other test menu>
 \Rightarrow Select other test menu number and then press SET .
 <To end the test mode>
 \Rightarrow Select End in the test menu number and then press
 SET. The screen will return to the operating mode.

[^1]: *1. Correct measurement is possible even in reversed phase sequence.
 *2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

