

Electronic Multi-Measuring Instrument

MODEL MODEL

User's Manual: Detailed Edition

Before use, you should read this user's manual carefully to properly use this instrument. Be sure to forward the manual to the end user.

Check your delivery

The following table shows a list of the instrument accessories. When unpacking your package, check all the contents.

Contents	Quantity	Specification
User's Manual (Digest version)	1	A3 size
Attachment lug (with a screw)	2	

Optional plug-in module

The optional plug-in modules cannot be attached to this product.

If you need a function such as analog output, CC-Link communication, digital input/output, MODBUS TCP communication, or logging function, use other model, ME96SSHB-MB or ME96SSRB-MB which can be combined with the optional plug-in modules.

Features

- The instrument measures load status by wiring the secondary sides of VT (Voltage Transformer) and CT (Current Transformer) in the power receiving and distribution system and displays various measured values.
- The instrument supports Active Energy Class 0.5S.
- The password protection prevents undesired setting change and measured data deletion.
- The transmission function, MODBUS RTU communication, transmits measured data to superior monitoring systems.
- The instrument fulfills the requirements of the CE marking, UL standards, KC mark, and FCC/IC.
- The support function for checking input wiring enables to determine the wiring condition in the test mode. When either a voltage input or current input is incorrectly wired, the incorrect wiring part is displayed on the screen and it also shows a current phase angle, a voltage phase angle, and each value of active power, voltage, and current.

Trademark

MODBUS is a trademark of Schneider Electric USA Inc.

Other company and product names herein are trademarks or registered trademarks of their respective owners. In the text, trademark symbols such as "TM" and "®" may not be written.

Cł	neck yo	our de	elivery	1
Op	otional	plug	-ın module	1
⊢e	atures	;		2
Ir	adema	ark		2
Та	ble of	Cont	ents	3
Sa	afety P	recau	utions	5
ΕN	/C Dir	ective	e Instruction	9
Pr	ecautio	ons fo	or KC mark	9
Та	ble for	mea	asuring element code	10
1.	Name	e and	Function of Each Section	11
	1.1.	Nam	ne of Each Part	11
	1.2.) Function	12
_	1.3.	Fun	ction of Operation Buttons	13
2.	Each	Mod	e Function	15
3.	How	to Se	t up	16
	3.1.	Sett	ing Flow	16
	3.2.	Sett CT I	ing Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage Primary Current)	⊭, and 19
	3.3.	Sett	ing Menu 2: Communication Settings (MODBUS RTU Communication Settings)	23
	3.4.	Sett Mea	ing Menu 3: Display Settings (Settings for Display of Active/Reactive Energy and Harmonic	24
	3.5.	Sett	ing Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Update	24 3
		Time	e)	25
	3.6.	Sett	ing Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current	~~~
	07	Mas	K Function)	26
	3.7.	Sett	ing Menu 6: No Settings	29
	3.0. 2.0	Sell	ing Menu 7. No Settings	29 20
	3.9. 3.10.	Sett	ing Confirmation Menu 1 to 9: How to Confirm the Settings in the Setting Menu 1 to 8, 9 Test	Mode
				32
	3.11.	Initia	alization of Related Items by Changing a Setting	33
	3.12.	Initia	alization of All Settings	33
	3.13.	Sett	ings for Special Display Pattern P00	34
	3.14.	Exa	mple for Easy Setup	36
4.	How	to Us	e Test Mode	38
	4.1.	Test	t Menu 1: Communication Test	39
	4.2.	Test	t Menu 2 to 5: No Test Menu	40
	4.3.	lesi	t Menu 6: Functions for Determining Incorrect Wiring	40
~	4.3.	1. 	incorrect wiring Patterns Detected by UPattern display of incorrect wiring	43
5.		ation	in Operation	40
	5.1.	Dasi 1	How to Switch the Measurement Screen	40
	5.1.	ו. כ	How to Switch Phase Display	40 16/
	5.1.2	ב. २	How to Display in Cyclic Mode	40
	514	4.	Harmonics Display	47
	5.1.	5.	Maximum/Minimum Value Display	
	5.1.0	6.	How to Display Maximum/Minimum values	
	5.1.	7.	How to Clear the Maximum/Minimum Values	48
	5.1.8	8.	Active Energy/Reactive Energy/Apparent Energy Display	49
	5.1.9	9.	How to Change the Display Digit of Active/Reactive/Apparent Energy	49
	5.1.	10.	How to Reset Active/Reactive/Apparent Energy to Zero	50
	5.1.	11.	How to Measure Reactive Energy (2 quadrant/4 quadrant measurement)	50
	5.1.	12.	Each Measuring Item Display during Power Transmission	51
	5.1.	13.	Demand Time Period and Demand Value of Current demand	51

	5.2. Usa	age Depending on the Application (Alarm, Operating Time, Password, etc.)	
	5.2.1.	Upper/Lower Limit Alarm Display and Action	
	5.2.2.	How to Cancel the Upper/Lower Limit Alarm	
	5.2.3.	How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm	
	5.2.4. 5.2.5	Operating Time Display	
	5.2.5. 5.2.6	How to Reset Operating Time to Zero	
	527	Password Protection Setting	
6	Othors		
0.		nlav Pattern List	
	6.2 Sta	ndard Value	
	63 Me	asuring Item	
	6.4 Inst	trument Operation	61
	6.5 Tro	ubleshooting	
7.	Installatio	n	63
•••	7.1. Din	nensions	
	7.2. Hov	ν to Install	64
	7.2.1.	Mounting Hole Dimensions	64
	7.2.2.	Mounting Position	64
	7.2.3.	Mounting and Fixing	64
	7.3. Hov	<i>w</i> to Connect Wiring	65
	7.3.1.	Specifications on the Applicable Electrical Wire	65
	7.3.2.	Wiring of the Unit	65
	7.3.3.	Check the connection	65
	7.4. Wir	ing Diagram	67
8.	Specificat	ions	72
	8.1. Pro	duct Specifications	72
	8.2. Coi	npatible Standards	
	8.3. MC	DBUS RTU Communication Specifications	
_	8.4. Set	ting Table (Factory Default Settings and Customer's Notes Settings)	
9.	Appendix		
	9.1. ME	96SS Calculation Method (3-phase Unbalanced System with Neutral)	
	9.2. AL	IST OF Examples for incorrect wiring Display	
	9.2.1.	3-phase 4-wire System	
	9.Z.Z.	3-phase 3-wire System	
	9.2.3.	i-phase o-wile oysterii	

Safety Precautions

Before use, read these instructions carefully to properly operate the instrument.

Be sure to follow the precautions described here for personnel and product safety.

Keep this manual ready to hand and accessible for future use at all times.

Be sure to forward the manual to the end user.

If you consider using the instrument for a special purpose such as nuclear power plants, aerospace, medical care, or passenger vehicles, consult with our sales representative.

The instructional icon in the manual is described as follows.

The caution icon (Δ) on the main unit indicates that incorrect handling may cause hazardous conditions. Always follow the subsequent instructions (Δ caures) because they are important to personal safety. Failure to follow them may result in an electric shock, a fire, erroneous operation, or damage to the instrument. If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.

Precautions on use environment and conditions

Do not use the instrument in the following circumstances:

Failure to follow the instruction may cause a malfunction or reduced product life time.

- The ambient temperature exceeds the range -5°C to +55°C.
- The average daily temperature exceeds +35°C.
- The relative humidity exceeds the range 0 to 85% RH, or condensing.
- The altitude exceeds 2000 m.
- Pollution Degree: more than 2 *Note 1
- Exposed to much dust, corrosive gas, salty environment, or oil mist
- Transient over voltage: 4000 V *Note 1
- Exposed to excessive vibration or impact
- Exposed to rain or water drops
- Exposed to direct sunlight
- Pieces of metal or inductive substances are scattered.
- Exposed to strong magnetic fields or large exogenous noise

*Note1: For details about the Pollution Degree and the Transient over voltage category, refer to EN61010-1:2010.

Grit, dust, and small insects cause poor contact or a failure such as insulation decline that caused by deposition and moisture absorption. Furthermore, in the area where the air contains conductive dust, a failure such as a product malfunction or insulation deterioration occurs in a relatively short time. In this case, you must take measures against it such as putting the instrument in an enclosed board. In addition, if the temperature inside the board rises, the measures must be undertaken as well.

Safety Precautions

▲CAUTION

Precautions on Installation and wiring

Be sure to read the instructions carefully before installation and wiring.

- A qualified electrician must install and wire the instrument for safety.
- Supply power to the instrument after completing its assembly work on a cabinet door.
- The instrument is to be mounted on the cabinet door. All connections must be kept inside the cabinet.
- The following table shows the specifications on the input/output terminal.
- Auxiliary power supply and measuring element

	<u>, , , , , , , , , , , , , , , , , , , </u>	100 to 240 V AC (±15%) 50 Hz to 60 Hz	MA, MB				
Auxiliary po	wer supply	100 to 240 V DC (-30% + 15%)	terminals				
Measuring element	Voltage	3-phase 4-wire: max 277 V AC/480 V AC 3-phase 3-wire: (DELTA) max 220 V AC (STAR) max 440 V AC 1-phase 3-wire: max 220 V AC/440 V AC 1-phase 2-wire: (DELTA) max 220 V AC (STAR) max 440 V AC	Category	III P1, P2, P3, PN terminals			
	Current	5 A (CT secondary side), max 30 V AC	Category	+C1, C1, +C2 III C2, +C3, C3 terminals			
	Frequency	50 Hz or 60 Hz					
The current input terminals must be connected to a CT, external equipment, with basic insulation. Be sure to continuously connect the terminals for voltage-measuring purpose and current measuring purpose during operation.							
MODBUS F	RTU ation	/R+,T/R-,SG terminals max 35 V DC					
 Keep the wiring 	e protection	sheet affixed to the front of the instrur	nent durir	ng installation an			

- Do not drop the instrument from high place. If it is dropped and the display cracks, do not touch the liquid leaking from the broken LCD or do not get it in your mouth. If you touch the liquid, rinse it off with soapy water at once.
- Do not work under live-line condition. Otherwise, an instrument failure, an electric shock, or a fire may be caused.
- When tapping or wiring, take care not to enter any foreign objects such as chips or wire pieces into the instrument.
- If you pull the wires with a strong force when connecting them to the terminals, the terminals may come off. (Tensile load: 39.2N or less)
- Check the wiring diagram carefully. Inappropriate wiring can cause a failure of the instrument, an electric shock, or a fire.
- Use appropriate size wires. The use of an inappropriate size wire can cause a fire due to heat generation.
- Use crimp-type terminals compatible with the wire size. For details, refer to **7.3.1 Specifications on the Applicable Electrical Wire**. The use of an inappropriate terminal can cause a malfunction, failure, or burnout of the instrument or a fire due to damage to the terminal or poor contact.
- Tighten the terminal screws with a specified torque and use a suitable pressure connector. For details, refer to **7.3.1Specifications on the Applicable Electrical Wire**. Excessive tightening can cause damage to the terminals and screws.
- Be sure to confirm the wiring connections strictly after the connection. Poor connection can cause a malfunction of the instrument, an electric shock, or a fire.
- In order to prevent invasion of noise, MODBUS RTU communication cables, auxiliary power supply cables, and other signal cables must not be placed close to or bound together with power lines or high voltage lines. When lying parallel to the power lines or high voltage lines, refer to the following table for the separation distance. (Except the input part of the terminal block)

Conditions	Distance
Power lines of 600 V AC or less	300 mm or more
Other power lines	600 mm or more

■Precautions on preparation before use

- Observe the use conditions and environment requirements for installation place.
- You must set up the instrument before use. Read the manual carefully to set it up correctly. If the setup is incorrectly done, the instrument will not be properly operated.
- Check the power rating of the instrument and then apply proper voltage.

Precautions on how to use

- When operating the instrument, check that active bare wires do not exist around it. If any bare wire exists, stop the operation immediately and then take appropriate action such as insulation protection.
- If a power outage occurs during the setup, the instrument will not be set up correctly. Set it up again after power recovery.

	• Do not disassemble or modify the instrument to use. Otherwise, a failure, an electric
	shock, or a fire can be caused.
	 Use the instrument within the rating specified in the manual. If you used it outside the rating, it might cause not only a malfunction or failure of the instrument but also ignition or burnout.
⚠ CAUTION	• Do not open the CT secondary side while the primary current is energized. When the CT secondary side circuit is open, the primary current flows. However, the secondary current does not flow. Therefore, a high voltage is generated at the CT secondary side and the temperature rises, resulting in insulation breakdown in the CT secondary winding. It may lead to burnout.
	 When external equipment is connected to the external terminals, the instrument and external equipment must not be powered and be used after the definitive assembly on a cabinet door. The rating of the terminal of external equipment should satisfy that of the external
	terminal of the instrument.

Precautions on maintenance

- Wipe dirt off the surface with a soft dry cloth.
- Do not leave a chemical cloth in contact with the instrument for a long time or do not wipe it with benzene, thinner, or alcohol.
- In order to properly use the instrument for a long time, conduct the following inspections:
- (1) Daily maintenance

①No damage in the instrument

2No abnormality with LCD indicator

③No abnormal noise, smell or heat generation

(2) Periodical maintenance

Inspect the following item every six months to once a year.

①No looseness of installation and terminal block connection

	Be sure to conduct periodic inspection under the electric outage condition. Failure to follow
<u>∕</u> .CAUTION	the instruction may cause a failure of the instrument, an electric shock, or a fire. Tighten
	the terminals regularly to prevent a fire.

■Precautions on storage

To store the instrument, turn off the power supplies of auxiliary power and input circuit, remove the wires from the terminals, and then put them in a plastic bag.

For long-time storage, avoid the following places. Otherwise, there is danger of an instrument failure or reduced product life time.

- The ambient temperature exceeds the range -25°C to +75°C.
- The average daily temperature exceeds +35°C.
- The relative humidity exceeds the range 0 to 85% RH, or condensing.
- Exposed to much dust, corrosive gas, salty environment, or oil mist.
- Exposed to excessive vibration or impact.
- Exposed to rain or water drops.
- Exposed to direct sunlight.
- Pieces of metal or inductive substances are scattered.

Safety Precautions

Warranty

- The warranty period is for one year from the date of your purchase or 18 months after the manufacturing date, whichever is earlier.
- During the warranty period, if any failure occurred in standard use that the product is used in the condition, method, and environment followed by the conditions and precautions described in the catalog and user's manual, we would repair the product without charge.
- Even within the warranty period, non-free repair is applied to the following cases.
 - ① Failures caused by the customer's improper storage, handling, carelessness, or fault.
 - ② Failures caused by faulty workmanship
 - ③ Failures due to faults in use or undue modification
 - ④ Failures due to force majeure such as a fire or abnormal voltage or due to natural disasters such as earthquakes, windstorms, or floods.
 - (5) Failures caused by the problem in question that could not be predicted with the technology available at the time the product was shipped.
- Our company shall not be liable to compensate for any loss arising from events not attributable to our company, customers' opportunity loss or lost earnings due to failure of the product, any loss, secondary loss, or accident caused by a special reason regardless of our company's predictability, damage to other products besides our products, or other operations

■Replacement cycle of product

It is recommend that you renew the product every ten years although it depends on your use condition. The long-term use of the product may cause discoloration of the LCD or a product malfunction.

■Disposal

- Treat the product properly as industrial waste.
- Batteries are not used for this product.

■Packaging materials and user's manual

For reduction of environment load, cardboard is used for packaging materials and the manual is printed with recycled papers.

EMC Directive Instruction

This section summarizes the precautions to have the cabinet constructed with the instrument conform to the EMC Directive.

However, the method of conformance to the EMC Directive and the judgment on whether or not the cabinet conforms to the EMC Directive must be determined finally by the manufacturer.

This instrument complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This instrument may not cause harmful interference, and (2) this instrument must accept any interference received, including interference that may cause undesired operation.

This equipment is class A as per EN 55011. This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

1. EMC Standards

- EN 61326-1
- EN 61000-3-2
- EN 61000-3-3

2. Installation (EMC directive)

The instrument is to be mounted on the panel of a cabinet.

Therefore, the installation to the cabinet is important not only for safety but also for conformance to EMC.

The instrument is examined in the following conditions.

- A conductive cabinet must be used.
- The conductivity of the six surfaces of the cabinet must be all ensured.
- The cabinet must be grounded by thick wires for low impedance.
- The hole drilling dimensions on the cabinet must be 10 cm or less in diameter.
- The terminals for protective earth and functional earth must be grounded by thick wires for low impedance. The use of the terminal for protective earth is important not only for safety but also for conformance to EMC.
- The connecting part of the terminal must be all placed inside the cabinet.
- Wiring outside the cabinet must be conducted with shielded cables, and the cables must be fixed to the panel with clamps. (Strip the covering of shielded cable by a portion of clamp installation and then mask the grounding part of the panel and clamp so as not to be painted.)

Precautions for KC mark 사용자안내문 이기기는업무용 환경에서 사용할 목적으로 적합성평가를 받은기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. ■Precautionary note written in Korean This device has undergone a conformity assessment for use in a commercial environment and may

This device has undergone a conformity assessment for use in a commercial environment and cause radio wave interference when used in a home environment.

Applicant for KC mark : MITSUBISHI ELECTRIC AUTOMATION KOREA CO.,LTD

Manufacturer : MITSUBISHI ELECTRIC CORPORATION

Note 1: This is the notification for the KC mark (Korea Certification)

Table for measuring element code

The following table shows a list of measuring element codes used in the manual.

Measuring element code	Measuring element name
A1	Current, 1-phase
A2	Current, 2-phase
A3	Current, 3-phase
AN	Current, N-phase
AAVG	Current, average
DA1	Current demand, 1-phase
DA2	Current demand, 2-phase
DA3	Current demand, 3-phase
DAN	Current demand, N-phase
DAAVG	Current demand, average
V12	Voltage, between 1-2 lines
V23	Voltage, between 2-3 lines
V31	Voltage, between 3-1 lines
V _{AVG} (L-L)	Voltage, average, line to line
V1N	Voltage,1N-phase
V2N	Voltage, 2N-phase
V3N	Voltage, 3N-phase
V _{AVG} (L-N)	Voltage, average, line to neutral
W1	Active power, 1-phase
W2	Active power, 2-phase
W3	Active power, 3-phase
ΣW	Active power, total
var1	Reactive power. 1-phase
var2	Reactive power, 2-phase
var3	Reactive power, 3-phase
Σvar	Reactive power, total
VA1	Apparent power, 1-phase
VA2	Apparent power, 2-phase
VA3	Apparent power, 3-phase
ΣVA	Apparent power, total
PF1	Power factor, 1-phase
PF2	Power factor, 2-phase
PF3	Power factor, 3-phase
ΣPF	Power factor, total
Hz	Frequency
Wh	Active energy
varh	Reactive energy
VAh	Apparent energy
HI	Harmonic current
HI _N	Harmonic current, N-phase
HV	Harmonic voltage
THDi	Harmonic current total distortion ratio
THD _v	Harmonic voltage total distortion ratio

1.1. Name of Each Part

■The front of the unit

■The back of the unit

1.2. LCD Function

Note: The above display is an example for explanation.

No.	Name of each part	Function							
1	LEAD display	Light up on the reactive energy (imported lead)/ (exported lead) screen.							
2	LAG display	Light up on the reactive	energy (imp	oorted lag)/ (exported lag)	screen.				
3	Digital element display	Display measuring eleme	ents expres	sed in digital numbers					
4	Digital display	Display measured values	s in digital n	umbers					
5	Unit	Display the units of meas	sured value	s					
6	Setup status	Light up in the setting mo Blink in the setting confir	ode mation mod	le					
7	Test mode status	Light up in the test mode	Light up in the test mode						
8	Clock status	Light up when operating	time is disp	layed					
9	Upper/lower limit alarm status	Blink when the upper/lower limit alarm is generating							
		Specification	ON	Blink	OFF				
10	Communication status	MODBUS RTU communication	Normal	Communication error such as wrong address *1	Hardware error				
		*1. For details, refer to 6.5 Troubleshooting .							
11	Harmonics	Light up when harmonic is displayed							
10	Motoring status	Blink when imported acti	ve energy i	s measured *Note 1					
12	welening status	*It appears on the active	energy (im	ported) screen only.					

Note 1: The blinking cycle is constant regardless of measuring input size.

1.3. Function of Operation Buttons

The function of each operation button varies depending on how to press the button.

<Meaning of marks>

O: Press, □: Press for 1 second or more, ◎: Press for 2 seconds or more,: Press simultaneously							sly				
Operation		Button name							Function		
Mode		SET	-	+	RESET	MAX/MIN	PHASE	DISPLAY	T unction		
	-							0	Switch the measurement screen.		
			0					—o	Switch the measurement screen in the r	everse direction.	
	ſ								Switch phase display.		
	ching						0		Switch between the harmonic RMS valu on the harmonics display screen.	e and distortion ratio	
	/ swit					0			Enter/Exit the Max/Min value screen.		
	Display							Ø	Enter the cyclic display mode for measure 5.1.3 .	rement screen. Refer	
									Enter the cyclic display mode for phase	Refer to 5.1.3 .	
	-						O		Switch between the harmonic RMS valu in cyclic mode on the harmonics display	e and distortion ratio screen.	
apor			©	— ©					Change the units such as Wh, varh, and lower-digit enlarged view. Refer to 5.1.9	l VAh or display the	
ng n					Ø				Clear the maximum and minimum	They are available	
erati	s/				_				Clear maximum and minimum values	on the Max/Min	
Ope	nes			0 -	_0				for every item in every screen.	value screen.	
	lear et	_					_0		Reset Wh, varh, and VAh to zero.	multanaayahy	
	rese	•			-		-		All measured values are reset to zero si Reset operating time to zero	multaneously.	
	Measured valu Alarm r				Ø				(The operating time displayed on the sc	reen only)	
					0				Reset the alarm displayed on the	They are available	
					0				screen.	only when set to	
					Ø				(For every item in every screen)	cancellation.	
					0				Stop the backlight blinking caused by al backlight blinking.	arm only when set to	
	tch	© –			—©				Enter the setting mode.		
	Mode swit	Ø							Enter the setting confirmation mode.		
					©—		—©		Enter the password protection screen.		
	-	0							Determine the settings and then shift to	the next settings.	
le	tion							0	Return to the previous setting item.		
e/ on mod	operat		0	0					Round up/down the setting value. Pressing for 1 second or more enables	fast forward.	
mod	ting								Skip the settings and return to the settin	g menu screen.	
etting confirm	Set	0							Reflect the setting change on the END s	screen.	
Se ting c		0							Cancel the setting change on the CANC	EL screen.	
Set	cial Ition					□			Restart the instrument on the CANCEL	screen.	
	Spera				© —		- ©		Initialize to the factory default settings on the CANCEL screen. Refer to 3.12 .		

Note: During backlight off mode, pressing any operation button first turns on the backlight. In addition, pressing any button again enables the use of the functions in the above table.

1.3. Function of Operation Buttons

≜CAUTION	 When you execute a function such as 'Reset Max/Min value' or 'Reset Wh, varh, and VAh to zero', past data is deleted. If you need to keep the data, record the data before the reset operation. When you execute 'Restart the instrument', the entire measurement function (measurement display, communication) will stop for a few seconds.

2. Each Mode Function

The instrument has the following operation modes.

When auxiliary power is supplied, the operating mode is first displayed. Depending on the application, switch the operation mode to use.

Mode	Description	Reference
Operating mode	This is a normal operation mode to display each measured value in digital numerical number. In the operating mode, there are 'Present value display' that shows values at present and 'Max/Min value display' that shows maximum and minimum values in the past. In addition, on each display screen, the cyclic display mode, which automatically switches the display screen every 5 seconds, is available.	5 Operation
Setting mode	 This is a mode where you can change the settings for measurement function. In addition, on the CANCEL screen, which is the screen to cancel the setting change, the following special operations are available. Restart the instrument. Reset the settings to the factory default. 	3 How to Set up
Setting confirmation mode (Test mode)	 This is a mode where you can confirm the setting of each item. In this mode, you cannot change the settings. Therefore, it is possible to prevent from accidentally changing the settings. The mode provides test function available at startup of systems. Communication Test: Without measurement input (voltage/current), fixed numerical data can be returned. Support function for checking input wiring: When either a voltage input or current input is incorrectly wired, the incorrect wiring part is displayed on the screen. In addition, useful information is also displayed such as a current phase angle and voltage phase angle. 	3.10 or 4 How to Use Test Mode

■Flow of each mode

3.1. Setting Flow

For measurement, you must set settings such as phase wire system, VT/Direct voltage, and CT primary current in the setting mode.

From the operating mode, enter the setting mode and then set necessary items. Any items not set remain in the factory default settings.

For normal use, only set up the items in the setting menu 1. For details on the settings, refer to **3.2**. For details on the factory default settings, refer to **8.4**.

∆CAUTION

The setting change provides the initialization of the related setting items and measured data. Therefore, check that beforehand. For details, refer to **3.11 Initialization of Related Items by Changing a Setting.**

3.1. Setting Flow

<Setting Procedure>

- (1) Press the (SET) and (RESET) buttons simultaneously for 2 seconds to enter the setting mode.
- (2) Select the setting menu number with the (+) or (-) button.
- (3) Press the (SET) button to determine the setting menu number.
- (4) Set each setting item. (Refer to 3.2 to 3.9.)
- (5) After completing all the settings, select **End** in the setting menu and then press the (SET) button.
- (6) When the **End** screen appears, press the (SET) button again.

3.1. Setting Flow

■Basic operation for settings

The following table shows a list of basic operations for settings.

Function	Operation	Note
Select a setting	Press (+) or (-) button	Fast-forward by pressing for 1 second or more
Determine a setting	Press (SET) button	When the setting is determined, the screen will shift to the next setting item.
Return to the previous setting item	Press DISPLAY button	The eatting before return is enabled
Return to the setting menu during setup	Press (SET) button for 1 second	The setting before return is enabled.

3.2. Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

You will set the phase wire system, display pattern, VT/Direct voltage, CT primary current, and demand time period.

In the operating mode, press the (SET) and (RESET) buttons simultaneously for 2 seconds or more to enter the following operation.

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern,

VT/Direct Voltage, and CT Primary Current)

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

If only the settings in the setting menu 1 are necessary to use, move to **5 Operation**. If you use an additional function, set it in the setting menu 2 to 8.

Note	If you change a setting in the setting menu 1, the maximum and minimum values of the related measuring elements will be reset. However, active/reactive energy will not be
	reset. For details, refer to 3.11 Initialization of Related Items by Changing a Setting.

3.3. Setting Menu 2: Communication Settings (MODBUS RTU Communication Settings)

In the operating mode, press the (SET) and (RESET) buttons simultaneously for 2 seconds or more to enter the following operation.

3.4. Setting Menu 3: Display Settings (Settings for Display of Active/Reactive Energy and Harmonic Measurement)

This section describes how to set the special measurement of active/reactive energy and harmonic display. In the operating mode, press the (set) and (reset) buttons simultaneously for 2 seconds or more to enter the following operation.

3.5. Setting Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Update Time)

This section describes how to check the model and set the backlight and display update time. These settings are not necessary for normal use.

In the operating mode, press the (set) and (reset) buttons simultaneously for 2 seconds or more to enter the following operation.

3.6. Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

This section describes how to set the upper/lower limit alarm, backlight blinking during alarm, and motor starting current.

In the operating mode, press the (SET) and (RESET) buttons simultaneously for 2 seconds or more to enter the following operation.

For details about each function, refer to the following:

- Upper/lower limit alarm \rightarrow See **5.2.1** to **5.2.3**.
- Motor starting current \rightarrow See **5.2.6**.

3.6 Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

3.6 Setting Menu 5: Alarm Settings (Settings for Upper/Lower Limit Alarm and Motor Starting Current Mask Function)

3.7. Setting Menu 6: No Settings

This setting item is not displayed because there is no corresponding function in this model.

3.8. Setting Menu 7: No Settings

This setting item is not displayed because there is no corresponding function in this model.

3.9. Setting Menu 8: Special Settings (Settings for Operating Time and IEC Mode)

This section describes the settings of the operating time and IEC mode.

In the operating mode, press the (SET) and (RESET) buttons simultaneously for 2 seconds or more to enter the following operation.

For details about each function, refer to the corresponding section.

3.9. Setting Menu 8: Special Settings (Settings for Operating Time and IEC Mode)

3.10. Setting Confirmation Menu 1 to 9: How to Confirm the Settings in the Setting Menu 1 to 8, 9 Test Mode

1. Setting Confirmation

In the operating mode, press (SET) for 2 seconds or more to execute the operation.

2. Test Mode

In the operating mode, press (SET) for 2 seconds or more and then set the setting confirmation menu number to '9' to enter the test mode.

For details on how to use the test mode, refer to 4 How to Use Test Mode.

3.11. Initialization of Related Items by Changing a Setting

When you change a setting, the related setting items and measured data (maximum and minimum values) will be initialized. For details, refer to the following table.

Setting item to be changed		Menu 1			Menu 5	1enu 5 Menu 8				
Initialized item		e e		CT current		it			gs	
		Phase wire syste *Note	VT/Direct voltag	CT secondary current	CT primary current	Upper/Lower lim alarm item	Operating time 1 count target	Operating time 2 count target	IEC mode settin	
		Phase wire system								
Setting item	Menu 1	Display pattern								
		VT/Direct voltage	0				-			
	Menu 5	Upper/Lower limit alarm item								
		Upper/Lower limit alarm value					\bullet			
	Menu 8	Threshold of Operating time 1 count target						\bullet		
		Threshold of Operating time 2 count target							\bullet	
	Current, Maximum/Minimum value		•		•					
	Current demand, Maximum/Minimum value									
Ð	ο Voltage, Maximum/Minimum value									
/alu	ਤੱ active power, Maximum/Minimum value			\bullet	\bullet					
_br	Reactive power, Maximum/Minimum value									
suri	Apparent power, Maximum/Minimum value			\bullet	\bullet					\bullet
leas	Power factor, Maximum/Minimum value			●	\bullet					●
≥	≥ Frequency, Maximum/Minimum value									
	Harmonic current, Maximum value									
	Harmonic voltage, Maximum value		\bullet	\bullet						

•: It turns to the default setting.

O: It turns to the default setting according to the phase wire system.

Note: For 1-phase 3-wire system, the setting change between '1N2 display' and '1N3 display' does not cause initialization.

3.12. Initialization of All Settings

The following operation enables to reset all settings to the factory default. It is only for the settings. Measured active energy, reactive energy, and operating time are not changed.

For details on the initialization of maximum and minimum values, refer to **3.11 Initialization of Related Items by Changing a Setting**.

*For example, if the phase wire system is changed by initializing all settings, all maximum and minimum values will be reset.

To initialize all settings, display the CANCEL screen in the setting mode and then execute the following operation.

For details on how to display the CANCEL screen, refer to 3.1 Setting Flow.

3.13. Settings for Special Display Pattern P00

If you want to set a display pattern other than P01 or P02, P00 is available to freely set display items. This setting is conducted in the setting menu 1. The explanation here begins with the settings for P00 at Display pattern in the setting menu 1. For other operations, which are not explained here, refer to **3.2**.

(1) A maximum of 16 measuring items in four screens are available.

From the first line to the third line, each selectable item is A, DA, V, W, var, VA, PF, or Hz. At the fourth line, Wh, - Wh, varh, and VAh are selectable.

(2) As an example, the following display pattern is used for explanation.

3.13. Settings for Special Display Pattern P00

(Hereafter same as the setting menu 1)

	 The following measuring items cannot be set in the display pattern of P00. Set them in the setting menu 3 and 8. Harmonic current, Harmonic voltage, Operating time
Note	2. It is not possible to specify phases of current and voltage. In the operating mode, press PHASE to switch the phase.
	 3. The following measuring items can be set for 3-phase 4-wire system only. Current N-phase, Current demand N-phase
How to Set up

Example for Easy Setup 3.14.

The following example illustrates an easy setup.

Setting Example

- Model:
- Phase wire system: 3-phase 4-wire
- Measuring element: A, V, W, PF
- Input Voltage:
- 220/380 V • CT primary current:
- 200 A
- CT Secondary current: 5 A
- MODBUS RTU: Address: 1, Baud rates: 19.2kbps, Parity: even, Stop bit: 1

■Setting Procedure

shows the item where setting change is necessary.

ME96SSEB-MB

3. How to Set up

3.14. Example for Easy Setup

The test mode has function useful for startup of systems. The following table shows a list of functions in the test mode.

Test menu	Description
1. Communication test	For MODBUS RTU communication function, it is possible to return fixed numerical data without measurement (voltage/current) input. Use this for checking with the host system.
2. to 5. No function	—
6. Functions for determining incorrect wiring	 ①Pattern display for incorrect wiring ①Pattern display for incorrect wiring When either a voltage input or current input is incorrectly wired, this function automatically determines incorrect wiring and displays its part on the screen. It is easier to find out the incorrect part and useful to check the connection. *Note ②Support display for determining incorrect wiring This function displays a current phase angle, a voltage phase angle, and active power, voltage, and current value of each phase. By checking each display and 9.2 A List of Examples for Incorrect Wiring Display, it is easier to determine incorrect wiring for measurement (voltage/current) input.

*Note: The function cannot determine all incorrect wiring. If both a voltage input and a current input are incorrectly wired, a different pattern may be displayed.

Test procedure

- (1) Press (SET) for 2 seconds to enter the setting confirmation mode.
- (2) With (+) or (-), select '9' in the setting confirmation menu number
- (3) Press (SET) to enter the test mode.
- ④ Execute the test in each test menu. For details, refer to 4 How to Use Test Mode.

Test mode flow

Note: The screen momentarily goes off.

4.1. Test Menu 1: Communication Test

Set the setting confirmation menu number to '9' to enter the test mode In the test mode, the following operation is available.

4.2. Test Menu 2 to 5: No Test Menu

This test menu is not displayed because there is no corresponding function in this model.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

In the test mode, the following operation is available.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

Continued from the previous page.

■ It is not possible to detect incorrect wiring

If the screen is displayed as the following, it is not possible to detect incorrect wiring. Check measurement (voltage/current) input or press (+) to check 2 Support display for determining incorrect wiring.

	Display	Description
	01	This is low voltage. Apply about 70 percent or more of the direct voltage or secondary voltage setting.
not	02	This is low current. Apply about 5 percent or more of the rated current of the instrument.
	03	This is in the unbalanced state. For 3-phase 3-wire system, it is not possible to detect incorrect wiring if there is a 10 percent or more difference between values in 1-phase and 3-phase of current.
	04	There may be multiple incorrect wiring parts. Check ②Support display for determining incorrect wiring.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

4.3.1. Incorrect Wiring Patterns Detected by ①Pattern display of incorrect wiring

This function is designed with the assumption that either a current input or a voltage input is incorrectly wired in positive phase sequence. It is not possible to determine all incorrect wiring. Dashed lines indicate incorrect wiring parts.

■For 3-phase 4-wire system

*1. Correct measurement is possible even in reversed phase sequence.

*2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

4.3.1. Incorrect wiring patterns detected by ①Pattern display of incorrect wiring

■For 3-phase 3-wire system

*1. Correct measurement is possible even in reversed phase sequence.

*2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

4.3. Test Menu 6: Functions for Determining Incorrect Wiring

4.3.1. Incorrect wiring patterns detected by ①Pattern display of incorrect wiring

■For 1-phase 3-wire system *1

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram
1	Normal	5	Switch between 1 side CT and 3 side CT	8	Reverse connection between terminals
	K k +C1 C2 C2 K k +C3 C3 P1 P2 P3 PN		К k К k К k К k К k К k К k К k		1 N 3 K k +C1 C1 +C2 C2 K k +C3 C2 F1 P1 P2 P3 PN
2	Reverse connection of 1 side CT 1 N 3	6	Reverse connection between terminals P1 and PN 1 N 3	9	PN, P3, and P1 are connected to P1, PN, and P3 terminals of the instrument in that order.
	К <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u>		K k +C1 C1 +C2 C2 K k +C3 C3 P1 P2 P3 PN		1 N 3 K k +C1 C1 +C2 C2 K k +C3 C3 P1 P2 P3 PN
3	Reverse connection of 3 side CT	7	Reverse connection between terminals PN and P3	10	P3, P1, and PN are connected to P1, PN, and P3 terminals of the instrument in that order.
	К <u>k</u>		K k +C1 +C1 +C2 +C2 C2 K k +C3 C3 P1 P1 P2 P3 PN		1 N 3 K k +C1 C1 +C2 C2 K k +C3 C3 P1 P2 P3 PN
4	Reverse connection of 1 side and 3 side CT 1 N 3 K k				

*1. On the screen, the PN terminal is displayed as 'P2'. Read as 'PN.'

■For1-phase 2-wire system

No.	Wiring diagram	No.	Wiring diagram
1	Normal	2	Reverse connection of 1 side CT
	K k +C1 C1 C2 C2 +C3 C3 P1 P2 P3 PN		K K +C1 C1 +C2 C2 +C3 C3 P1 P2 P3 PN

5.1. **Basic Operation**

The following charts illustrate how to use basic operation.

5.1.1. How to Switch the Measurement Screen

Press (DISPLAY) to switch the measurement screen.

The display item and order vary depending on the phase wire system, display pattern, and additional screen. For details on the display pattern, refer to 6.1

Display Pattern List.

In addition, by pressing (DISPLAY) and (-), the measurement screen is switched in reverse.

5.1.2. How to Switch Phase Display

PHASE) to switch the phase of voltage/current.

Press

- Measuring element without phase (Frequency) · Active power, reactive power, apparent power, and power factor for other than 3-phase 4-wire system
- 1-phase 2-wire system setting

5.1. Basic Operation

5.1.3. How to Display in Cyclic Mode

In the cyclic mode, the measurement screen or phase display automatically switches every 5 seconds. When you press (DISPLAY) for 2 seconds, the screen enters the cyclic display mode of measurement screen. When you press (PHASE) for 2 seconds, the screen enters the cyclic display mode of phase. To end the cyclic mode, press any button other than (SET).

Note 1: Before shift to the cyclic mode, the screen blinks 3 times.

Note 2: In the cyclic display mode of measurement screen, the screen number is not displayed at switching display. Note 3: On the Max/Min value screen, the cyclic mode is available.

5.1.4. Harmonics Display

The harmonic RMS value and distortion ratio (content rate) can be displayed. To display them, you must set the harmonics display. For details on the settings, refer to **3.4**.

■Measuring elements

	Harmonic current		Harmor N-p	nic current phase	Harmonic voltage	
Degree	RMS value	Distortion Ratio (Content rate)	RMS value	Distortion Ratio (Content rate)	RMS value	Distortion Ratio (Content rate)
Harmonic total	0	0	0	_	0	0

■Display example

Note: Degree total is displayed as "ALL."

■How to switch the phase (Phase wire system: 3-phase 4-wire)

By pressing (PHASE), the RMS value and distortion ratio (content rate) are switched.

Note: For harmonics measurement, the following phases are not measured to display.

Phase wire system		Harmonic current	Harmonic voltage	
2 phase 2 wire	3CT	_	31-phase	
5-phase 5-wire		2CT	2-phase	31-phase
	1 phase 2 wire	1N2 display	N-phase	12-phase
	1-phase 5-wire	1N3 display	N-phase	13-phase

5.1. Basic Operation

5.1.5. Maximum/Minimum Value Display

On the Max/Min value screen, a maximum value, present value, and minimum value are displayed in one screen by measuring item.

- However, for harmonics, the following maximum value only is displayed.
 - Harmonic current: The total RMS value of the phase where a value was the largest in every phase.
 - Harmonic voltage: The total distortion ratio of the phase where a value was the largest in every phase.

■Display examples

5.1.6. How to Display Maximum/Minimum values

When you press (MAX/MIN), the screen switches to the Max/Min value display. By pressing (MAX/MIN) again, the screen returns to the present value display.

Example for display switching between the present value and Max/Min value

Presentt value display

Max/Min value display

On the Max/Min value screen, the following display switching is available as the present value screen.

Button operation		Function					
Press	Measuring items are switched in the following order. However, measuring items that are not included in the phase wire system, display pattern, and additional screen are not displayed. $\overset{A \to A_N \to DA \to DA_N \to V \to W \to var}{\overset{HV \leftarrow HI_N \leftarrow HI \leftarrow HZ \leftarrow PF \leftarrow VA}{}$						
	For 3-phase 4-wire • •A, DA:	system, phases are switched in the following order:					
	•V:	→ Average→1 Phase→2 Phase→3 Phase→ $\rightarrow V_{AVG}(L-N) \rightarrow V_{1N} \rightarrow V_{2N} \rightarrow V_{3N} \rightarrow V_{AVG}(L-L) \rightarrow V_{12} \rightarrow V_{23} \rightarrow V_{31}$					
Press PHASE	•W, var, VA, PF:	→ Total→1 Phase→2 Phase→3 Phase					
	•A _N , DA _N , and Hz do not have phase switching.						
	For 3-phase 3-wire/1-phase 3-wire system, the phases of A, DA and V are switched.						
For 1-phase 2-wire system, no phase is switched.							
Press DISPLAY for 2 seconds	Enter the cyclic display mode of measurement screen.						
Press PHASE for 2 seconds	Enter the cyclic disp	play mode of phase.					

5.1.7. How to Clear the Maximum/Minimum Values

On the Max/Min value screen, pressing (RESET) for 2 seconds clears the maximum and minimum values of the displayed measuring item and turns to the present values.

In addition, pressing (RESET) and (+) simultaneously for 2 seconds on the screen clears all maximum and minimum values and turns to the present values.

When password protection is enabled, the maximum and minimum values are cleared after you enter the password.

Communication function also enables to clear all maximum and minimum values. In this case, password input is not necessary.

5.1. Basic Operation

5.1.8. Active Energy/Reactive Energy/Apparent Energy Display

■Display type

The following table shows the display type of active/reactive/apparent energy based on full-load power.

Full-load power [kW] = <u>α x (VT primary voltage) x (CT primary current)</u> 1000

- *1. For 3-phase 4-wire system, VT primary voltage and direct voltage are calculated using phase voltage.
- *2. For 1-phase 3-wire system, VT primary voltage is calculated using phase voltage.
- *3. For the direct voltage setting, direct voltage is used for calculation instead of VT primary voltage.
- *4. For reactive energy and apparent energy, 'kW' in the above equation is read as 'kvar' and 'kVA' respectively.

	Display type		
Full-load power [kW]	Digital Display	Unit	
Below 10		kWh, kvarh, kVAh	
10 or more and below 100		*The unit can be	
100 or more and below 1000	000000	changed to 'M or none.'	
1000 or more and below 10000	000000	MWh, kvarh, kVAh	
10000 or more and below 100000		*The unit can changed	
100000 or more		to 'k or none.'	

at measuring active energy (imported). It becomes OFF or ON at no measuring point.

5.1.9. How to Change the Display Digit of Active/Reactive/Apparent Energy

By changing the unit (M, k, or none) of active/reactive/apparent energy or by displaying the lower enlarged view, you can check the upper or lower digit of a measured value. Press (+) and (-) simultaneously for 2 seconds to switch.

Example of switching active energy (imported): 012,345,678,901,234.567Wh

Note1: Active, reactive, and apparent energy that are not displayed on the screen will be also all changed to the same unit. Note2: If the set value of VT primary voltage or that of CT primary current is large, the lower digit less than the measurement range will indicate '0.'

3-phase 4-wire

3

5.1. Basic Operation

5.1.10. How to Reset Active/Reactive/Apparent Energy to Zero

Pressing (SET), (RESET), and (PHASE) simultaneously for 2 seconds resets active, reactive, and apparent energy values to zero.

When password protection is enabled, the values are reset after you enter the password.

In addition, communication function enables to reset all active, reactive, and apparent energy values to zero. In this case, password input is not necessary.

Note1: This function is available on the present value screen only.

Note2: The values that are not displayed on the screen will be also all reset to zero.

5.1.11. How to Measure Reactive Energy (2 quadrant/4 quadrant measurement)

For measurement of reactive energy, there are two types on how to take a quadrant as follows. The measurement method of reactive energy can be switched at the active/reactive energy measurement setting in the setting menu 3.

In addition, when you set to IEC mode in the setting menu 8, 2 quadrant measurement is executed even if you set to 'Combination II' or 'Combination IV', which executes 4 quadrant measurement, at the active/reactive energy measurement setting.

When you select 4 quadrant measurement and IEC mode at each setting, 'Imported lag' and 'Exported lead' of reactive energy are displayed on the additional screen. However, they are not integrated.

For details on how to switch 2 quadrant/4 quadrant measurement, refer to **3.4**.

For details on how to switch the IEC mode setting, refer to 3.9.

Measurement method	Description
4 quadrant measurement	Each of four quadrants (Imported lag, Imported lead, Exported lag, and Exported lead) is measured as one division. It is suitable to measure systems with a private power generator. However, a dead region occurs at the boundary of each division. Accordingly, reactive energy cannot be measured at where power factor is near 1 or zero.
2 quadrant measurement	'Imported lag' and 'Exported lead' are measured as one division, and in the same way, 'Imported lead' and 'Exported lag' are measured as one division. Therefore, a dead region does not occur at where power factor is near zero, and reactive energy can be measured even there. It is suitable to measure systems without a private power generator and reactive energy of capacitor load where power factor is zero generally.

5.1. Basic Operation

5.1.12. Each Measuring Item Display during Power Transmission

The following table shows symbol display (±) for each measured value according to the power transmission state.

For details on how to switch 2 quadrant/4 quadrant measurement, refer to **3.4**.

For details on how to switch the IEC mode setting, refer to 3.9.

— var		Power transmission state Measuring item		Imported lag	Imported lead	Exported lag	Exported lead
		A, DA, AN, DAN, V, Hz, VA, HI, HV, HI _N		Unsigned			
Exported lag /	Imported lead	W		Unsi	gned	' - ' :	sign
-w +w Exported lead Imported lag			Normal mode (2 quadrant measurement)	Unsigned	ʻ-ʻ sign	ʻ-ʻ sign	Unsigned
↓ + var	ar	var	Normal mode (4 quadrant measurement)	Unsigned	ʻ-ʻ sign	Unsigned	'-' sign
			IEC mode (2 quadrant measurement)	Unsigned	'-' sign	'-' sign	Unsigned
		PF	Normal mode (2 quadrant measurement)	Unsigned	'-' sign	'-' sign	Unsigned
			Normal mode (4 quadrant measurement)	Unsigned	'-' sign	Unsigned	'-' sign
			IEC mode (2 quadrant measurement)	Unsigned	ʻ-ʻ sign	Unsigned	ʻ-ʻ sign

5.1.13. Demand Time Period and Demand Value of Current demand

The demand time period (t_0) represents a time period until a measured value (I_0) displays 95% of the input (I) when continuously energized by constant input (I). To display 100% of the input (I), approximately three times the time period (to) is required.

The demand value represents a measured display value with the above feature on time period and it indicates the overall average value within the demand time period.

The demand value changes over a relatively long time period. Therefore, it is not affected by input change for a short time. Accordingly, it is suitable to monitor overload of transformer.

5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

The following shows how to use the instrument depending on the application.

5.2.1. Upper/Lower Limit Alarm Display and Action

When the set upper/lower limit alarm value is exceeded, the display starts to blink. *For details on how to set the upper/lower limit alarm, refer to **3.6**.

■Action in case of alarm

Alarm generating: When the set alarm value is exceeded, the display blinks. *Note Alarm cancellation: When an alarm is cancelled, the display turns to the normal mode. Note: When you set the alarm delay time, an alarm will generate if the set upper/lower limit alarm value is exceeded and this situation continues for the alarm delay time.

1113	Situation						
Alarm meth	reset nod	Measured value $>$ Upper limit alarm value Measured value $<$ Lower limit alarm value	Measured value $<$ Upper limit alarm value Measured value $>$ Lower limit alarm value				
Automatic (Auto)	Screen	ALARM and HI>or (LOblink 2-3 4365 v 2 268k µ 111110k wh •	Normal display 2 990 A 2-3 4365 V 2 175 K W 1 1 1 10 K Wh				
Manual (HoLd)	Screen	ALARM and HI>or (I) blink	ALARM and \textcircled{HI} or \textcircled{O} light up $2 \xrightarrow{3}$ $4365 \stackrel{\circ}{_{2}}$ $2 \xrightarrow{3}$ $4365 $				

Note1: If measuring elements of alarm generating are displayed on the screen, the digital value, unit (A, V, W, PF, Hz, %, DM, and THD), and phase (1, 2, 3, and N) will be displayed according to the alarm status as the following table.

	, pinalee (1, _ , e, and		, ea acceraing te	
Alarm status	Digital value	Unit	Phase	
Alarm generating	Blink*	Blink	Blink*	*When the phase of no alarm is
Alarm retention	Light up	Blink	Blink*	displayed on the screen, it does not
Alarm cancellation	Light up	Light up	Light up	blink.

Note2: When the backlight blinking is set to 'on' in case of alarm, the backlight blinks at generating alarm. Note3: On the Max/Min value screen, the present value, which is displayed at the middle line of digital display,

ALARM and \mathbb{HI} or $\langle LO$ blink.

■Monitored phase of upper/lower limit alarm item

The phase for monitoring the upper/lower limit alarm varies depending on the measuring item. For details, refer to the following table.

	Monitored phase						
Upper/Lower limit alarm item	3-phase	3-phase 3-wire	1-phase 3-wire	1-phase 3-wire			
	4-wire	(3CT, 2CT)	(1N2)	(1N3)			
A upper limit, DA upper limit	1, 2, 3	1, 2, 3	1, N, 2	1, N, 3			
A lower limit, DA lower limit	1, 2, 3	1, 2, 3	1, 2	1, 3			
A _N upper limit, DA _N upper limit	N	—	—	—			
A _N lower limit, DA _N lower limit	N	—	—	—			
V (L-L) upper limit Note1	12, 23, 31	12, 23, 31	1N, 2N, 12	1N, 3N, 31			
V (L-L) lower limit Note1	12, 23, 31	12, 23, 31	1N, 2N, 12	1N, 3N, 31			
V (L-N) upper limit	1N, 2N, 3N	—	—	—			
V (L-N) lower limit	1N, 2N, 3N	—	—	—			
W upper limit, var upper limit, PF upper limit	Total	Total	Total	Total			
W lower limit, var lower limit, PF lower limit	Total	Total	Total	Total			
Hz upper limit	1N	12	1N	1N			
Hz lower limit	1N	12	1N	1N			
HI total upper limit	1, 2, 3	1, 2, 3 *Note2	1, 2	1, 3			
HI _N total upper limit	N	—	—	—			
THD _V upper limit	1N, 2N, 3N	12, 23	1N, 2N	1N, 3N			

Note1: For 12-phase or 31-phase of 1-phase 3-wire system, alarm monitoring is executed based on twice the set upper/lower limit alarm value.

Note2: Harmonic current 2-phase is measured for 3-phase 3-wire system (3CT) only.

5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

5.2.2. How to Cancel the Upper/Lower Limit Alarm

The alarm cancellation method differs depending on the alarm reset setting. In addition to the following methods, communication function is available to cancel the upper and lower limit alarm.

Alarm reset method	How to cancel
Automatic (Auto)	When a measured value is below the set upper/lower limit alarm value, the alarm is automatically reset.
	Even after a measured value is below the set upper/lower limit alarm value, the alarm is retained. After the measured value is below the alarm value, operate the following alarm reset. *Note: On the Max/Min value screen, it is not possible to operate the alarm reset.
Manual (HoLd)	<to a="" alarm="" cancel="" item="" of="" selected="" the=""> Display the item of alarm generating and then press (RESET) to cancel the alarm. (For the item that has phases such as current or voltage, you must press (RESET) on each phase to cancel the alarm. <to alarms="" all="" cancel="" items="" of=""> In the operating mode, press (RESET) for 2 seconds to cancel all alarms at once.</to></to>

Note: To prevent chattering, the determination whether a measured value is below the upper/lower limit alarm value is conducted out of dead region below the setting step of the alarm value.

5.2.3. How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm

Press (RESET) to stop the backlight blinking.

5.2.4. Operating Time Display

According to the value set to the operating time count target (AUX, A, and V), measuring time is counted and displayed as operating time of load. To display it, you must set the operating time display. Even when the operating time display is set to 'oFF (Not display)', operating time is counted. *For details on the settings, refer to **3.9**.

С	ount target is exceeded,	, operating time ²	1 and 2 are coun	ted.		
	Item	3-phase 4-wire	1-phase 2-wire	Others	' hour	l'hour
	AUX (Auxiliary power)	<u>AUX</u>	<u>AUX</u>	<u>AUX</u>	וסטכב	ποσητε
	A (Current)	Aavg	А	Aavg	с у т 30 h ©	030 03 h ©
	V (Voltage)	$V_{AVG}(L-N)$	V	$V_{AVG}(L-L)$	Operating time 1	Operating time 2

٦Г

When the threshold of the following items you set for operating time count target is exceeded, operating time 1 and 2 are counted.

In the operating mode, when you are switching the measurement screen with (DISPLAY), operating time is displayed.

5.2.5. How to Reset Operating Time to Zero

When operating time 1 or operating time 2 is displayed on the screen, pressing RESET for 2 seconds resets the operating time to zero.

*The operating time displayed on the screen only is reset to zero.

When password protection is enabled, it is reset to zero after you enter the password.

In addition, communication function enables to reset all operating time to zero. In this case, password input is not necessary.

5.2. Usage Depending on the Application (Alarm, Operating Time, Password, etc.)

5.2.6. How to Prevent the Maximum Value Update by Motor Starting Current

For motor current monitoring, the use of motor starting current delay function prevents the maximum value update of current, active power, reactive power, apparent power, and power factor and alarm generating that are caused by motor starting current. To use the motor starting current delay function, you must set it. For details on the settings, refer to **3.6**.

The action with motor starting current delay function

Note1: For motor starting current threshold, set a value lower than the lower limit value, considering a change in load current during operation.

Note2: When an input current value is below the motor starting current threshold, the minimum value update stops.

5.2.7. Password Protection Setting

In the operating mode, when you press RESET and PHASE simultaneously for 2 seconds or more and then enter the password, the password protection can be set.

The password of the factory default is '0000.' If you enter the wrong password, the screen will return to the password input display, where the highest digit blinks.

To switch from the password input screen to the operating mode, press (DISPLAY) at the highest digit in password input.

When the password protection is enabled, you must input the password when executing the following item such as setting mode switching or Max/Min value reset.

6. Others

6.1. Display Pattern List

When you set the display pattern in the setting menu 1 and the additional screens in the setting menu 3 and 8, the screen is switched from No.1 in the following table in ascending order by pressing (DISPLAY)

					Screen set	by displa	ay patter	n			
Display pattern		No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	No.9	No.10
	First	Α	А	А	W	А	DA				
D01	Second	V	V	V	var	AN	DAN				
PUI	Third	W	var	VA	PF	Hz	V				
	Fourth	Wh	varh	VAh	Wh	Wh	Wh				
	First	A1	DA1	V1N	W1	var1	VA1	PF1	Α	Α	DA
	Second	A2	DA2	V2N	W2	var2	VA2	PF2	Hz	AN	DAN
P02	Third	A3	DA3	V3N	W3	var3	VA3	PF3	W	var	VA
	Fourth	Aavg	DAavg	VLN avg	WΣ	varΣ	ναΣ	ΡΕΣ	Wh	varh	VAh
	First	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
DOO	Second	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
100	Third	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1						
	Fourth	Arbitrary 2	Arbitrary 2	Arbitrary 2	Arbitrary 2						

[When set to 3-phase 4-wire system]

Note1: For arbitrary 1, selectable items are A, AN, DA, DAN, V, W, var, VA, PF, and Hz. For arbitrary 2, Wh, -Wh, varh, and VAh are selectable.

					Additior	al scree	n (Set ir	ו the se	tting men	u 3 and	8)		
Di	isplay	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22
pattern	attern	Wh	Wh (exported)	varh	varh imported (lead)	varh exported (lag)	varh exported (lead))	VAh	Harmonic current	Harmonic current N-phase	Harmonic voltage	Operating time 1	Operating time 2
tterns	First	-	-	-	-	-	-	-	1-phase value	N-phase value	1-phase value	-	-
Common to display patte from P00 to P02	Second			ed varh	varh imported (lead)	varh exported (lag)	varh exported (lead)		2-phase value	-	2-phase value	hour 1	hour 2
	Third	Wh	Wh exported					VAh	3-phase value	-	3-phase value	-	-
	Fourth							Degree	Degree	Degree	Operating time	Operating time	

Note 2: When you add an additional screen, the screen number is added.

Note 3: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively. Note 4: The additional screens of Wh, varh, and VAh of P00 are displayed by setting each item as display element.

6. Others

6.1. Display Pattern List

INNICI	when set to other than o-phase +-wire system]									
		Screen set by display pattern								
Display pattern		No.1	No.2	No.3	No.4	No.5	No.6			
	First	Α	Α	Α	W	А				
	Second	V	V	V	var	DA				
FUI	Third	W	var	VA	PF	Hz				
	Fourth	Wh	varh	VAh	Wh	Wh				
	First	A1	DA1	V12	W	А	Α			
D 02	Second	A2	DA2	V23	var	Hz	V			
F02	Third	A3	DA3	V31	PF	var	VA			
	Fourth	Aavg	DAavg	Vavg	Wh	varh	VAh			
	First	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1					
DOO	Second	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1					
P00	Third	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1					
	Fourth	Arbitrary 2	Arbitrary 2	Arbitrary 2	Arbitrary 2					

[When set to other than 3-phase 4-wire system]

Note1: For 1-phase 2-wire system, it is not possible to set the display pattern of P02.

Note2: For arbitrary 1, selectable items are A, DA, V, W, var, VA, PF, and Hz.

For arbitrary 2, Wh, -Wh, varh, and VAh are selectable.

Note3: The phase shown in the display pattern of P02 is displayed on the screen according to the phase wire system as the following table.

F Phase disp	Phase wire system lay	1-phase 3-wire (1N2)	1-phase 3-wire (1N3)	3-phase 3-wire
	1	1	1	1
Current	2	N	N	2
	3	2	3	3
	12	1N	1N	12
Voltage	23	2N	3N	23
	31	12	13	31

				Ad	ditional s	creen (Se	et in the s	etting me	enu 3 and	l 8)		
Di	splay	No.7	No.8	No.9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17
pattern		Wh	Wh (exported)	varh	varh imported (lead)	varh exported (lag)	varh exported (lead)	VAh	Harmonic current	Harmonic voltage	Operating time 1	Operating time 2
tterns	First	-	-	-	-	-	-	-	1-phase value	1-phase value	-	-
olay pat to P02	Second		/h Wh varh	varh	varh varh imported (lead)	varh varh nported exported (lead) (lag)	varh exported VAh (lead)	VAh	2-phase value	3-phase value	hour 1	hour 2
n to dis m P00	Third	Wh							3-phase value	-	-	-
Common t from	Fourth	expo							Degree	Degree	Operating time	Operating time

Note4: When you add an additional screen, the screen number is added.

Note5: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively. Note6: The additional screens of Wh, varh, and VAh of P00 are displayed by setting each item as display element. Note7: The display of additional screens of No.14 and 15 in the above table varies depending on the setting of the phase wire system as the following table.

Phase display	Phase wire system	1-phase 2-wire	1-phase 3-wire	3-phase 3-wire (2CT)	3-phase 3-wire (3CT)
Harmonic current	1-phase value	0	0	0	0
	2-phase value	—	—	—	0
	3-phase value	—	0	0	0
Harmonic voltage	1-phase value	0	0	0	0
	3-phase value	_	0	0	0

6.2. Standard Value

When you set active power and reactive power as alarm element, the setting range is determined by the standard value calculated using the following calculation formula.

The standard value of active power/reactive power								
Measuring element	Calculation method for standard value							
Active power	VT ratio x CT ratio x Intringia power (100%) kW							
Reactive power	V Frauo × CT rauo × intrinsic power (100%) kw							

The standard value of active power/reactive power

Note1: When you set to 'Without VT (Voltage direct input)', the VT ratio is 1. For intrinsic power, refer to the following table. Note2: The calculated value is round to the nearest number as the table in the next page.

■Intrinsic power

Phase wire system	CT secondary current	Rated vo	oltage	Intrinsic power value (100%)
			110 V	0.5 kW
		Direct input	220 V	1.0 kW
	5 A	(Line voitage)	440 V	2.0 kW
		With VT	100 V, 110 V	0.5 kW
1-phase		(Line voltage)	220 V	1.0 kW
2-wire			110 V	0.1 kW
		Direct input	220 V	0.2 kW
	1 A	(Liffe voltage)	440 V	0.4 kW
		With VT	100 V, 110 V	0.1 kW
		(Line voltage)	220 V	0.2 kW
	5 A		220 V	1.0 kW
1-phase	ЪА	Without VT	440 V	2.0 kW
3-wire	1 .	(Line voltage)	220 V	0.2 kW
	IA		440 V	0.4 kW
		Disc et in suit	110 V	1.0 kW
		Urect Input	220 V	2.0 kW
3-phase 3-wire	5 A	(Line voltage)	440 V	4.0 kW
		With VT	100 V, 110 V	1.0 kW
		(Line voltage)	220 V	2.0 kW
		Disc et in suit	110 V	0.2 kW
		Urect Input	220 V	0.4 kW
	1 A	(Line voltage)	440 V	0.8 kW
		With VT	100 V, 110 V	0.2 kW
		(Line voltage)	220 V	0.4 kW
			63.5/110 V	1.0 kW
			100/173 V 110/190 V	2.0 kW
	5 A	Direct input	220/380 V 230/400 V 240/415 V 254/440 V	4.0 kW
			277/480 V	5.0 kW
		With V/T	63.5 V	1.0 kW
3-phase		(Phase voltage)	100 V, 110 V, 115 V, 120 V	2.0 kW
4-wire			63.5/110 V	0.2 kW
			100/173 V 110/190 V	0.4 kW
	1 A	Direct input	220/380 V 240/415 V 254/440 V	0.8 kW
			277/480 V	1.0 kW
		Mith MT	63.5 V	0.2 kW
		(Phase voltage)	100 V, 110 V, 115 V, 120 V	0.4 kW

Note: For reactive power and apparent power, read 'kW' in the above table as 'kvar' and 'kVA' respectively.

6. Others

6.2. Standard Value

The calculated value in the previous page is rounded to the nearest number as the following table.

Unit: W	Unit: W	Unit: kW	Unit: kW	Unit: MW	Unit: MW
8 W	300 W	9 kW	320 kW	9 MW	320 MW
9 W	320 W	9.6 kW	360 kW	9.6 MW	360 MW
9.6 W	360 W	10 kW	400 kW	10 MW	400 MW
10 W	400 W	12 kW	450 kW	12 MW	450 MW
12 W	450 W	15 kW	480 kW	15 MW	480 MW
15 W	480 W	16 kW	500 kW	16 MW	500 MW
16 W	500 W	18 kW	600 kW	18 MW	600 MW
18 W	600 W	20 kW	640 kW	20 MW	640 MW
20 W	640 W	22 kW	720 kW	22 MW	720 MW
22 W	720 W	24 kW	750 kW	24 MW	750 MW
24 W	750 W	25 kW	800 kW	25 MW	800 MW
25 W	800 W	30 kW	900 kW	30 MW	900 MW
30 W	900 W	32 kW	960 kW	32 MW	960 MW
32 W	960 W	36 kW	1000 kW	36 MW	1000 MW
36 W	1000 W	40 kW	1200 kW	40 MW	1200 MW
40 W	1200 W	45 kW	1500 kW	45 MW	1500 MW
45 W	1500 W	48 kW	1600 kW	48 MW	1600 MW
48 W	1600 W	50 kW	1800 kW	50 MW	1800 MW
50 W	1800 W	60 kW	2000 kW	60 MW	2000 MW
60 W	2000 W	64 kW	2200 kW	64 MW	2200 MW
64 W	2200 W	72 kW	2400 kW	72 MW	2400 MW
72 W	2400 W	75 kW	2500 kW	75 MW	2500 MW
75 W	2500 W	80 kW	3000 kW	80 MW	3000 MW
80 W	3000 W	90 kW	3200 kW	90 MW	3200 MW
90 W	3200 W	96 kW	3600 kW	96 MW	3600 MW
96 W	3600 W	100 kW	4000 kW	100 MW	4000 MW
100 W	4000 W	120 kW	4500 kW	120 MW	4500 MW
120 W	4500 W	150 kW	4800 kW	150 MW	4800 MW
150 W	4800 W	160 kW	5000 kW	160 MW	5000 MW
160 W	5000 W	180 kW	6000 kW	180 MW	6000 MW
180 W	6000 W	200 kW	6400 kW	200 MW	6400 MW
200 W	6400 W	220 kW	7200 kW	220 MW	7200 MW
220 W	7200 W	240 kW	7500 kW	240 MW	7500 MW
240 W	7500 W	250 kW	8000 kW	250 MW	8000 MW
250 W	8000 W	300 kW		300 MW	

Note: For reactive power and apparent power, read 'W' in the above table as 'var' and 'VA' respectively.

6.3. Measuring Item

The following table shows measuring items.

O: Measurement display is possible. -: Measurement display is not possible. Inst: Instantaneous value

Measurement display item 3-phase 4-wire 3-phase 3-wire 3-phase 3-wire (2CT)/ 1-phase 2-wire Measuring item Communication svstem system (3CT) I-phase 3-wire system svstem Min Min Inst Max Max Max Min Inst Max Inst Min Inst 0 0 1-phase 0 0 0 0 0 0 0 0 0 0 2-phase 0 0 0 0 0 0 0 0 Ο 0 0 0 0 0 0 0 0 0 Current 3-phase AVG 0 0 0 0 0 0 0 0 0 N-phase Ο Ο Ο 0 0 0 0 0 0 0 0 0 0 0 1-phase 0 2-phase 0 Ο Ο Ο Ο Ο 0 Ο Ο Current 0 0 0 Ο 0 0 0 0 Ο 3-phase demand AVG 0 Ο 0 0 0 Ο 0 0 0 N-phase 0 0 0 0 0 0 1N-phase 0 2N-phase 0 0 3N-phase 0 0 0 0 0 AVG (L-N) Ο Voltage 0 0 0 0 0 0 0 0 0 0 0 0 12-phase 0 0 0 0 0 0 0 0 0 23-phase 31-phase 0 0 0 0 0 0 0 0 0 AVG (L-L) 0 0 Ο Ο 0 Ο 0 Ο 0 1-phase 0 Ο 0 2-phase 0 0 0 Active power 0 0 Ο 3-phase 0 Ο 0 Ο Ο Ο 0 Ο Ο Ο Ο Ο 1-phase 0 0 0 0 0 Reactive 2-phase 0 0 power 0 0 3-phase 0 0 0 Ο Ο Ο Ο 0 Ο 0 Ο 0 1-phase 0 0 0 0 0 0 2-phase Apparent 0 0 power 3-phase 0 0 0 0 0 0 0 0 0 Ο 0 0 Ο 1-phase 0 Ο 0 Power 2-phase Ο 0 0 factor 3-phase 0 0 0 Ο Note3 0 0 0 0 0 0 0 Ο 0 0 0 \cap Σ 0 0 0 0 0 0 0 0 0 Frequency 0 0 0 1-phase 0 Ο Ο 0 Ο Max Max Max 0 0 RMS 2-phase hase hase Phase value 0 3-phase 0 0 Harmonic 0 0 N-phase current 0 0 0 0 1-phase Note1 Distortion 2-phase 0 0 ratio 0 Ο 0 3-phase N-phase 0 1N-phase 2N-phase Ο 0 3N-phase RMS value 0 0 Ο 12-phase 0 0 23-phase Harmonic 31-phase voltage Note1 0 1N-phase Max 0 2N-phase Phase 0 Distortion 3N-phase ratio 0 0 0 12-phase Max 0 Max Phase 23-phase Ο Phase Ο 31-phase 0 0 0 0 Imported Active energy 0 0 Exported 0 0 0 0 Positive Note2 Ο 0 2 quadrant Negative Note2 0 0 0 0 0 0 0 0 Reactive Imported lag 0 energy 0 0 0 Imported lead 4 quadrant Exported lag 0 0 0 0 0 0 Exported lead 0 0 Imported + Exported 0 0 0 0 Apparent energy 1 Ο 0 Ο Ο Operating time 0 0 0 0 2 0 0 Phase angle Note4 0 0

6. Others

6.3. Measuring Item

Note1: For harmonics, the total RMS value and total distortion ratio are measured.

Note2: Reactive energy (imported) represents a positive value, which is imported lag + exported lead. Reactive energy (exported) represents a negative value, which is imported lead + exported lag.

Note3: For the measuring items monitored by communication function, refer to the user's manual of each communication function.

Note4: The phase angle can be measured only with the support function for determining incorrect wiring. Note5: For 1-phase 3-wire system, the phases of measuring items are read as the following table.

	e j e ce i i i j e ce i i i e		eacaring her			ing tenerer
Phase wire system	1-phase	2-phase	3-phase	12-phase	23-phase	31-phase
1-phase 3-wire (1N2)	1-phase	N-phase	2-phase	1N-phase	2N-phase	12-phase
1-phase 3-wire (1N3)	1-nhase	N-nhase	3-nhase	1N-nhase	3N-nhase	13-nhase

6.4. Instrument Operation

The instrument operation in other than operating mode

Situation	Measurement	Display
For a few seconds just after turning on auxiliary power *The backlight is lit and the LCD is not lit.	Not measure	Not display
In the setting mode In the setting confirmation mode In the password protection screen	The action is the same in the operating mode.	Not display a measured value
Under power failure	Not measure	Not display

The instrument operation under input

Measuring element	Instrument a	action
Current (A) Current demand (DA)	The CT secondary current setting is 5 A. When input current is below 0.005 A (0.1%), 0 A is displayed. The CT secondary current setting is 1 A. When input current is below 0.005 A (0.5%), 0 A is displayed.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Voltage (V)	 When input voltage (Line voltage) is below 11 V, 0 V is displayed. For 1-phase 3-wire system, when the voltage between P1 and P3 is below 22 V, 0 V is displayed. For 3-phase 4-wire system, when phase voltage is below 11 V or line voltage is below 19 V, 0 V is displayed. 	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Active power (W) Reactive power (var) Apparent power (VA)	 When each of three phases of current is 0 A or when each of three phases of voltage is 0 V, 0W, 0 var, and 0 VA are displayed. When current N-phase is 0 A or when voltage N-phase is 0 V, 0 W, 0 var, and 0 VA are displayed for each N-phase. 	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Power factor (PF)	 When each of three phases of current is 0 A or whe is displayed. When current N-phase is 0 A or when voltage N-phase 	en each of three phases of voltage is 0 V, 1.0 ase is 0 V. 1.0 is displayed for each N-phase.
Frequency (Hz)	•When voltage 1-phase is low voltage, is displayed. Apply a voltage above approximately 22 V.	When frequency is below 44.5 Hz and above 99.5 Hz, is displayed.
Harmonic current	For RMS value measurement: •When current is 0 A, 0 A is displayed. (for each phase) •When voltage 1-phase is 0 V or when frequency is below 44.5 Hz, is displayed for every phase.	For distortion ratio (content rate) measurement: •When harmonic current 1 st is 0 A, 0 A is displayed. (for each phase) •When voltage 1-phase is 0 V or when frequency is below 44.5 Hz, is displayed for every phase.
Harmonic voltage	For RMS value measurement: •When voltage is 0 V, 0 V is displayed. (for each phase) •When voltage 1-phase is 0 V or when frequency is below 44.5 Hz, is displayed for every phase.	For distortion ratio (content rate) measurement: •When voltage is 0 V, is displayed. (for each phase) •When voltage 1-phase is 0 V or when frequency is below 44.5 Hz, is displayed for every phase.

Operating Time When the count exceeds 999999-hour, it is fixed at 999999-hour.

Note1: Current/voltage/active power input represents input to the instrument. It does not input to the primary side of VT/CT.

Note2: The expression of 'When current is 0 A' includes the case when the measured value described in the item of Current (A) is 0 A.

Note3: The expression of 'When voltage is 0 V' includes the case when the measured value described in the item of Voltage (V) is 0 V.

Note4: Use the instrument within the rating of the instrument.

6.5. Troubleshooting

If you observe abnormal sound, odor, smoke, or heat generation from the instrument, turn off the power at once.

In addition, if you consider sending the instrument in for repair, check the following points before it.

	Situation	Possible cause	Solution
	The display does not light up.	Auxiliary power is not applied to MA and MB terminals.	Apply auxiliary power supply.
×	When auxiliary power is applied, the display does not light up for a short time.	This is not an error. For a few seconds after charging auxiliary power, the internal circuit is being initialized.	Use it as it is.
Displa	The backlight does not light up.	The backlight may be set to 'auto off (Auto).' *When it lights up by pressing any operation button, it is set to 'auto off.'	When it is set to auto off, it automatically goes off in 5 minutes. Use it as it is or change the setting to 'ON (Hold).' For details, refer to 3.5 .
	The display becomes black.	It may become black due to static electricity.	It will go off after a while.
	The 'End' display remains.	It is in the setting mode.	Press the SET button.
	The current and voltage errors are large.	The settings for VT/Direct voltage and CT primary current may be incorrect.	Check the settings for VT/Direct voltage and CT primary current.
	Current and voltage are correct, but active power and power factor errors are large.	The wiring for VT/CT and the instrument may be incorrect.	Check the wiring for VT/CT and the instrument.
	The power factor error is large.	If input current is smaller than the rating, the error will become large. (approximately 5% or less of the rated current)	This is not an error. Use it as it is, or if the error is troublesome, change the CT according to the actual current.
ient error	The displayed active power is different from that calculated by multiplying the displayed current, voltage, and power factor.	If the current and voltage AC waveforms distort due to harmonics, the value will not be the same as the calculated value. (For current waveforms without harmonics, the calculated value matches with the displayed value.)	Use the instrument as it is.
easurem	The total harmonic RMS value of harmonic current is quite different from the current value.	The distortion ratio (content rate) is well over 100%. (For measurement of inverter secondary side output)	Check the measured item.
Σ	The current value measured by this instrument is different from that measured by other measuring instrument, such as a clamp meter. The difference exceeds an acceptable level.	If the comparative measuring instrument uses the average value method, the AC waveform will distort due to harmonics, and the error of the comparative instrument will become large. (This instrument uses the RMS value method.)	Compare with a current value of a measuring instrument that uses the RMS value method.
	On the Max/Min value screen, the present value is displayed beyond the range of maximum and minimum values.	During the starting current delay time, the maximum value is not updated. Therefore, the displayed present value may exceed the maximum value.	Use the instrument as it is.
tion	In the setting mode, setting change is not possible.	When SET blinks at the bottom left of the screen, it is in the setting confirmation mode. Therefore, setting change is not possible.	Enter the setting mode to change the settings.
Opera	When the screen enters the setting mode, the PASS 0000 display appears	The password protection is enabled.	Enter the password you set up. The factory default password is '0000.' For details, refer to 5.2.7 Password Protection Setting .
	Maximum and minimum values change.	The values will be cleared if you change a setting such as phase wire system, VT/Direct voltage, or CT primary current.	It is necessary to record the data before changing the setting.
Others	The settings you have not changed change.	If you change a setting such as phase wire system, VT/Direct voltage, or CT primary current, some items will return to the default settings.	Set up the item, where settings have returned to the default, again. For details, refer to 3.11 Initialization of Related Items by Changing a Setting
	When Max/Min value or active energy values are cleared, the PASS 0000 display appears	The password protection is enabled.	Enter the password you set up. The factory default password is '0000.' For details, refer to 5.2.7 Password Protection Setting .
Communication	COM on the LCD blinks. (ON for 0.25 second/OFF for 0.25 second)	Communication errors may be occurring in MODBUS RTU such as register address error or communication rate setting error	Check the register address and communication settings. If a correct MODBUS RTU communication message is received, COM will light up.

7.1. Dimensions

■ME96SSEB-MB

[mm]

7.2. How to Install

7.2.1. Mounting Hole Dimensions

The right figure shows the hole drilling dimensions of the panel. The instrument can be installed on a panel with a thickness of 1.6 mm to 4.0 mm.

7.2.2. Mounting Position

The contrast of LCD display changes depending on the angle of view. Install the instrument in a location where you can easily see it.

[mm]

7.2.3. Mounting and Fixing

You will install the instrument on a panel according to the following procedure.

①Install the two attachment lugs on the

top and bottom of the unit.

②Tighten the screws of the attachment lugs to fix them to the panel.

 The mounting screw type: M3

 To prevent damage to the panel and screws, do not overtighten the screws.

 Note
 Tighten the two screws evenly.

 The recommended torque for this product is 0.3 N•m to 0.5 N•m (about half the normal torque).

	Protection sheet
Note	The protection sheet is attached to the LCD display to prevent scratches on the display during installation. Before starting operation, remove the sheet. When you remove the sheet, the LCD display may light up due to static electricity generation. However, this is not abnormal. After a while, the lighting will go off due to self-discharge.
	Mounting position
	When you install the instrument on the edge of the panel, check the work space for wiring to determine the mounting position.

7.3. How to Connect Wiring

7.3.1. Specifications on the Applicable Electrical Wire

Parts	Screw type	Wire for use	Tightening torque
The terminals of the unit: • Auxiliary power • Voltage input • Current input • MODBUS RTU communication	М3	Used with crimp-type terminals: AWG 26 to 14 *Two-wire connection is possible. Applicable crimp-type terminals: For M3 screw with an outer diameter of 6.0 mm or less. Outer diameter	0.5 N∙m

7.3.2. Wiring of the Unit

Be sure to securely tighten the terminal screws to the terminal block.

· Do not connect three or more electric wires to one terminal. This can cause heat generation or a fire due to imperfect contact. **≜**CAUTION • If you use a bare crimp-type terminal, you should secure a necessary insulation distance using an insulation tube not to expose the charging part for prevention of electric shock and short circuits.

7.3.3. Check the connection

After wiring, check the following points:

•The electric wires are securely connected.

•There is no wrong wiring.

7.3. How to Connect Wiring

Do not work under live wires	
Do not work for wiring under live line conditions. It may cause an electric shock, burn injury, burnout of the instrument, or a fire. We recommend that you install protection fuses for VT and auxiliary power unit.	
Do not open the secondary side of CT circuit	
Connect the CT secondary-side signal correctly to the terminal for CT. If the CT were incorrectly connected or if the CT secondary side were open, it could result in a high voltage generation at the CT secondary side and insulation breakdown in the CT secondary winding. It might cause burnout.	
Do not short the secondary side of VT circuit	
Connect the VT secondary-side signal correctly to the terminal for VT. If the VT were incorrectly connected or if a short occurred at the VT secondary side, an overcurrent would flow through the VT secondary side and it would cause burnout in the VT secondary winding. The burnout of the secondary winding would lead to insulation breakdown in the secondary winding. Finally, it might cause short circuit between phases.	
Securely connect to the connection terminal	
Connect electrical wires properly to the connection terminal. Otherwise, heat generation or measurement errors may occur.	
Do not forget to connect wiring of ' C_1 ', ' C_2 ' and ' C_3 '	
When a common wire is used for L side (load side) of the CT circuit of a 3-phase instrument, it is necessary to short-circuit the C1, C2, and C3 terminals of the instrument.	
Do not use improper electrical wires	
Be sure to use an appropriate size wire compatible with the rated current and voltage. The use of inappropriate size wire may cause a fire.	
Do not pull connecting wires with a strong force	
If you pulled the terminal wires with a strong force, the input terminal part might come off. (Tensile load: 39.2N or less)	
Do not apply an abnormal voltage.	
If the pressure test of a high-pressure device is performed, ground the input lines of CT and VT secondary sides in order to prevent damage to the instrument. If a high voltage of AC 2000 V were applied to the instrument for over one minute, it might cause a failure.	
Do not connect to Non-Connection (NC) terminal.	
Do not connect to the Non-Connection (NC) terminal for the purpose of relay.	
Supply voltage properly to the auxiliary power source.	
Supply proper voltage to the auxiliary power terminal. If an improper voltage were applied, it might cause a failure of the instrument or a fire.	

7.4. Wiring Diagram

■Rated voltage for each phase/wire system

Phase/Wire	Connection	Rated voltage	Figure
3-phase 4-wire	Star	max 277 V AC (L-N) /480 V AC (L-L)	Figure 1
2 phago 2 wiro	Delta	max 220 V AC (L-L)	Figure 2
5-phase 5-wire	Star	max 440 V AC (L-L)	Figure 3
1-phase 3-wire	_	max 220 V AC (L-N) /440 V AC (L-L)	Figure 4
1 phoon 2 wire *1	Delta	max 220 V AC (L-L)	Figure 5
Star		max 440V AC (L-L)	Figure 6

Note1: The circuit derived from the 3-phase 3-wire delta connection and the 1-phase 2-wire transformer circuit have the maximum rating of 220 V AC.

The circuits derived from the 3-phase 4-wire and 3-phase 3-wire star connections and 1-phase 3-wire connection have the maximum rating of 440 V AC.

Fig.1. 3-phase 4-wire(star)

Fig.2. 3-phase 3-wire(delta)

Fig.4. 1-phase 3-wire

Fig.5. 1-phase 2-wire(delta)

Fig.3. 3-phase 3-wire(star)

7.4. Wiring Diagram

■3-phase 4-wire system, direct input

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

2Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product) (3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary. (4)Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

②Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3) If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

7.4. Wiring Diagram

■3-phase 3-wire system, direct input, 2CT

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

②Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product) ③If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.

④Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides. *Note2: Do not connect the NC terminal.

■3-phase 3-wire system, with VT, 3CT

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

②Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product) (3) If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary. (4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU

communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

*Note2: Do not connect the NC terminal.

7.4. Wiring Diagram

■1-phase 3-wire system

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

②Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3) If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides. *Note2: Do not connect the NC terminal.

1-phase 2-wire system, with VT 2 K +C1 C1 +C2 **(4**) T/R+ C2 MODBUS RTU +C3 T/R-Communication C3 SG 3 SLD P1 u υŞ 8 P2 \bigcirc F P3 MA PN MB Load Protective Earthing 2 (+) (1) (-)

①Auxiliary power supply

100 to 240 V AC or 100 to 240 V DC

2Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3) If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.

*Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides. *Note2: Do not connect the NC terminal.

7.4. Wiring Diagram

For Input

Note	 The voltage input terminals of 3-phase 3-wire system are different from those of other systems. If the VT and CT polarities are incorrect, measurement will not be correctly executed. Do not wire the NC terminal. For low voltage, it is not necessary to ground the VT and CT secondary sides. Be sure to ground the earth terminal ((=)) to use. The ground resistance is 100 ohm or less. Improper ground may cause a malfunction.

For MODBUS R
Note
8. Specifications

8.1. Product Specifications

	Тур	be	ME96SSEB-MB									
	Phase wir	e system	3-phase 4-wire, 3-phase 3- wire (3CT, 2CT), 1-phase 3- wire, 1-phase 2- wire (common use)									
		Current	5 A AC, 1 A AC (common use)									
	Rating	Voltage	3-phase 4- wire: max 277/480 V AC 3-phase 3- wire: (DELTA) max 220 V AC, (STA 1-phase 3- wire: max 220/440 V AC 1-phase 2- wire: (DELTA) max 220 V AC, (STA	R) max 440 V AC R) max 440 V AC								
		Frequency	50 Hz or 60 Hz (common use)									
	Ite	m	Measuring Item	Class								
	Current (A)		A1, A2, A3, AN, A _{AVG}									
	Current dema	ind (DA)	DA1, DA2, DA3, DAN, DA _{AVG}	7								
	Voltage (V)		V12, V23, V31, V _{AVG} (L-L), V1N, V2N, V3N, V _{AVG} (L-N)									
nt	Active power	(W)	W1, W2, W3, ΣW	±0.5%								
me	Reactive pow	er (var)	var1, var2,var3, Σvar									
ele	Apparent pow	ver (VA)	VA1, VA2, VA3, ΣVA	7								
p	Power factor	(PF)	PF1, PF2, PF3, ΣPF									
urii	Frequency (H	z)	Hz	±0.2%								
as	Active energy	(Wh)	Imported, Exported	Class 0.5S (IEC62053-22)								
A	Reactive ener	rgy (varh)	Imported lag, Imported lead, Exported lag, Exported lead	Class 1S (IEC62053-24)								
	Apparent ene	rgy (VAh)	Imported + Exported	±2.0%								
	Harmonic cur	rent (HI)	Total	+2.0%								
	Harmonic volt	age (HV)	Total	±2.0%								
	Operating tim	e (h)	Operating time 1, Operating time 2	(Reference)								
		Instantaneous	A, V: RMS value calculation; W, var, VA, Wh, varh, VAh: Digital multiplication;									
	Measuring	value	PF: Power ratio calculation; Hz: Zero-cross; HI, HV: FFT									
	method	Demand value	DA: Thermal type calculation									
	Disp	lay type	LCD with LED backlight									
Display	Number of display digits or segments	Digital section	First to third line indication: 4 digits, Fourth line of A, DA, V, W, var, VA, PF: 4 digits; Hz: 3 digits; Wh, varh, VAh: 9 digits (6-digit or 12-digit is also Harmonic distortion ratio/content rate: 4 digits; H Operating time: 6 digits	display: 6 digits o possible.); Harmonic RMS value: 4 digits;								
	Display updat	e time interval	0.5 s, 1 s (selectable)									
	Commur	nication	MODBUS RTU communication									
	Connec	table	Cannot connect optional module									
	Power interrup	tion backup	Non-volatile memory is used (Item: Setup value	, Max/Min value, Active energy,								
		Voltage circuit	0.1 VA/phase (at 110 V AC), 0.2 VA/phase (at 2	220 V AC), 0.4 VA/phase(at 440 V								
	consumption	Current circuit	0.1 VA / phase									
• ~	consumption	Auxiliary	U.T VA / pnase									
		power circuit	4 VA (at 110 V AC), 5 VA (at 220 V AC), 3 W (a	t 100 V DC)								
	Auxiliary	power	100 to 240 V AC (±15%) 50 to 60 Hz, 100 to 240 V DC (-30% +15%)									
	Weig	ght	0.3 kg									
Dimensions W × H × D [protrusion from cabinet]			96 × 96 × 36 mm (depth of meter from housing mounting flange) [13 mm]									
Mounting method			Embedded type									
Operating temperature/humidity			-5°C to +55°C (average daily temperature: 35°C 0 to 85% RH, Non-condensing	c or less),								
S	torage tempera	ature/ humidity	-25°C to +75°C (average daily temperature: 35°C or less), 0 to 85% RH. Non-condensing									

Note1: The class represents the ratio to the rated value (100%). Note2: For measurement where the harmonic distortion ratio (content rate) is 100% or more, the class can exceed ±2.0%.

Note3: Harmonic current cannot be measured without voltage input.

PMD characteristics (specified by IEC61557-12)

Characteristic value	Other complementary characteristic
PMD-II	-
SD	-
K55	-
Standard conditions	-
0.5	-
	Characteristic value PMD-II SD K55 Standard conditions 0.5

8.2. Compatible Standards

Ele	ctromagnetic Compatibility	
E	Emissions	
	Radiated Emission	EN61326-1/ EN 55011/CISPR 11, FCC Part15 Subpart B Class A
	Conducted Emission	EN61326-1/ EN 55011/CISPR 11 FCC Part15 Subpart B Class A
	Harmonics Measurement	EN61000-3-2
	Flicker Meter Measurement	EN61000-3-3
Π	mmunity	
	Electrostatic discharge Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-2
	Radio Frequency Electromagnetic field Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-3
	Electrical Fast Transient/Burst Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-4
	Surge Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-5
	Conducted Disturbances, Induced By Radio Frequency Fields Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-6
	Power Frequency Magnetic Field Immunity	EN61326-1, EN IEC 61000-6-2/EN61000-4-8
	Voltage Dips and Short Interruptions	EN61326-1, EN IEC 61000-6-2/EN61000-4-11

S	afety										
	Europe	CE, as per EN61010-1: 2010 (3 rd Edition)									
	U.S. and Canada	UL, cUL Recognized as per UL61010-1: 2012 (3 rd Edition) IEC61010-1: 2010 (3 rd Edition)									
	Installation Category										
	Measuring Category	III									
	Pollution Degree	2									

*1 : PICQ2/8 is intended to be placed in an industrial control panel or similar type of enclosure.

The devices covered under this category are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL. See "UL product iQ (UL certified product search platform)" for details.

8.3. MODBUS RTU Communication Specifications

Item	Specifications
Physical interface	RS-485 2wires half duplex
Protocol	RTU mode
Transfer method	Start-stop synchronization
Transmission wiring type	Multi-point bus (either directly on the trunk cable, forming a daisy-chain)
Baud rate	2400, 4800, 9600, 19200, 38400 bps (Default is 19200 bps)
Data bit	8
Stop bit	1 or 2 (Default is 1)
Parity	ODD,EVEN or NONE (Default is EVEN)
Slave address	1 to 255 (FFh) (Default is 1, 0 is for broadcast mode) (248 to 255 are reserved)
Distance	1200 m
Max. number	31
Response time	1 s or less (time to response after query data is received)
Terminate	120 Ω 1/2 W
Recommended cable	Shielded twisted pair cable, AWG 24 to 14

■Read the following document as well as this user's manual.

· Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Ref. No. LSPM-0075)

8. Specifications

8.4. Setting Table (Factory Default Settings and Customer's Notes Settings)

Se	tting m	nenu No.	Setting item	Factory default setting	Customer's notes					
	1.1		Phase wire system	3P4 (3-phase 4-wire)						
	1.2		Display pattern	P01						
		1.2.1	Pattern P00	—						
	1.3		VT/Direct voltage	no (Without VT)						
4		1.3.1	Direct voltage	220/380 V						
		1.3.2	VT secondary voltage	—						
		1.3.3	VT primary voltage	—						
	1.4		CT secondary current	5 A						
		1.4.1	CT primary current	5 A						
	1.7		Current demand time period	0 s						
	2.2		MODBUS RTU address	1						
2		2.2.1	MODBUS RTU baud rate	19.2 kbps						
2		2.2.2	MODBUS RTU parity	EVEn (even)						
		2.2.3	MODBUS RTU stop bit	1						
2	3.1		Active/Reactive energy measurement	Combination I						
3	3.2		Harmonics display	on (Display)						
	4.1		Model display	(By model)						
	4.2		Version display	(By version)						
4	4.3		Backlight brightness	3						
	4.4		Backlight Auto off/ON	Auto (Auto off)						
	4.5		Display update time	0.5 s						
	5.1		Upper/Lower limit alarm item 1	non						
		5.1.1	Upper/Lower limit alarm value 1	—						
	5.2		Upper/Lower limit alarm item 2	non						
		5.2.1	Upper/Lower limit alarm value 2	—						
	5.3		Upper/Lower limit alarm item 3	non						
		5.3.1	Upper/Lower limit alarm value 3	—						
5	5.4		Upper/Lower limit alarm item 4	non						
5		5.4.1	Upper/Lower limit alarm value 4	—						
	5.5		Alarm delay time	<u> </u>						
	5.6		Alarm reset method	<u> </u>						
	5.7		Backlight blinking during alarm	<u> </u>						
	5.8		Motor starting current delay function	oFF (Not display)						
		5.8.1	Motor starting current threshold	—						
		5.8.2	Motor starting current delay time	—						
	8.1		Operating time display	oFF (Not display)						
	8.2	r	Operating time 1 count target	AUX (Auxiliary power)						
8		8.2.1	Operating time 1 threshold	<u> </u>						
	8.3		Operating time 2 count target	AUX (Auxiliary power)						
	8.3.1		Operating time 2 threshold							
	8.4		IEC mode settings	oFF (Normal mode)						

9.1. ME96SS Calculation Method (3-phase Unbalanced System with Neutral)

The following table shows general calculation definitions of electric energy measurement this instrument employs.

Item	Normal mode	IEC mode	Notes
RMS current in phase <i>p</i>	$I_{p} = \sqrt{rac{{\sum\limits_{k = 0}^{{M - 1}} {i_{p_{k}}^{2}}}}{M}}$		
Calculated RMS neutral current	$I_{N} = \sqrt{\frac{\sum_{k=0}^{M-1} (i_{1_{k}} + i_{2_{k}} + i_{2_{k}})}{M}}$	$(i_{3_k})^2$	
Phase <i>p</i> to neutral RMS voltage	$V_{p} = \sqrt{\frac{\sum_{k=0}^{M-1} v_{p_{k}}^{2}}{M}}$		
Phase <i>p</i> to phase <i>g</i> RMS voltage	$U_{pg} = \sqrt{rac{{{\sum\limits_{k = 0}^{{M - 1}} {{\left({{v_p}_k^2 - {v_s}} ight)}} }}{M}}}$	$\left[\frac{2}{\beta_k}\right]^2$	
Active power for phase <i>p</i>	$P_{P} = \frac{1}{M} \cdot \sum_{k=0}^{M-1} (v_{P_{k}} \times$	i_{P_k})	
Apparent power for phase <i>p</i>	$S_p = V_p \times I_p$		
Reactive power for phase <i>p</i>	$Q_{p} = Qp_{quad} = \frac{1}{M} \cdot \sum_{k=0}^{M-1} (v_{p_{k-N/4}} \times i_{p_{k}})$	$Q_p = \sqrt{S_p^2 - P_p^2}$	For the sign, refer to 5.1.12.
Power factor for phase <i>p</i>	$PF_p = \frac{P_p}{\sqrt{P_p^2 + Q_p^2}}$	$PF_p = \frac{P_p}{S_p}$	For the sign, refer to 5.1.12.
Total active power	$P = \sum_{p=1}^{N_{ph}} P_p$		
Total reactive power	$Q = \sum_{p=1}^{N_{ph}} Q_p$		For the sign, refer to 5.1.12.
Total apparent power	$S = \sum_{p=1}^{N_{ph}} S_p$	$S = \sqrt{P^2 + Q^2}$	
Total power factor	$PF = \frac{P}{\sqrt{P^2 + Q^2}}$	$PF = \frac{P}{S}$	For the sign, refer to 5.1.12.

9.2. A List of Examples for Incorrect Wiring Display

9.2.1. 3-phase 4-wire System

*The shaded parts indicate influential parts caused by incorrect wiring. The dashed lines show incorrect wiring parts.

	Power Eactor		P	hase An	ale Displ	av.		At balanced I	oad (V _{1N} =V _{2N} =V _{3N} ,	I ₁ =I ₂ =I ₃)					1	Conne	ection (Note	1)
No.	(Input)	ZV _{1N}	∠V _{2N}	∠V2N		∠h	Ζk	Active Power Display	Voltage Display	Current Display	1	Vol	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
1	LEAD 0.707 LEAD 0.866 1.000 LAG 0.866	0	120	240	315 330 0 30 45	90 120 165	210 240 270 285	W ₁ =W ₂ =W ₃	V _{1N} =V _{2N} =V _{3N}	<u>, , , , , , , , , , , , , , , , , , , </u>	P1	P2	P3	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Normal	
	LEAD 0.707				315	195	75				P1	P3	P2	PN	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	Reversed phase sequence 1
	LEAD 0.866				330	210	90											Reversed phase sequence 2
	1.000	0	240	120	0	240	120	W ₁ =W ₂ =W ₃	$V_{1N} = V_{2N} = V_{3N}$	l ₁ =l ₂ =l ₃	P3	P2	P1	PN	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	
	LAG 0.866				30	270	150											Reversed phase sequence 3
	LAG 0.707				45	285	165				P2	P1	P3	PN	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	
2	LEAD 0.707				135	75	195											Reverse connection of 1 side CT
	LEAD 0.866				150	90	210											K K
	1.000	0	120	240	180	120	240	W ₁ =Negative value	Vau=Vau=Vau	k=b=b	P1	P2	P3	PN	+C1-C1	+C2-C2	+C3-C3	К <u>k</u> +C2 L 1 C2 К <u>k</u> +C3
	LAG 0.866				210	150	270	W ₃ =Positive value	- IN - 2N - 5N	125					Reverse	Normal	Normal	
	LAG 0.707				225	165	285											
3	LEAD 0.707				315	255	195											Reverse connection of 2 side CT
	LEAD 0.866	-			330	270	210											K k +C1 C1 K k
	1.000	0	120	240	0	300	240	W ₁ =Positive value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	
	LAG 0.866				30	330	270	vv ₃ =Positive value										
	LAG 0.707				45	345	285	†										

	Power Factor	Phase Angle Display				ay		At balanced load $(V_{1N}=V_{2N}=V_{3N}, I_1=I_2=I_3)$					Connection (Note 1)									
No.	(Input)	∠V _{1N}	$\angle V_{2N}$	∠V _{3N}	∠l ₁	∠l₂	∠l₃	Active Power Display W ₁ W ₂ W ₃	Voltage Display V _{1N} V _{2N} V _{3N}	Current Display	1	Vol 2	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection				
4	LEAD 0.707				315	75	15											Reverse connection of 3 side CT 1 2 3 Ν κ κ				
	LEAD 0.866				330	90	30															
	1.000	0	120	240	0	120	60	W ₁ =Positive value W ₂ =Positive value W ₃ =Negative value	V _{1N} =V _{2N} =V _{3N}	l ₁ =l ₂ =l ₃	P1	P2	P3	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Reverse	К <u>к</u>				
	LAG 0.866				30	150	90															
	LAG 0.707				45	165	105															
5	LEAD 0.707				135	255	195											Reverse connection of 1 side CT and 2 side CT				
	LEAD 0.866				150	270	210											К <u>к</u> ст+с1				
	1.000	0	120	240	180	300	240	W ₁ =Negative value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Reverse	+C2-C2 Reverse	+C3-C3 Normal					
	LAG 0.866				210	330	270	vv3=1 oshive value														
	LAG 0.707				225	345	285															
6	LEAD 0.707				315	255	15											Reverse connection of 2 side CT and 3 side CT 1 2 3 N				
	LEAD 0.866				330	270	30											K k +C1 L C1 K k				
	1.000	0	120	240	0	300	60	W ₁ =Positive value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Reverse	Ц К к Ц Ц С2 +C3 С2 +C3 С3				
	LAG 0.866				30	330	90	₩ ₃ =Negative value														
	LAG 0.707				45	345	105															
7	LEAD 0.707				135	75	15											Reverse connection of 1 side CT and 3 side CT 1 2 3 N				
	LEAD 0.866				150	90	30											K k K k K k K k K k K k K k K k				
	1.000	0	120	240	180	120	60	W ₁ =Negative value W ₂ =Positive value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Reverse					
	LAG 0.866				210	150	90															
	LAG 0.707				225	165	105															
8	LEAD 0.707				135	255	15											Reverse connection of 1 side CT, 2 side CT, and 3 side CT 1 2 3 N				
	LEAD 0.866				150	270	30											K k				
	1.000	0	120	240	180	300	60	W ₁ =Negative value W ₂ =Negative value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Reverse	+C2-C2 Reverse	+C3-C3 Reverse	К к станование станова				
	LAG 0.866				210	330	90											U U P1 U V3 Ev P2 V Ev P3				
	LAG 0.707				225	345	105															
9	LEAD 0.707				75	315	195	W ₁ =Positive value W ₂ =Negative value W ₃ =Positive value										Switch between 1 side CT and 2 side CT 1 2 3 N K k				
	LEAD 0.866				90	330	210	W ₁ =0 W ₂ =Negative value W ₃ =Positive value										KK+C1				
	1.000	0	120	240	120	0	240	W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	Р3	PN	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal					
	LAG 0.866				150	30	270	W ₁ =Negative value W ₂ =0 W ₃ =Positive value														
	LAG 0.707				165	45	285	W ₁ =Negative value W ₂ =Positive value W ₃ =Positive value														

	Dowor Footor	Phase Angle Display						d load (V _{1N} =V _{2N} =V _{3N} , I ₁ =I ₂ =I ₃) Connection (Note 1)								1)		
No.	(Input)							Active Power Display	Voltage Display	Current Display		Vol	tage			Current		Connection
10	LEAD 0.707	∠V _{1N}	∠V _{2N}	∠V _{3N}	∠l₁ 315	∠l₂ 195	∠l₃ 75	W1 W2 W3 W1=Positive value W2=Positive value	V _{1N} V _{2N} V _{3N}	l ₁ l ₂ l ₃	1	2	3	N	1 side CT	2 side CT	3 side CT	Switch between 2 side CT and 3 side CT
	LEAD 0.866	-			330	210	90	W ₃ =Negative value W ₁ =Positive value W ₂ =0										
	1.000	0	120	240	0	240	120	W ₁ =Positive value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	К <u>к</u>
	LAG 0.866				30	270	150	W_3 -Negative value W_1 =Positive value W_2 =Negative value W_2 =0										U U P1 UV3 Ev P2 V Ev P3
	LAG 0.707				45	285	165	W ₁ =Positive value W ₂ =Negative value										
11	LEAD 0.707				195	75	315	W ₃ =Positive value W ₁ =Negative value W ₂ =Positive value										Switch between 1 side CT and 3 side CT 1 2 3 N
	LEAD 0.866				210	90	330	W_1 =Negative value W_2 =Positive value W_2 =0										K k L K k K k K k K k K k K k K k K k K k K k
	1.000	0	120	240	240	120	0	W ₁ =Negative value W ₂ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	P3	PN	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	К.К
	LAG 0.866				270	150	30	W ₁ =0 W ₂ =Positive value W ₂ =Negative value										U U U P1 UV3 & P2 V 2 & P3
	LAG 0.707				285	165	45	W ₁ =Positive value W ₂ =Positive value W ₂ =Negative value										
12	LEAD 0.707				195	315	75	W ₁ =Negative value W ₂ =Positive value W ₃ =Positive value										Reverse connection between terminals P1 and P2
	LEAD 0.866				210	330	90	W ₁ =Negative value W ₂ =0 W ₃ =Positive value										
	1.000	0	240	120	240	0	120	W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P2	P1	P3	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866	-			270	30	150	W ₁ =0 W ₂ =Negative value W ₃ =Positive value										
- 10	LAG 0.707				285	45	165	W ₁ =Positive value W ₂ =Negative value W ₃ =Positive value										
13	LEAD 0.707	-			315	75	195	W ₁ =Positive value W ₂ =Negative value W ₃ =Positive value										terminals P2 and P3 1 2 3 N K k
	LEAD 0.866	-			330	90	210	W ₂ =Negative value W ₂ =0 W ₄ =Positive value										
	1.000	0	240	120	0	120	240	W ₂ =Negative value W ₃ =Negative value W ₁ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P3	P2	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				30	150	270	W ₂ =0 <u>W₃=Negative value</u> W ₁ =Positive value										
14	LAG 0.707				45	165	285	W ₂ =Positive value W ₃ =Negative value W ₁ =Positive value										Reverse connection between
	LEAD 0.707				75	195	315	W ₂ =Positive value W ₃ =Negative value W ₁ =0										terminals P1 and P3 1 2 3 N KKK
	LEAD 0.866	-			90	210	330	W ₂ =Positive value W ₃ =Negative value W ₁ =Negative value							+01.01	+02.02	+03.03	
	1.000	0	240	120	120	240	0	W ₂ =Positive value W ₃ =Negative value W ₁ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P3	P2	P1	PN	Normal	Normal	Normal	K k +C3
	LAG 0.866				150	270	30	W ₂ =Positive value W ₃ =0 W ₁ =Negative value										V V P2 V V P2 V V P2 V P2 V P2 V P2 V P2
15	LAG 0.707				165	285	45	vv ₂ =Positive value W ₃ =Positive value					_					Reverse connection between
					135	255	30											
	1.000	0	330	30	180	300	60	W ₁ =Negative value W ₂ =Positive value	V1N <v2n=v2n< td=""><td>l,=l2=l2</td><td>PN</td><td>P2</td><td>P3</td><td>P1</td><td>+C1-C1</td><td>+C2-C2</td><td>+C3-C3</td><td></td></v2n=v2n<>	l,=l2=l2	PN	P2	P3	P1	+C1-C1	+C2-C2	+C3-C3	
	LAG 0.866				210	330	90	W ₃ =Positive value	214 314						wormal	ivormal	inormal	
	LAG 0.707				225	345	105											

	Power Factor		Pł	hase Ang	gle Displ	ay		At balanced lo	oad (V _{1N} =V _{2N} =V _{3N} ,	l ₁ =l ₂ =l ₃)						Conne	ction (Note	1)
No.	(Input)	∠V _{1N}	∠V _{2N}	∠V _{3N}	∠l₁	∠h	∠l₃	Active Power Display	Voltage Display	Current Display	1	Vol 2	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
16	LEAD 0.707		214	514	345	105	225	1 2 3	114 214 314	1 2 3								Reverse connection between terminals P2 and PN 1 2 3 N K k
	LEAD 0.866				0	120	240											
	1.000	0	330	300	30	150	270	W ₁ =Positive value W ₂ =Negative value W ₃ =Positive value	V _{1N} =V _{3N} >V _{2N}	I ₁ =I ₂ =I ₃	P1	PN	P3	P2	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				60	180	300											
	LAG 0.707				75	195	315											
17	LEAD 0.707				285	45	165											Reverse connection between terminals P3 and PN
	LEAD 0.866				300	60	180											
	1.000	0	60	30	330	90	210	W ₁ =Positive value W ₂ =Positive value W ₃ =Negative value	$V_{1N} = V_{2N} > V_{3N}$	I ₁ =I ₂ =I ₃	P1	P2	PN	Р3	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				0	120	240											V3Ev P2 V3Ev P2 V3Ev P3
10	LAG 0.707				15	135	255	W = Positivo value										
10	LEAD 0.707				15	315	75	W ₁ =Positive value W ₂ =Positive value W ₃ =Positive value										and the connection 1 side CT reversed
	LEAD 0.866				30	330	90	W ₁ + ositive value W ₂ =0 W ₃ =Positive value W ₄ =Positive value										K k+C1
	1.000	0	240	120	60	0	120	W ₂ =Negative value W ₃ =Positive value W ₄ =0	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P2	P1	Р3	PN	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				90	30	150	W ₂ =Negative value W ₃ =Positive value W ₁ =Negative value										
	LAG 0.707				105	45	165	W ₂ =Negative value W ₃ =Positive value										
19	LEAD 0.707				135	75	195	W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value										P2 and P3 terminals are reversed and the connection 1 side CT reversed
	LEAD 0.866				150	90	210	W ₁ =Negative value W ₂ =Negative value W ₃ =0										
	1.000	0	240	120	180	120	240	W ₁ =Negative value W ₂ =Negative value W ₃ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P3	P2	PN	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				210	150	270	W ₁ -Negative value W ₂ =0 W ₃ =Negative value										
	LAG 0.707				225	165	285	W ₁ =Negative value W ₂ =Positive value W ₃ =Negative value										
20	LEAD 0.707				255	195	315	W ₂ =Positive value W ₃ =Negative value W ₄ =0										and the connection 1 side CT reversed
	LEAD 0.866				270	210	330	W ₂ =Positive value W ₃ =Negative value W ₁ =Positive value										К <u>k</u> L K <u>k</u> K <u>k</u> +C1
	1.000	0	240	120	300	240	0	W ₂ =Positive value W ₃ =Negative value W ₁ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P3	P2	P1	PN	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				330	270	30	W ₂ =Positive value W ₃ =0 W ₁ =Positive value										
21	LAG 0.707				345	285	45	W ₂ =Positive value W ₃ =Positive value				-						P1 and PN terminals are reversed
	LEAD 0.707				315	255	15											and the connection 1 side CT reversed
	LEAD 0.866				330	270	30	W ₁ =Positive value							101.01	+02.00	103.00	K K K +C2
	1.000	0	330	30	0	300	60	W ₂ =Positive value W ₃ =Positive value	V _{1N} <v<sub>2N=V_{3N}</v<sub>	I ₁ =I ₂ =I ₃	PN	P2	P3	P1	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				30	330	90											
	LAG 0.707				45	345	105											

	Power Factor	Phase Angle Display						At balanced load $(V_{1N}=V_{2N}=V_{3N}, I_1=I_2=I_3)$								ection (Note	1)	
No.	(Input)	∠V _{1N}	$\angle V_{2N}$	∠V _{3N}	∠l₁	∠l₂	∠l₃	W ₁ W ₂ W ₃	Voltage Display V _{1N} V _{2N} V _{3N}	Current Display	1	Vol 2	tage 3	Ν	1 side CT	2 side CT	3 side CT	Connection
22	LEAD 0.707				165	105	225											P2 and PN terminals are reversed and the connection 1 side CT reversed
	LEAD 0.866				180	120	240											К К
	1.000	0	330	300	210	150	270	W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value	$V_{1N} = V_{3N} > V_{2N}$	I ₁ =I ₂ =I ₃	P1	PN	Р3	P2	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				240	180	300											
	LAG 0.707				255	195	315											
23	LEAD 0.707				105	45	165											P3 and PN terminals are reversed and the connection 1 side CT reversed
	LEAD 0.866				120	60	180											
	1.000	0	60	30	150	90	210	W ₁ =Negative value W ₂ =Positive value W ₃ =Negative value	$V_{1N} = V_{2N} > V_{3N}$	I ₁ =I ₂ =I ₃	P1	P2	PN	Р3	+C1-C1 Reverse	+C2-C2 Normal	+C3-C3 Normal	
	LAG 0.866				180	120	240											
	LAG 0.707				195	135	255											P3
24	LEAD 0.707				195	135	75	W ₁ =Negative value W ₂ =Negative value W ₂ =Positive value										P1 and P2 terminals are reversed and the connection 2 side CT reversed
	LEAD 0.866				210	150	90	W ₁ =Negative value W ₂ =0										
	1.000	0	240	120	240	180	120	W_1 =Negative value W_2 =Positive value W_3 =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P2	P1	P3	PN	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	K K+C2 L L
	LAG 0.866				270	210	150	$W_1=0$ $W_2=Positive value$ $W_2=Positive value$										
	LAG 0.707				285	225	165	W ₁ =Positive value W ₂ =Positive value W ₂ =Positive value										
25	LEAD 0.707				315	255	195	W1=Positive value W2=Positive value W3=Positive value										P1 and P2 terminals are reversed and the connection 1 side CT reversed
	LEAD 0.866				330	270	210	W ₁ =Positive value W ₂ =Positive value W ₂ =0										
	1.000	0	240	120	0	300	240	W ₁ =Positive value W ₂ =Positive value W ₂ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P3	P2	PN	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	K K +C3
	LAG 0.866				30	330	270	W ₁ =Positive value W ₂ =0 W ₂ =Negative value	_									
	LAG 0.707				45	345	285	W ₁ =Positive value W ₂ =Negative value W ₃ =Negative value										
26	LEAD 0.707				75	15	315	W ₁ =Positive value W ₂ =Negative value W ₃ =Negative value										P1 and P3 terminals are reversed and the connection 2 side CT reversed
	LEAD 0.866				90	30	330	W ₁ =0 W ₂ =Negative value W ₃ =Negative value										
	1.000	0	240	120	120	60	0	W ₁ =Negative value W ₂ =Negative value W ₃ =Negative value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	Р3	P2	P1	PN	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	Кк +СЗ
	LAG 0.866				150	90	30	W ₁ =Negative value W ₂ =Negative value W ₃ =0										
	LAG 0.707				165	105	45	W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value										
27	LEAD 0.707				135	75	15											P1 and PN terminals are reversed and the connection 2 side CT reversed
	LEAD 0.866				150	90	30											
	1.000	0	330	30	180	120	60	w ₁ =Negative value W ₂ =Negative value W ₃ =Positive value	V _{1N} <v<sub>2N=V_{3N}</v<sub>	I ₁ =I ₂ =I ₃	PN	P2	Р3	P1	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	К к +С3
	LAG 0.866				210	150	90											
	LAG 0.707				225	165	105											P3

	Power Factor		PI	hase An	gle Displ	ay		At balanced lo	oad (V _{1N} =V _{2N} =V _{3N} ,	I ₁ =I ₂ =I ₃)						Conne	ction (Note	1)
No.	(Input)	∠V _{1N}	$\angle V_{2N}$	∠V _{3N}	∠l₁	∠l₂	∠l₃	Active Power Display W ₁ W ₂ W ₃	Voltage Display V1N V2N V3N	Current Display	1	Vol 2	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
28	LEAD 0.707				345	285	225											P2 and PN terminals are reversed and the connection 2 side CT reversed
	LEAD 0.866				0	300	240											
	1.000	0	330	300	30	330	270	W ₁ =Positive value W ₂ =Positive value W ₃ =Positive value	$V_{1N} = V_{3N} > V_{2N}$	I ₁ =I ₂ =I ₃	P1	PN	Р3	P2	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	К <u>к</u> К
	LAG 0.866				60	0	300											
	LAG 0.707				75	15	315											
29	LEAD 0.707				285	225	165											P3 and PN terminals are reversed and the connection 2 side CT reversed
	LEAD 0.866				300	240	180											K k +C1 C1 K k+C2
	1.000	0	60	30	330	270	210	W ₂ =Negative value W ₃ =Negative value	$V_{1N} = V_{2N} > V_{3N}$	I ₁ =I ₂ =I ₃	P1	P2	PN	P3	+C1-C1 Normal	+C2-C2 Reverse	+C3-C3 Normal	
	LAG 0.866				0	300	240											
20	LAG 0.707				15	315	255	W. =Negative value										
30	LEAD 0.707				195	315	255	W ₁ =Negative value W ₂ =Positive value W ₃ =Negative value										and the connection 3 side CT reversed
	LEAD 0.866				210	330	270	W ₁ Hegative value W ₂ =0 W ₃ =Negative value W ₄ =Negative value										
	1.000	0	240	120	240	0	300	W ₂ =Negative value W ₃ =Negative value W ₄ =0	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P2	P1	P3	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Reverse	К к
	LAG 0.866				270	30	330	W ₂ =Negative value W ₃ =Negative value W ₁ =Positive value										
31	LAG 0.707				285	45	345	W ₂ =Negative value W ₃ =Negative value W ₁ =Positive value										P2 and P3 terminals are reversed
	LEAD 0.707				315	75	15	W ₂ =Negative value W ₃ =Negative value W ₁ =Positive value										and the connection 3 side CT reversed 1 2 3 N
	LEAD 0.866				330	90	30	W ₂ =Negative value W ₃ =0 W ₁ =Positive value										
	1.000	0	240	120	0	120	60	W ₂ =Negative value W ₃ =Positive value W ₁ =Positive value	V _{1N} =V _{2N} =V _{3N}	I ₁ =I ₂ =I ₃	P1	P3	P2	PN	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Reverse	Kk
	LAG 0.866				30	150	90	W ₂ =0 W ₃ =Positive value W ₁ =Positive value										V V P1 V V V V V P2 V V P3
32	LAG 0.707				45	165	105	W ₂ =Positive value W ₃ =Positive value W ₁ =Positive value										P1 and P3 terminals are reversed
	LEAD 0.707				75	195	135	W ₂ =Positive value W ₃ =Positive value W ₁ =0										and the connection 3 side CT reversed 1 2 3 N K
	LEAD 0.866				90	210	150	W ₂ =Positive value W ₃ =Positive value W ₁ =Negative value							+C1-C1	+C2-C2	+C3-C3	
	1.000	0	240	120	120	240	180	W ₂ =Positive value W ₃ =Positive value W ₁ =Negative value	V _{1N} =V _{2N} =V _{3N}	l ₁ =l ₂ =l ₃	P3	P2	P1	PN	Normal	Normal	Reverse	K k
	LAG 0.866				150	270	210	W ₂ =Positive value W ₃ =0 W ₁ =Negative value										
33	LAG 0.707				165	285	225	W ₂ =Positive value W ₃ =Negative value										P1 and PN terminals are reversed
					135	255	210											reversed 1 2 3 N K k + +C1
	1 000	0	330	30	180	300	210	W ₁ =Negative value	V <v=v.< td=""><td>l, ≡l. =l.</td><td>PN</td><td>P2</td><td>P3</td><td>P1</td><td>+C1-C1</td><td>+C2-C2</td><td>+C3-C3</td><td></td></v=v.<>	l, ≡l. =l.	PN	P2	P3	P1	+C1-C1	+C2-C2	+C3-C3	
	LAG 0.866	0	000	30	210	330	240	W ₃ =Negative value	v1N ∽ v2N v3N	1 ⁻¹ 2 ⁻¹ 3	I C IN	τZ	10		Normal	Normal	Reverse	Kk
	LAG 0.707				225	345	285											
	LAG 0.707				225	345	285											

	Dower Feeter		P	hase An	ale Displ	av		At balanced I	oad (V _{1N} =V _{2N} =V _{3N} ,	I ₁ =I ₂ =I ₃)						Conne	ection (Note	1)
No.	(Input)	∠V _{1N}	∠V _{2N}	∠V _{3N}	∠l ₁	ay ∠ا₂	∠l₃	Active Power Display W1 W2 W3	Voltage Display V _{1N} V _{2N} V _{3N}	Current Display	1	Volt 2	age 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
34	LEAD 0.707 LEAD 0.866 1.000 LAG 0.866 LAG 0.707	0	330	300	345 0 30 60 75	105 120 150 180 195	45 60 90 120 135	W₁=Positive value W₂=Negative value W₃=Negative value	$V_{1N} = V_{3N} > V_{2N}$	l,=b=lo	P1	PN	Р3	P2	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Reverse	P2 and PN terminals are reversed and the connection 3 side CT reversed K L
35	LEAD 0.707				285	45	345											P3 and PN terminals are reversed and the connection 3 side CT
	LEAD 0.866	-			300	60	0											reversed 1 2 3 N K K + +C1 L 1 - C1
	1.000	0	60	30	330	90	30	W ₁ =Positive value W ₂ =Positive value	V _{1N} =V _{2N} >V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	PN	P3	+C1-C1 Normal	+C2-C2 Normal	+C3-C3 Reverse	K k +C2 L l C2 K k+C3
	LAG 0.866				0	120	60	W ₃ =Positive value										
	LAG 0.707				15	135	75											
36	LEAD 0.707	-			90	315	210				P1	P3	P2	PN	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	P2 and P3 terminals are reversed and 1 side CT and 2 side CT are switched 1 2 3 N K K K K K K K K K K K K K K K K K K K
	1.000	0	240	120	120	0	240	W1=W2=W3	V _{1N} =V _{2N} =V _{3N}	l,=l ₂ =l ₃	Ρ3	P2	P1	PN	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	P1 and P3 terminals are reversed and 2 side CT and 3 side CT are switched 1 2 3 N K K K K K K K K K K K K K K K K K K K
	LAG 0.866				150	30	270											P1 and P2 terminals are reversed and 1 side CT and 3 side CT are switched 1 2 3 N K k
	LAG 0.707				165	45	285				P2	P1	P3	PN	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	

	Power Factor		Р	hase An	gle Displ	ay		At balanced le	oad (V _{1N} =V _{2N} =V _{3N} ,	I ₁ =I ₂ =I ₃)						Conne	ction (Note	1)
No.	(Input)	∠V _{1N}	$\angle V_{2N}$	∠V _{3N}	∠l₁	∠h	∠h	Active Power Display	Voltage Display	Current Display	1	Vol 2	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
37	LEAD 0.707		211		195	75	315				P3	P2	P1	PN	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	P1 and P3 terminals are reversed and 1 side CT and 2 side CT are switched
	1.000	0	240	120	240	120	0	W ₁ =W ₂ =W ₃	V _{1N} =V _{2N} =V _{3N}	l,=l₂=l3	P2	P1	P3	PN	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	P1 and P2 terminals are reversed and 2 side CT and 3 side CT are swichted 1 2 3 N K K K K K K K K K K K K K K K K K K K
	LAG 0.866				270	150	30											P2 and P3 terminals are reversed and 1 side CT and 3 side CT are switched k k
	LAG 0.707				285	165	45				P1	P3	P2	PN	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	
38	LEAD 0.707				255	135	15	W ₁ =Negative value W ₂ =Negative value										P1 and PN terminals are reversed and 1 side CT and 2 side CT are switched
	LEAD 0.866				270	150	30	W ₃ =Positive value W ₁ =0 W ₂ =Negative value W ₃ =Positive value										switched 1 2 3 N К k 1
	1.000	0	330	30	300	180	60		$V_{1N} < V_{2N} = V_{3N}$	I ₁ =I ₂ =I ₃	PN	P2	Р3	P1	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	К к + СЗ
	LAG 0.866				330	210	90	W ₁ =Positive value W ₂ =Negative value										
	LAG 0.707				345	225	105	w ₃ =Positive value										V 3 E V P3 V V V P3 P3 P3 P3 P3
39	LEAD 0.707				105	345	225											P2 and PN terminals are reversed and 1 side CT and 2 side CT are switched
	LEAD 0.866				120	0	240	W ₁ =Negative value W ₂ =Positive value										жилиец 1 2 3 N К К
	1.000	0	330	300	150	30	270	VV3-1 OShive Value	V _{1N} =V _{3N} >V _{2N}	I ₁ =I ₂ =I ₃	P1	PN	P3	P2	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	K K K +C3
	LAG 0.866				180	60	300	W ₁ =Negative value W ₂ =0 W ₃ =Positive value										
	LAG 0.707				195	75	315	W ₁ =Negative value W ₂ =Negative value W ₄ =Positive value										
40	LEAD 0.707				45	285	165	W ₁ =Positive value										P3 and PN terminals are reversed and 1 side CT and 2 side CT are swicthed
	LEAD 0.866				60	300	180	W ₂ =Negative value W ₃ =Negative value										
	1.000	0	60	30	90	330	210	W ₁ =0 W ₂ =0 W ₂ =Negative value	V _{1N} =V _{2N} >V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	PN	P3	+C2-C2 Normal	+C1-C1 Normal	+C3-C3 Normal	K k +C3
	LAG 0.866				120	0	240	W ₁ =Negative value										
	LAG 0.707				135	15	255	W ₃ =Negative value										

9.2.1. 3-phase 4-wire System

	Dawas Fastas		P	hase An	nie Dieni	av		At balanced I	oad (V _{1N} =V _{2N} =V _{3N} ,	I ₁ =I ₂ =I ₃)						Conne	ction (Note	1)
No.	(Input)	∠V _{1N}	∠V _{2N}	∠V _{3N}	∠l ₁	ay ∠l₂	∠ا₃	Active Power Display W1 W2 W3	Voltage Display	Current Display	1	Vol 2	tage 3	N	1 side CT	Current 2 side CT	3 side CT	Connection
41	LEAD 0.707	-			135	15	255	W ₁ =Negative value W ₂ =Positive value										P1 and PN terminals are reversed and 2 side CT and 3 side CT are switched 1 2 3 N K k
	LEAD 0.866	0	330	30	150	30 60	270 300	W ₃ =Negative value W ₁ =Negative value W ₂ =0	V _{1N} <v<sub>2N=V_{3N}</v<sub>	I ₁ =I ₂ =I ₃	PN	P2	P3	P1	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	
	LAG 0.866	-			210	90	330	W ₃ =0 W ₁ =Negative value										
	LAG 0.707				225	105	345	W ₃ =Positive value										
42	LEAD 0.707	-			345	225	105	W ₁ =Positive value W ₂ =Negative value W ₃ =Negative value										P2 and PN terminals are reversed and 2 side CT and 3 side CT are swicthed 1 2 3 N
	LEAD 0.866				0	240	120	W ₁ =Positive value W ₂ =0 W ₃ =Negative value										K K +C1 C1 K K+C2
	1.000	0	330	300	30	270	150		V _{1N} =V _{3N} >V _{2N}	I ₁ =I ₂ =I ₃	P1	PN	P3	P2	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	К.К.
	LAG 0.866				60	300	180	W ₁ =Positive value W ₂ =Positive value W ₃ =Negative value										
43	LAG 0.707				75	315	195											P3 and PN terminals are reversed
43	LEAD 0.707	-			285	165	45	W ₄ =Positive value										and 2 side CT and 3 side CT are switched
	LEAD 0.866	-			300	180	60	W ₂ =Negative value W ₃ =Positive value										K K +C1 L C1 K K+C2
	1.000	0	60	30	330	210	90	W ₁ =Positive value	V _{1N} =V _{2N} >V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	PN	P3	+C1-C1 Normal	+C3-C3 Normal	+C2-C2 Normal	K k
	LAG 0.866	-			0	240	120	W ₂ =Negative value W ₃ =0 W ₁ =Positive value										U V E V P1 UV3 E V P2 V S E V P2 P2 P3
44	LAG 0.707				15	255	135	W ₂ =Negative value W ₃ =Negative value										P1 and PN terminals are reversed
	LEAD 0.707	-			15	255	135	W ₁ =Positive value										and 1 side CT and 3 side CT are switched 1 2 3 N K k
	LEAD 0.866	-			30	270	150	W ₂ =Positive value W ₃ =Negative value							+03-03	+02-02	+C1-C1	
	1.000	0	330	30	60	300	180	W ₁ =0	V _{1N} <v<sub>2N=V_{3N}</v<sub>	I ₁ =I ₂ =I ₃	PN	P2	P3	P1	Normal	Normal	Normal	К к
	LAG 0.866				90	330	210	W ₂ =Positive value W ₃ =Negative value W ₁ =Negative value										
45	LAG 0.707				105	345	225	W ₂ =Positive value W ₃ =Negative value										P2 and PN terminals are reversed
	LEAD 0.866	-			225	105		W ₁ =Negative value W ₂ =Negative value W ₃ =Positive value										swicthed 1 2 3 N K k
	1.000	0	330	300	270	120	30	W ₁ =0 W ₂ =Negative value	V _{1N} =V _{3N} >V _{2N}	I ₁ =I ₂ =I ₃	P1	PN	P3	P2	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	
	LAG 0.866				300	180	60	W ₃ =0 W ₁ =Positive value										
	LAG 0.707				315	195	75	W ₂ =Negative value W ₃ =Negative value										P3
46	LEAD 0.707				165	45	285	W ₁ =Negative value W ₂ =Positive value W ₂ =Negative value										P3 and PN terminals are reversed and 1 side CT and 3 side CT are swicthed
	LEAD 0.866				180	60	300	W ₁ =Negative value W ₂ =Positive value W ₃ =0										
	1.000	0	60	30	210	90	330	W -Neer'	V _{1N} =V _{2N} >V _{3N}	I ₁ =I ₂ =I ₃	P1	P2	PN	P3	+C3-C3 Normal	+C2-C2 Normal	+C1-C1 Normal	
	LAG 0.866				240	120	0	W ₁ =Negative value W ₂ =Positive value W ₃ =Positive value										
	LAG 0.707				255	135	15											PN

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument,

VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit. Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even if the connection is correct.

9.2.2. 3-phase 3-wire System

*The shaded parts indicate influential parts caused by incorrect wiring. The dashed lines show incorrect wiring parts.

						At balanced load	(Via=Vaa k=la)						Conner	ction (Note 7)
No	Power Factor	Pha	eo Ana	o Dier	vela	Active Power Display	Voltage Display	Current Display	,	Voltag	<u> </u>	Cur	rent	
110.	(Input)		/V	21.	/L	W. W.	Via Via Via		1	2	2	1 side CT	3 side CT	Connection
1		∠ v ₁₂	Z V32	245	213	**1 **3	v12 v23 v31	11 12 13		2	5	1 side OT	5 3ide C1	Normal
	LEAD 0.707			345 0	225 240	W ₁ >W ₃								1 2 3 K K + +C1 L C1 +C2
	1.000	0	300	30	270	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P1	P2	P3	+C1-C1 Normal	+C3-C3 Normal	к к +С3
	LAG 0.866			60	300	W1 <w3< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></w3<>								
2	LAG 0.707			75	315									
2	LEAD 0.707			165	225									
	LEAD 0.866			180	240				P1	P2	P3	+C1-C1 Reverse	+C3-C3 Normal	
	1.000	0	300	210	270	W ₁ =Negative value W ₃ =Positive value	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$						1 side VT and 3 side VT are reversed and 3 side CT reversed
	LAG 0.866			240	300				R con eac VT	evver nectio h of 1 and 3 VT	se n for side side	+C1-C1 Normal	+C3-C3 Reverse	
	LAG 0.707			255	315				*Ri righ	efer to it diag	the ram.			
3				0.45	45									Reverse connection of 3 side CT
	LEAD 0.707			345	45									
	LEAD 0.866			0	60				P1	P2	P3	+C1-C1 Normal	+C3-C3 Reverse	
	1.000	0	300	30	90	W ₁ =Positive value	V ₁₂ =V ₂₃ =V ₃₁	l1=l3 <l2< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l2<>						
						W ₃ =Negative value								side VT and 3 side VT are reversed and T side CT reversed
	LAG 0.866			60	120				R con eac VT	evver nectio h of 1 and 3 VT	se n for side side	+C1-C1 Reverse	+C3-C3 Normal	
	LAG 0.707			75	135				righ	eler to	ram.			V V V V V V V V V V V V V V V V V V V V
4	LEAD 0.707			165	45									Reverse connection of 1 side VT and 3 side VT
	LEAD 0.866			180	60									
	1.000	0	300	210	90	W ₁ =Negative value W ₃ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P1	P2	P3	+C1-C1 Reverse	+C3-C3 Reverse	K k
	LAG 0.866			240	120									
	LAG 0.707			255	135									

9.2. A List of Examples for Incorrect Wiring Display

	_						At balanced load	I (V ₁₂ =V ₂₃ , I ₁ =I ₃)						Connec	ction (Note 7)
No.	Power	r Factor	Pha	se Angl	le Disp	olay	Active Power Display	Voltage Display	Current Display	Ņ	Voltag	е	Cur	rent	
	(11)	put)	∠V ₁₂	∠V ₃₂	∠l₁	∠l₃	W ₁ W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT	3 side CT	Connection
5															Switch between 1 side CT and 3 side CT
	LEAD	0.707			225 240	345 0	W ₁ =Negative value W ₃ =Positive value								
		1.000	0	300	270	30	W ₁ =W ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P1	P2	P3	+C3-C3 Normal	+C1-C1 Normal	К <u>к</u>
	LAG	0.866			300	60	W ₁ =Positive value								
6	LAG	0.707			315	75	W ₃ =Negative value								Reverse connection between terminals P1
0	LEAD	0.707			165	45									and P2
	LEAD	0.866			180	60									K +C1 L C1 +C2
		1.000	0	60	210	90	W ₃ =Positive value	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P2	P1	P3	+C1-C1 Normal	+C3-C3 Normal	к <u>к</u> <u>+сз</u> _ <u>с</u>
	LAG	0.866			240	120									
	LAG	0.707			255	135									
7		0 707			285	165									Reverse connection between terminals P2 and P3 1 2 3
		0.101			200	100	-								K k +C1 L C1 +C2
	LEAD	0.866			300	180				P1	P3	P2	+C1-C1 Normal	+C3-C3 Normal	
		1 000	0	60	330	210	W ₁ =Positive value	Vro=Voo=Vor	k=b=b						
				00			W ₃ =Negative value	•12 •23 •31	1 2 3						P1 and P2 terminals are reversed and 3 wire connection(Note 1)
	LAG	0.866			0	240				P2	P1	P3	Refer to fig	the right ure	
	LAG	0.707			15	255									
8															Reverse connection between terminals P1 and P3
	LEAD	0.707			45	285	W ₁ =Positive value								1 2 3 K k +C1 L C1 C1
	LEAD	0.866			60	300	W ₃ =Negative value			P3	P2	P1	+C1-C1 Normal	+C3-C3 Normal	K k +(2) (2) (2) (2) (2) (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
		1.000	0	60	90	330	W1=W3=0	V12=V23=V31	I1=12=13						
			_					.2 20 '01	120						P1 and P2 terminals are reversed and 3 wire connection(Note 2)
	LAG	0.866			120	0	W ₁ =Negative value	•		P2	P1	P3	Refer to fig	the right ure	
	LAG	0.707			135	15	W ₃ =Positive value								V V V V V V V V V V P2

9.2. A List of Examples for Incorrect Wiring Display

						At balanced load	I (V ₁₂ =V ₂₃ , I ₁ =I ₃)						Connec	ction (Note 7)
No.	Power Factor	Pha	ise Ang	le Disp	olay	Active Power Display	Voltage Display	Current Display	,	Voltag	е	Cu	rrent	Quere estimation
	(input)	$\angle V_{12}$	$\angle V_{32}$	$\angle I_1$	∠l₃	W ₁ W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT	3 side CT	Connection
9	LEAD 0.707			225	105	W ₁ =Negative value W ₃ =Negative value			P3	P1	P2	+C1-C1 Normal	+C3-C3 Normal	P3, P1, and P2 terminals of VT are connected toP1, P2, and P3 terminals of the instrument in that order K k + +C1 K k + +C2 K k + +C3 K
	1.000	0	300	270	150	W ₁ =0 W ₃ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	l ₁ =l ₂ =l ₃						3 wire connection(Note 2)
	LAG 0.866			300	180	W₁=Positive value W₂=Necative value			P1	P2	P3	Refer to	the right ure	
	LAG 0.707			315	195									
10	LEAD 0.707			105	345									P2, P3, and P1 terminals of VT are connected toP1, P2, and P3 terminals of the instrument in that order
	LEAD 0.866			120	0	W ₁ =Negative value W ₃ =Positive value			P2	P3	P1	+C1-C1 Normal	+C3-C3 Normal	
	1.000	0	300	150	30	W ₁ =Negative value W ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃						3 wire connection(Note 1)
	LAG 0.866			180	60	W ₁ =Negative value			P1	P2	P3	Refer to	the right ure	
	LAG 0.707			195	75	W ₃ =Negative value								
11	LEAD 0.707			165	45									Reverse connection of 1 side VT
	LEAD 0.866			180	60				F	Revers	e n of 1			
	1.000	0	120	210	90	W ₁ =Negative value W ₃ =Positive value	V ₁₂ =V ₂₃ <v<sub>31</v<sub>	I ₁ =I ₂ =I ₃	*Re	side V efer to	T the	+C1-C1 Normal	+C3-C3 Normal	к к + 3
	LAG 0.866			240	120				ngn	n ulagi	ann.			
	LAG 0.707			255	135									
12	LEAD 0.707			345	225									Reverse connection of 3 side VT
	LEAD 0.866			0	240				F	Revers	e			
	1.000	0	120	30	270	W ₁ =Positive value W ₃ =Negative value	V ₁₂ =V ₂₃ <v<sub>31</v<sub>	I ₁ =I ₂ =I ₃	conr	nection side V efer to	n of 3 T the	+C1-C1 Normal	+C3-C3 Normal	K K K +C2 C2 +C3
	LAG 0.866			60	300				righ	it diag	ram.			
	LAG 0.707			75	315									

9.2. A List of Examples for Incorrect Wiring Display

	David						At balanced load	I (V ₁₂ =V ₂₃ , I ₁ =I ₃)						Connec	ction (Note 7)
No.	Powe (Ir	r ⊢actor iput)	Pha	ise Ang	le Disp	olay	Active Power Display	Voltage Display	Current Display	``	Voltag	e	Cu	rent	Connection
13			∠V ₁₂	∠V ₃₂	∠l₁	∠l₃	W ₁ W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT	3 side CT	Reverse connection of 1 side VT and 3
	LEAD LEAD	0.707			165 180	45 60				Eac	h of 1	side			side VT 1 2 3 K k +C1 C1
		1.000	0	300	210	90	W ₁ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	3 te	side \ rmina	VT I is	+C1-C1 Normal	+C3-C3 Normal	K k +C2 C2 +C3
	LAG	0.866			240	120				re *Re righ	everse efer to it diag	ed. the ram.			
	LAG	0.707			255	135						r			
14	LEAD	0.707			285	45	W1 <w2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 2 3</td></w2<>								1 2 3
	LEAD	0.866			300	60									
		1.000	0	60	330	90	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P3	P2	P1	+C3-C3 Normal	+C1-C1 Normal	К к
	LAG	0.866			0	120	W.>Wa								
	LAG	0.707			15	135	••1- ••3								
15	LEAD	0.707			345	45									P1 and P2 terminals are reversed and 1 side CT reversed
	LEAD	0.866			0	60									K k +C1 C1
		1.000	0	60	30	90	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P2	P1	Р3	+C1-C1 Reverse	+C3-C3 Normal	K k +C3
	LAG	0.866			60	120									
	LAG	0.707			75	135									
16	LEAD	0.707			165	225									P1 and P2 terminals are reversed and 3 side CT reversed
	LEAD	0.866			180	240									
		1.000	0	60	210	270	W ₁ =Negative value W ₃ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P2	P1	P3	+C1-C1 Normal	+C3-C3 Reverse	K k
	LAG	0.866			240	300									
	LAG	0.707			255	315									
17	LEAD	0.707			345	225									P1 and P2 terminals are reversed and 1 side CT and 3 side CT are reversed 1 2 3
	LEAD	0.866			0	240									
		1.000	0	60	30	270	W ₁ =Positive value W ₃ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P2	P1	Р3	+C1-C1 Reverse	+C3-C3 Reverse	К к
	LAG	0.866			60	300									
	LAG	0.707			75	315									
18	LEAD	0.707			105	165									P2 and P3 terminals are reversed and 1 side CT reversed
	LEAD	0.866			120	180									
		1.000	0	60	150	210	W ₁ =W ₃ =Negative value	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P1	P3	P2	+C1-C1 Reverse	+C3-C3 Normal	K k +C3
	LAG	0.866			180	240									U U P1 V V V U V V V NC P3
	LAG	0.707			195	255									

9.2. A List of Examples for Incorrect Wiring Display

	_						At balanced load	d (V ₁₂ =V ₂₃ , I ₁ =I ₃)						Conne	ction (Note 7)
No.	Power (In	r Factor	Pha	se Ang	le Disp	olay	Active Power Display	Voltage Display	Current Display	١	Voltag	е	Cur	rent	Connection
	(""	iput)	$\angle V_{12}$	$\angle V_{32}$	$\angle I_1$	∠l₃	W ₁ W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT	3 side CT	Connection
19	LEAD	0.707			285	345									P2 and P3 terminals are reversed and 3 side CT reversed
	LEAD	0.866			300	0	• • • • • • • • • • • • • • • • • • •								
		1.000	0	60	330	30	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P1	P3	P2	+C1-C1 Normal	+C3-C3 Reverse	K k
	LAG	0.866			0	60	W ₁ <w<sub>3</w<sub>								V 4 P1 V 2 V NC U 2 V P3
20	LAG	0.707			15	75									P4 and P2 terminals are reversed and 1
20	LEAD	0.707			225	285	W ₁ =W ₃ =Negative								side CT reversed
	LEAD	0.866			240	300	value	-							K K+C1 L L +C2
		1.000	0	60	270	330	W ₁ =W ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P3	P2	P1	+C1-C1 Reverse	+C3-C3 Normal	К к (22) +C3 L
	LAG	0.866			300	0	W ₁ =W ₃ =Positive								
21	LAG	0.707			315	15						-			P1 and P3 terminals are reversed and 3
	LEAD	0.707			45	105	W ₁ =W ₃ =Positive value								side CT reversed
	LEAD	0.866			60	120		-					+01-01	+03-03	
		1.000	0	60	90	150	W ₁ =W ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₃ <i<sub>2</i<sub>	P3	P2	P1	Normal	Reverse	
	LAG	0.866			120	180	W ₁ =W ₃ =Negative value								
22		0.707			135	195									1 side VT reversed and 1 side CT reversed
		0.866			0	40 60	W ₁ >W ₃								1 2 3 K_k
		1.000	0	120	30	90	W.=Wo	Ver=Ver <ver< td=""><td>k=b<b< td=""><td>R conr</td><td>evvers nectior</td><td>se 1 of 1 T</td><td>+C1-C1</td><td>+C3-C3</td><td></td></b<></td></ver<>	k=b <b< td=""><td>R conr</td><td>evvers nectior</td><td>se 1 of 1 T</td><td>+C1-C1</td><td>+C3-C3</td><td></td></b<>	R conr	evvers nectior	se 1 of 1 T	+C1-C1	+C3-C3	
	LAG	0.866			60	120			1 3 12	*Re righ	efer to t diagr	the am.	Reverse	Normal	LU U U P1
	LAG	0.707			75	135	W ₁ <w<sub>3</w<sub>								
23															1 side VT reversed and 3 side CT reversed
	LEAD	0.707			165	225				R	ewer	80			1 2 3 K k +C1 L C1
	LEAD	0.866			180	240	•			conr s *Re	ide V efer to	n of 1 T the	+C1-C1 Normal	+C3-C3 Reverse	К <u>к</u>
										ngn	t diagi	un.			V V P1 V P2
		1.000	0	120	210	270	W ₁ =Negative value W ₃ =Negative value	V ₁₂ =V ₂₃ <v<sub>31</v<sub>	$I_1 = I_3 < I_2$						3 side VT reversed and 1 side CT reversed
										R	ewer	se			1 2 3 K k+C1 C1
	LAG	0.866			240	300				conr s *Re	nection side V efer to	n of 3 T the	+C1-C1 Reverse	+C3-C3 Normal	К к +C2 С2 К к +C3
	LAG	0.707			255	315				righ	connection of 3 side VT *Refer to the right diagram.				

9.2. A List of Examples for Incorrect Wiring Display

	_						At balanced load	I (V ₁₂ =V ₂₃ , I ₁ =I ₃)					Connec	ction (Note 7)
No.	Power (In	r Factor	Pha	ise Ang	le Disp	olay	Active Power Display	Voltage Display	Current Display	١	Voltag	е	Current	Connection
	("	iput)	$\angle V_{12}$	$\angle V_{32}$	$\angle I_1$	∠l₃	W ₁ W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT 3 side CT	Connection
24	LEAD	0.707			285	165	W ₁ <w<sub>3</w<sub>							1 side VT reversed and 3 wire connection(Note1)
	LEAD	0.866			300	180	W ₁ =W ₃	1		R	ewer	se		
		1.000	0	120	330	210	W ₁ >W ₃ =0	V ₁₂ =V ₂₃ <v<sub>31</v<sub>	I ₁ =I ₂ =I ₃	conr s *Re	nectior side V efer to	n of 1 T the	Refer to the right figure	K K
	LAG	0.866			0	240	W ₁ =Positive value			righ	t diagi	ram.		
05	LAG	0.707			15	255	W ₃ =Negative value							
25	LEAD	0.707	-		105	345	W ₁ =Negative value							connection(Note1)
	LEAD	0.866	-		120	0	W ₃ =Negative value			R	ewer	se n of 3		K K L L H +C2
		1.000	0	120	150	30	W ₁ =Negative value W ₃ =0	V ₁₂ =V ₂₃ <v<sub>31</v<sub>	I ₁ =I ₂ =I ₃	*Re	side V efer to	T the	Refer to the right figure	К. <u>к</u>
	LAG	0.866	-		180	60	W ₁ =Negative value			ngn	it ulagi	ann.		V V V V V V V V V V V V V V V V V V V V
26	LAG	0.707			195	75						1		3 wire connection(Note3)
	LEAD	0.707	-		105	225								1 2 3 K k
	LEAD	0.866			120	240	W₁=Negative value						Refer to the right	
		1.000	0	300	150	270	W ₃ =Positive value	V ₁₂ =V ₂₃ =V ₃₁	I ₁ =I ₂ =I ₃	P1	P2	P3	figure	
	LAG	0.866	-		180	300								
27	LAG	0.707			195	315								3 wire connection(Note4)
		0.707	-		345	105	-							1 2 3 K K +C1
		1.000	0	300	30	120	W ₁ =Positive value	Vio=Voo=Voi	k=b=b	P1	P2	P3	Refer to the right	
	LAG	0.866			60	180	W ₃ =Negative value	-12 -23 -31	1 2 3				figure	
	LAG	0.707	-		75	195								
28	LEAD	0.707			15	225								3 wire connection(Note5)
	LEAD	0.866			30	240	W ₁ >W ₃							1 2 3 K k +C1 L C1
		1.000	0	300	60	270	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	$l_2 = l_3 < l_1$	P1	P2	P3	Refer to the right figure	К <u>к</u> К
	LAG	0.866			90	300	W ₁ (=0) <w<sub>3</w<sub>							
	LAG	0.707			105	315	W ₁ =Negative value W ₃ =Positive value							P3
29	LEAD	0.707			345	195	W ₁ =Positive value W ₃ =Negative value							3 wire connection(Note6)
	LEAD	0.866			0	210	W ₁ >W ₃ =0							K k +C1 C1 +C2
		1.000	0	300	30	240	W ₁ =W ₃	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_2 < I_3$	P1	P2	P2 P3	Refer to the right figure	
	LAG	0.866			60	270	W ₁ <w<sub>3</w<sub>							
	LAG	0.707			75	285								

9.2. A List of Examples for Incorrect Wiring Display

9.2.2. 3-phase 3-wire System

						At b	alanced load	I (V ₁₂ =V ₂₃ , I ₁ =I ₃)						Connec	ction (Note 7)
No.	Power Factor (Input)	Pha	ise Ang	le Disp	olay	Active Po	wer Display	Voltage Display	Current Display	,	/oltag	е	Cu	rent	Connection
		∠V ₁₂	∠V ₃₂	∠l₁	∠l₃	W 1	W ₃	V ₁₂ V ₂₃ V ₃₁	l ₁ l ₂ l ₃	1	2	3	1 side CT	3 side CT	
30	LEAD 0.707	-		45	105	W ₁ =Pos W ₂ =Neg	sitive value ative value								P3, P1, and P2 terminals of V1 are connected to P1, P2, and P3 terminals of the instrument in that order and 1 side CT reversed
	LEAD 0.866			60	120										
	1.000	0	300	90	150	W W ₃ =Neg	/ ₁ =0 ative value	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	Р3	P1	P2	+C1-C1 Reverse	+C3-C3 Normal	К к к к к к к к к к к к к к к к к к к к
	LAG 0.866			120	180	W ₁ =Neg	ative value								
	LAG 0.707			135	195	W ₃ =Neg	ative value								P3
31	LEAD 0.707			225	285	W ₁ =Neg	ative value								P3, P1, and P2 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order and 3 side
	LEAD 0.866			240	300	W ₃ =Pos	sitive value								CT reversed 1 2 3 K k + +C1 K - +C1 CT
	1.000	0	300	270	330	W W ₃ =Pos	/ ₁ =0 sitive value	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P3	P1	P2	+C1-C1 Normal	+C3-C3 Reverse	К к
	LAG 0.866			300	0	W ₁	I=M ³								
	LAG 0.707			315	15	W ₁	I>M ³								
32	LEAD 0.707	_		285	345	W ₁	1 <w3< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P2, P3, and P1 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order and 1 side</td></w3<>								P2, P3, and P1 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order and 1 side
	LEAD 0.866			300	0	W ₁	I=M ³								CT reversed 1 2 3 K k 1
	1.000	0	300	330	30	W ₁ =Pos W	sitive value / ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P2	P3	P1	+C1-C1 Reverse	+C3-C3 Normal	К к С2
	LAG 0.866			0	60	W ₁ =Pos	sitive value								
	LAG 0.707			15	75	W ₃ =Neg	ative value								
33	LEAD 0.707			105	165	W ₁ =Neg	ative value								P2, P3, and P1 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order and 3 side
	LEAD 0.866			120	180	W ₃ =Neg	ative value								CT reversed 1 2 3 K k + - +C1 St. +C1
	1.000	0	300	150	210	W ₁ =Neg W	ative value / ₃ =0	V ₁₂ =V ₂₃ =V ₃₁	$I_1 = I_3 < I_2$	P2	P3	P1	+C1-C1 Normal	+C3-C3 Reverse	С1 +C2 С2 К к
	LAG 0.866			180	240	W ₁ =Neg	ative value								
	LAG 0.707			195	255	W ₃ =Pos	sitive value								V V V P2

Note1: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals 'C3' and '+C3' of CT are connected to the terminals '+C1' and 'C1' of the instrument in that order.

Note2: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals 'C1' and '+C1' of CT are connected to the terminals '+C3' and 'C3' of the instrument in that order.

Note3: When the terminals 'C1' and '+C1' of CT are connected to the terminals '+C1' and 'C1' of the instrument in that order.

Note4: When the terminals 'C3' and '+C3' of CT are connected to the terminals '+C3' and 'C3' of the instrument in that order.

Note5: When '+C1' and 'C3' of CT are connected and it is connected to the '+C1' terminal of the instrument.

Note6: When 'C1' and '+C3' of CT are connected and it is connected to the '+C3' terminal of the instrument.

Note7: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even if the connection is correct.

Note : The above table shows incorrect wiring display examples of 3-phase 3-wire system (2CT). Those of 3-phase 3-wire system (3CT) are also the same. However, it is not possible to detect the incorrect wiring of the CT secondary side.

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

*The shaded parts indicate influential parts caused by incorrect wiring. The dashed lines show incorrect wiring parts.

	Power Factor					At balanced load (V1N=)	V_{3N} (or V_{2N}), $I_1 = I_3$ (or I_2))					1	Conne	ction (Note 1)
No.	(Input)	Phas	se Angl	e Disp	lay	Active Power Display	Voltage Display	Current Display	``	/oltag	e	Cur	rent	Connection
	($\angle V_{1N}$	∠V _{3N}	$\angle I_1$	∠հ	W ₁ W ₃	V _{1N} V _{3N} V ₁₃	l ₁ l _N l ₃	1	Ν	3	1 side CT	3 side CT	Connection
	LEAD 0.707			315 330	135				P1	PN	P3	+C1-C1 Normal	+C3-C3 Normal	Normal
1	1.000	0	180	0	180	W ₁ =W ₃	V _{1N} =V _{3N} <v<sub>13</v<sub>	$I_1 = I_3$ $I_N = 0$						Reversed phase sequence
	LAG 0.866			30	210				P3	PN	P1	+C3-C3 Normal	+C1-C1 Normal	1 N 3 К К
	LAG 0.707			45	225									
	LEAD 0.707			135	135									Reverse connection of 1 side C1
2	LEAD 0.866 1.000	0	180	150 180	150 180	W₁=Negative value W₁=Positive value	V _{1N} =V _{3N} <v<sub>13</v<sub>	$I_1 = I_3 < I_N$	P1	PN	P3	+C1-C1 Reverse	+C3-C3 Normal	1 N 3 K K
	LAG 0.866			210 225	210									
			<u> </u>		-									Reverse connection of 3 side CT
	LEAD 0.707			315 330	315 330									
						W₁=Positive value						+01-01	+03-03	+C2
3	1.000	0	180	0	0	W ₃ =Negative value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P1	PN	P3	Normal	Reverse	K k++C3
	LAG 0.866			30	30									P1
	LAG 0.707			45	45									P3 PN
	LEAD 0.707			135	315									Reverse connection of 1 side CT and 3 side CT
	LEAD 0.866			150	330									1 N 3 K k - L - -
4	1.000	0	180	180	0	W ₁ =Negative value W ₃ =Negative value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3$ $I_N = 0$	P1	PN	P3	+C1-C1 Reverse	+C3-C3 Reverse	K k +C3
	LAG 0.866			210	30									P1
	LAG 0.707			225	45									P3 PN
	LEAD 0.707			135	315									Switch between 1 side CT and 3 side CT
	LEAD 0.866			150	330									1 N 3 K k
5	1.000	0	180	180	0	W ₁ =Negative value W ₃ =Negative value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3$ $I_N = 0$	P1	PN	P3	+C3-C3 Normal	+C1-C1 Normal	+с2 С2 +С3
	LAG 0.866			210	30									
	LAG 0.707			225	45									P3 PN
	LEAD 0.707			135	315									Reverse connection between terminals P1 and PN
	LEAD 0.866			150	330									1 N 3 K k +C1 L C1 +C2
6	1.000	0	0	180	0	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3$ $I_N = 0$	PN	P1	P3	+C1-C1 Normal	+C3-C3 Normal	К <u>к</u> +СЗ
	LAG 0.866			210	30									P1 P2 P2
	LAG 0.707			225	45									PN

9.2. A List of Examples for Incorrect Wiring Display

	Power Factor		At balanced load (V _{1N} =V _{3N} (or V _{2N}), I ₁ =I ₃ (or I ₂))							Connection (Note 1)					
No.	(Input)	Pha	se Ang	le Disp	olay Zh	Active Power Display	Voltage Display	Current Display	1	/oltag	e 3	Cur 1 side CT	rent 3 side CT	Connection	
	LEAD 0.707	2 V _{1N}	Z V _{3N}	315	135		V1N V3N V13	I1 IN I3			5	1 side C I	5 Side CT	Reverse connection between terminals P3 and PN 1 N 3	
	LEAD 0.866			330	150									K k +C1 C1	
7	1.000	0	0	0	180	W ₁ =Positive value W ₃ =Negative value	$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3$ $I_N = 0$	P1	P3	PN	+C1-C1 Normal	+C3-C3 Normal	к <u>к</u> +с2 с2 к <u>к</u> +с3 с2 с2 с3	
	LAG 0.866			30	210									P1	
	LAG 0.707	1		45	225	-								P3	
	LEAD 0.707			135	315	5 W ₁ =Negative value W ₃ =Negative value								Reverse connection between terminals P1 and P3	
	LEAD 0.866			150	330										
8	1.000	0	180	180	0		$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3$ $I_N = 0$	P3	PN	P1	+C1-C1 Normal	+C3-C3 Normal		
	LAG 0.866			210	30									P1 P2	
	LAG 0.707			225	45									PN	
	LEAD 0.707			315	135									Voltage are connected the order of P3, P1, and PN terminals	
	LEAD 0.866			330	150									K K K +C1 C1 C1 +C2	
9	1.000	0	0	0	180	W ₁ =Positive value W ₃ =Negative value	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3$ $I_N = 0$	Р3	P1	PN	+C1-C1 Normal	+C3-C3 Normal	К к +С3	
	LAG 0.866			30	210									P1 P2 P3	
	LAG 0.707			45	225									PN PN	
	LEAD 0.707			135	315	5 0 W ₁ =Negative value W ₃ =Positive value 0								Voltage are connected the order of PN, P3, and P1 terminals	
	LEAD 0.866			150	330									K k +C1 C1	
10	1.000	0	0	180	0		V _{1N} >V _{3N} =V ₁₃	$I_1 = I_3$ $I_N = 0$	PN	P3	P1	+C1-C1 Normal	+C3-C3 Normal	+C2 C2 K k +C3	
	LAG 0.866			210	30										
	LAG 0.707			225	45	-								PN	
	LEAD 0.707			135	135	5 0 W₁=Negative value W₂=Negative value	V _{1N} >V _{3N} =V ₁₃	$I_1 = I_3 < I_N$						P3 and PN terminals are reversed and 1 side CT is reversed.	
	LEAD 0.866			150	150									K k+C1	
11	1.000	0	0	180	180				P1	P3	PN	PN +C1-C1 Reverse	+C3-C3 Normal	К к К к К к К к К к	
	LAG 0.866			210	210									P1 P2	
	LAG 0.707	1		225	225									PN	
	LEAD 0.707			315	315									P3 and PN terminals are reversed and 3 side CT is reversed.	
	LEAD 0.866	1		330	330									K K +C1 C1 C1	
12	1.000	0	0	0	0	W ₁ >W ₃	V _{1N} >V _{3N} =V ₁₃	$I_1 = I_3 < I_N$	P1	P3	PN	+C1-C1 Normal	+C3-C3 Reverse	K k +C3	
	LAG 0.866	1		30	30	+								P1 P2	
	LAG 0.707	1		45	45	•								PN	
	LEAD 0.707			135	315									P3 and PN terminals are reversed, and both of CTs are reversed.	
	LEAD 0.866	1		150	330									1 N 3 K_k	
13	1.000	0	0	180	0	W ₁ =Negative value W ₃ =Positive value	V _{1N} >V _{3N} =V ₁₃	$I_1 = I_3$ $I_N = 0$	P1	P3	PN	+C1-C1 Reverse	I +C3-C3 e Reverse		
	LAG 0.866	1		210	30		v1N v3N v13	l _N =0				reverse		× + + + + + + + +	
	LAG 0.707	1		225	45									P2 P3 PN	

9.2. A List of Examples for Incorrect Wiring Display

	Bower	Factor		At balanced load $(V_{1N}=V_{3N} \text{ (or } V_{2N}), I_1=I_3 \text{ (or } I_2))$								Connection (Note 1)						
No.	(Inp	out)	Phas ∠V _{1N}	se Angl ∠V _{3N}	e Disp ∠l₁	lay ∠h	Active Power Display	Voltage Display	Current Display	1	/oltag N	e 3	Cur 1 side CT	rent 3 side CT	Connection			
	LEAD	0.707		314	315	315			1 10 5						P1 and PN terminals are reversed and 1 side CT is reversed.			
	LEAD	0.866			330	330	D								1 N 3 K k			
14		1.000	0	0	0	0	W1 <w3< td=""><td>$V_{1N} = V_{13} < V_{3N}$</td><td>$I_1 = I_3 < I_N$</td><td>PN</td><td>P1</td><td>P3</td><td>+C1-C1 Reverse</td><td>+C3-C3 Normal</td><td>K k +C2 C2 K k +C3</td></w3<>	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3 < I_N$	PN	P1	P3	+C1-C1 Reverse	+C3-C3 Normal	K k +C2 C2 K k +C3			
	LAG	0.866			30	30									•			
	LAG	0.707			45	45									P3			
	LEAD	0.707			135	135									P1 and PN terminals are reversed and 3 side CT is reversed.			
	LEAD	0.866			150	150	W ₁ =Negative value W ₃ =Negative value								K k +C1 L C1 +C2			
15		1.000	0	0	180	180		$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3 < I_N$	PN	P1	P3	+C1-C1 Normal	+C3-C3 Reverse	K k			
	LAG	0.866			210	210									P1 P2 P3			
	LAG	0.707			225	225									P1 and PN terminals are reversed and both			
	LEAD	0.707			315	135									of CTs reversed.			
	LEAD	0.866			330	150	W = Positive value		1 -1				.01.01	.02.02	L			
16		1.000	0	0	0	180	W ₁ =Positive value W ₃ =Negative value	$V_{1N} = V_{13} < V_{3N}$	l₁=l₃ k₀=0	PN	P1	P3	P3 Reverse	+C3-C3 Reverse	К к			
	LAG	0.866			30	210									P2 P3 P3 P3			
	LAG	0.707			45	225									Voltage are connected the order of P3, P1,			
	LEAD	0.707			135	135	-								and PN terminals, and 1 side CT is reversed. 1 N 3			
	LEAD	0.866			150	150	W₁=Negative value						+C1-C1	+03-03	K k+C1 L			
17		1.000	0	0	180	180	W ₃ =Negative value	V _{1N} =V ₁₃ <v<sub>3N</v<sub>	$I_1 = I_3 < I_N$	P3	P1	PN	Reverse	Normal	К к +СЗ			
	LAG	0.866			210	210									P1 P2 P3			
		0.707			315	315				+					Voltage are connected the order of P3, P1,			
	LEAD	0.866			330	330	0 0 0 0 0 0 0	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3 < I_N$		P1			+C3-C3 Reverse	reversed.			
18		1.000	0	0	0	0				P3		PN	PN +C1-C1 Normal					
	LAG	0.866			30	30									K k			
	LAG	0.707			45	45									P2 P3 PN			
	LEAD	0.707			135	315									Voltage are connected the order of P3, P1, and PN terminals, and Both of CTs are			
	LEAD	0.866			150	330									reversed. 1 N 3 K K			
19		1.000	0	0	180	0	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3$ $I_N = 0$	P3	P1	PN	+C1-C1 Reverse	+C3-C3 Reverse				
	LAG	0.866			210	30									<u>+С</u> <u></u> <u>+С</u> СЗ			
	LAG	0.707			225	45									P2 P3 PN			
	LEAD	0.707			315	315									Voltage are connected the order of PN, P3, and P1 terminals, and 1 side CT is reversed.			
20	LEAD	0.866			330	330									1 N 3 K k			
		1.000	0	0	0	0	0 W1>W3	V _{1N} >V _{3N} =V ₁₃	′ ₁₃ l₁=l ₃ <l<sub>N</l<sub>	PN	P3	P3 P1 F	P1 +C1-C1 Reverse	+C3-C3 Normal	нс2 С2 +C3			
	LAG	0.866			30	30									↓ ∠ <u>1</u> (3)			
	LAG	0.707			45	45									P3			

9.2. A List of Examples for Incorrect Wiring Display

	Power Fa	ctor		At balanced load (V _{1N} =V _{3N} (or V _{2N}), I ₁ =I ₃ (or I ₂))						Connection (Note 1)					
No.	(Input))	Phas ∠V _{1N}	e Angl ∠V _{3N}	e Disp ∠l ₁	olay ∠l₃	Active Power Display W1 W3	Voltage Display V _{1N} V _{3N} V ₁₃	$V_{13} \qquad l_1 \qquad l_N \qquad l_3 \qquad 1 \qquad N \qquad 3$				Cur 1 side CT	rent 3 side CT	Connection
	LEAD 0.	.707		-	135	135									Voltage are connected the order of PN, P3, and P1 terminals, and 3 side CT is reversed.
	LEAD 0.	.866			150	150		V _{1N} >V _{3N} =V ₁₃							
21	1.	.000	0	0	180	180	W ₁ =Negative value W ₃ =Negative value		$I_1 = I_3 < I_N$	PN	P3	P1	+C1-C1 Normal	+C3-C3 Reverse	K k
	LAG 0.	.866			210	210									LCL
	LAG 0.	.707			225	225									•PN
	LEAD 0.	.707			315	135	5 0 0 W ₁ =Positive value W ₃ =Negative value								and P1 terminals, and both of CTs are reversed.
	LEAD 0.	.866			330	150									1 N 3 K k
22	1.	.000	0	0	0	180		$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3$ $I_N = 0$	PN	P3	P1	+C1-C1 Reverse	+C3-C3 Reverse	К.К. С. С.2
	LAG 0.	.866			30	210									с Р1 Р2
	LAG 0.	.707			45	225									P3
	LEAD 0.	.707			315	315									P1 and P3 terminals are reversed and 1 side CT is reversed.
	LEAD 0.	.866			330	330									1 N 3 K k
23	1.	.000	0	180	0	0	W ₁ =Positive value W ₃ =Negative value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P3	PN	P1	+C1-C1 Reverse	+C3-C3 Normal	+С2 С2 К к 4/3
	LAG 0.	.866			30	30									
	LAG 0.	.707			45	45									P3 PN
	LEAD 0.	.707			135	135	5 0 W ₁ =Negative value W ₃ =Positive value 0 5								P1 and P3 terminals are reversed and 3 side CT is reversed.
	LEAD 0.	.866			150	150									1 N 3 K k +C1 C1
24	1.	.000	0	180	180	180		$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P3	PN	P1	+C1-C1 Normal	+C3-C3 Reverse	+С2 С2 К_К
	LAG 0.	.866			210	210									P1
	LAG 0.	.707			225	225									PN
	LEAD 0.	.707			315	135		V _{1N} =V _{3N} <v<sub>13</v<sub>	l₁=l₃ k₀=0						P1 and P3 terminals are reversed and both of CTs are reversed.
	LEAD 0.	.866			330	150	-							-C1 +C3-C3 erse Reverse	K K
25	1.	.000	0	180	0	180	W1=W3			P3	PN	P1	+C1-C1 Reverse		К <u>к</u>
	LAG 0.	.866			30	210	-								P1 P2
	LAG 0.	.707			45	225									PN
	LEAD 0.	.707			135	135									terminals '+C1' and 'C1' are reversed.
	LEAD 0.	.866			150	150	-								1 N 3 K <u>k</u>
26	1.	.000	0	180	180	180	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P1	PN	P3	+C3-C3 Normal	+C1-C1 Reverse	+C2 C2 +C3
	LAG 0.	.866			210	210	-								P1 P2
	LAG 0.	.707			225	225									P3 PN
	LEAD 0.	.707			315	315									terminals '+C3' and 'C3' are reversed.
27	LEAD 0.	.866			330	330									1 N 3 K k
	1.	.000	0	180	0	0	0 W ₁ =Positive value W ₃ =Negative value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P1	PN F	'N P3	P3 +C3-C3 Reverse	3 +C1-C1 e Normal	+С2 С2 +С3
	LAG 0.	.866			30	30									
	LAG 0.	.707			45	45									P3

9.2. A List of Examples for Incorrect Wiring Display

	Power F	actor		At balanced load (V _{1N} =V _{3N} (or V _{2N}), I ₁ =I ₃ (or I ₂))							Connection (Note 1)						
No.	(Inpu	it)	Phas ZV	se Angl	e Disp	olay Z L	Active Power Display	Voltage Display	Current Display	۱ ۱	/oltag	e 3	Cur 1 side CT	rent 3 side CT	Connection		
	LEAD (0.707	∠ v _{1N}	Z V _{3N}	315	135	vv ₁ vv ₃	V1N V3N V13	I1 IN I3			5	T SILLE C T	5 side C I	Both of CTs are switched and reversed each other .		
28	LEAD (0.866			330	150	0 0 W ₁ =W ₃								1 N 3 K k +C1		
	1	1.000	0	180	0	180		$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3$ $I_N = 0$	P1	PN	P3	+C3-C3 Reverse	+C1-C1 Reverse	К <u>к</u>		
	LAG (0.866			30	210									P1 P2		
	LAG (0.707			45	225									P3 PN		
	LEAD (0.707			135	315									P3 and PN terminals are reversed, and both of CTs are switched to each other.		
	LEAD (0.866			150	330	D								K k +C1 L C1		
29	1	1.000	0	0	180	0	W ₁ =Negative value W ₃ =Positive value	$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3$ $I_N = 0$	P1	P3	PN	+C3-C3 Normal	+C1-C1 Normal	+С2 С2 К <u>к</u>		
	LAG (0.866			210	30									P1 P2		
	LAG (0.707			225	45									P3 and PN are reversed in addition both of		
	LEAD (0.707			135	135									CTs are switched to each other, and the '+C3' and 'C3' are reversed.		
	LEAD (0.866			150	150									K k		
30	1	1.000	0	0	180	180	W ₁ =Negative value W ₃ =Negative value	$V_{1N} > V_{3N} = V_{13}$	$l_1 = l_3 < l_N$	P1	P3	PN	+C3-C3 Reverse	+C1-C1 Normal	+C2 C2 +C3		
	LAG (0.866			210	210									P1		
	LAG (0.707			225	225									P3		
	LEAD (0.707			315	315	5 0 0 0 0 0								P3 and PN are reversed, in addition, both of CTs are switched to each other, and the '+C1' and 'C1' are reversed.		
	LEAD (0.866			330	330									K K		
31	1	1.000	0	0	0	0		$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3 < I_N$	P1	P3	PN	+C3-C3 Normal	+C1-C1 Reverse	+С2 С2 +С3		
	LAG (0.866			30	30									P1 P2		
	LAG (0.707			45	45									P3 and PN are reversed in addition, both of		
	LEAD (0.707			315	135	5 0 W ₁ =Positive value W ₃ =Negative value	V _{1N} >V _{3N} =V ₁₃	I₁=I₃ I₀=0					3 +C1-C1 e Reverse	CTs are switched and reversed each other.		
	LEAD (0.866			330	150									К <u>k</u> <u>-</u>		
32	1	1.000	0	0	0	180				P1	P3	PN	+C3-C3 Reverse		К <u>к</u>		
	LAG (0.866			30	210									P1 P2 m		
	LAG	0.707			45	225									P1 and PN terminals are reversed, and		
	LEAD	0.707			315	135									1 N 3		
33	LEAD (1 000	0	0	330	150	W ₁ =Positive value	ValeValeVa	$I_1 = I_3$	PN	P1	РЗ	+C3-C3	+C1-C1	+C1 C1 +C2		
55		0.866	0	0	30	210	W ₃ =Negative value	v1N − v3N < v13	$I_N = 0$			15	Normal	Normal	К к		
	LAG	0.707			45	225											
-	LEAD (0.707			315	315									P1 and PN are reversed, in addition, both of CTs are switched to each other, and the		
34	LEAD (0.866			330	330									'+C3' and 'C3' are reversed. 1 N 3 K k		
	1	1.000	0	0	0	0	W1 <w3< td=""><td>$V_{1N} = V_{13} < V_{3N}$</td><td>$I_1 = I_3 < I_N$</td><td>PN</td><td>P1</td><td rowspan="2">P3</td><td rowspan="2">+C3-C3 Reverse</td><td rowspan="2">+C1-C1 Normal</td><td></td></w3<>	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3 < I_N$	PN	P1	P3	+C3-C3 Reverse	+C1-C1 Normal			
	LAG (0.866			30	30	30	v _{1N} =v ₁₃ <v<sub>3N</v<sub>							+C3		
	LAG (0.707			45	45									P3 PN		

9.2. A List of Examples for Incorrect Wiring Display

	Power	At balanced load (V1N=V3N (or V2N), I1=I3 (or I2)) Factor Discussion (V1N=V2N), V1N=Discussion (V1N=V2N), V1N=V2N), V1N=Discussion (V1N=V2N), V1N=V2N), V1N=Discussion (V1N=V2N), V1N=V2N), V1N=V2N, V1N=V2N), V1N=V2N, V1N=V2N), V1N=V2N, V1N=V2N), V1N=V2N, V1N=V2N), V1N=V2N, V1N=V2N							Connection (Note 1)						
No.	(Inp	out)	Phas ∠V _{1N}	Se Ang ∠V2N	le Dis ∠I₁	play ∠h	Active Power Display	Voltage Display	Current Display	1	/oltag N	e 3	Cur 1 side CT	rent 3 side CT	Connection
	LEAD	0.707		314	135			-114 -314 -13	-1 10 -3			-			P1 and PN are reversed, in addition, both of CTs are switched to each other, and the '+C1' and 'C1' are reversed.
	LEAD	0.866			150	150		$V_{1N} = V_{13} < V_{3N}$							1 N 3 K k
35		1.000	0	0	180	180	W ₁ =Negative value W ₃ =Negative value		$I_1 = I_3 < I_N$	PN	P1	P3	+C3-C3 Normal	+C1-C1 Reverse	К к така та
	LAG	0.866			210	210									•
	LAG	0.707			225	225									
	LEAD	0.707			135	315									CTs are switched and reversed each other.
	LEAD	0.866			150	330									1 N 3 K k
36		1.000	0	0	180	0	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3$ $I_N = 0$	PN	P1	P3	+C3-C3 Reverse	+C1-C1 Reverse	+С2 С2 К_ <u>k</u> +С3
	LAG	0.866			210	30									•
	LAG	0.707			225	5 45									P3
	LEAD	0.707			135	315	-								Voltage are connected the order of P3- P1- PN, and both of CTs are switched to each other.
	LEAD	0.866			150	330			$I_1 = I_3$ $I_N = 0$					3 +C1-C1 Normal	K K
37		1.000	0	0	180	0 0	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{13} < V_{3N}$		Р3	P1	PN	N +C3-C3 Normal		+C2 C2
	LAG	0.866			210	30									+C3
	LAG	0.707			225	5 45									P3 PN
	LEAD	0.707			135	135	5 0 0 0 0 0 5								Voltage are connected the order of P3- P1- PN, both of CTs switch to each other, and '+C3' and 'C3' are reversed.
	LEAD	0.866			150	150									K K
38		1.000	0	0	180	180		$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3 < I_N$	P3	P1	PN	+C3-C3 Reverse	+C1-C1 Normal	+C2 C2 +C3
	LAG	0.866			210	210									P1
	LAG	0.707			225	225									Voltage are connected the order of P3. P1.
	LEAD	0.707			315	315	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$V_{1N} = V_{13} < V_{3N}$	$l_1 = l_3 < l_N$					+C1-C1 Reverse	PN, both of CTs switch to each other, and '+C3' and 'C3' are reversed.
	LEAD	0.866			330	330							PN +C3-C3 Normal		1 N 3 K k
39		1.000	0	0	C	0 0				P3	P1	PN			С +С2 С2 К. к. +С3
	LAG	0.866			30	30									P1
	LAG	0.707			45	45									P3 PN
	LEAD	0.707			315	135									Voltage are connected the order of P3- P1- PN, both of CTs are switched and reversed each other.
	LEAD	0.866			330	150	* -								1 N 3 K k
40		1.000	0	0	C	180	W ₁ =Positive value W ₃ =Negative value	$V_{1N} = V_{13} < V_{3N}$	$I_1 = I_3$ $I_N = 0$	Р3	P1	PN	+C3-C3 Reverse	+C1-C1 Reverse	+C2 C2 K_k
	LAG	0.866			30	210									
	LAG	0.707			45	225									P2 P3 PN
	LEAD	0.707			315	5 135									Voltage are connected the order of PN-P3- P1, and both of CTs are switched to each other.
41	LEAD	0.866			330	150									1 N 3 K K
		1.000	0	0	0	180	0 W ₁ =Positive value W ₃ =Negative value	$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3$ $I_N = 0$	PN	P3	3 P1	P1 +C3-C3 Normal	+C1-C1 Normal	К К С2 С2
	LAG	0.866			30	210									LE
	LAG	0.707			45	225									• P2 • P3 P3

9.2. A List of Examples for Incorrect Wiring Display

9.2.3. 1-phase 3-wire System

	Deuver	Fastar	At balanced load (V _{1N} =V _{3N} (or V _{2N}), I ₁ =I ₃ (or I ₂))							Connection (Note 1)						
No.	No. (Input)		Phas	se Angl	e Disp	olay	Active Power Display	Voltage Display	Current Display	١	Voltag	е	Cur	rent	Connection	
		,	$\angle V_{1N}$	$\angle V_{3N}$	∠l₁	∠l₃	W1 W3	V _{1N} V _{3N} V ₁₃	l ₁ l _N l ₃	1	Ν	3	1 side CT	3 side CT	Connection	
	LEAD	0.707			315	315									Voltage are connected the order of PN-P3- P1, both of CTs switch to each other, and '+C3' 'C3' are reversed.	
	LEAD	0.866			330	330									K K	
42		1.000	0	0	0	0	W ₁ >W ₃	$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3 < I_N$	PN	P3	P1	+C3-C3 Reverse	+C1-C1 Normal	K K	
	LAG	0.866			30	30									P1 P2 P3	
		0.707			45	45									Voltage are connected the order of PN-P3-	
	LEAD	0.866			150	150									++C1' C1' are reversed. 1 N K k	
43		1.000	0	0	180	180	W ₁ =Negative value	V _{1N} >V _{3N} =V ₁₃	$I_1 = I_3 < I_N$	PN	P3	P1	+C3-C3	+C1-C1		
	LAG	0.866			210	210	W ₃ =Negative value						NUTTIAL	Reveise	К <u>к</u>	
	LAG	0.707			225	225									P2 P3 PN	
	LEAD	0.707			135	315									Voltage are connected the order of PN-P3- P1, both of CTs are switched and reversed each other	
	LEAD	0.866			150	330	W₁=Negative value W₃=Positive value								1 N 3 K k	
44		1.000	0	0	180	0		$V_{1N} > V_{3N} = V_{13}$	$I_1 = I_3$ $I_N = 0$	PN	P3	P1	+C3-C3 Reverse	+C1-C1 Reverse		
	LAG	0.866			210	30									C3 P1 P2	
	LAG	0.707			225	45									P1 and P3 are reversed, in addition, both of	
	LEAD	0.707			315	315		V _{1N} =V _{3N} <v<sub>13</v<sub>							CTs are switched to each other, and the '+C3' and 'C3' are reversed.	
45	LEAD	0.866		100	330	330	W ₁ =Positive value W ₃ =Negative value		I1=I3 <in< td=""><td>50</td><td>DN</td><td>DI</td><td>+C3-C3</td><td rowspan="3">+C1-C1 Normal</td><td>K k +C1 C1 +C2</td></in<>	50	DN	DI	+C3-C3	+C1-C1 Normal	K k +C1 C1 +C2	
45	LAG	0.866		160	30	30				P3	PN	P1	Reverse		К К	
	LAG	0.707			45	45									P1 P2 P3 PN	
	LEAD	0.707			135	135									P1 and P3 are reversed, in addition, both of CTs are switched to each other, and the	
	LEAD	0.866			150	150									+C1 and C1 are reversed. 1 N 3 K k	
46		1.000	0	180	180	180	W ₁ =Negative value W ₃ =Positive value	$V_{1N} = V_{3N} < V_{13}$	$I_1 = I_3 < I_N$	P3	PN	P1	+C3-C3 Normal	+C1-C1 Reverse	Ст +C2 С2 К_к +C3	
	LAG	0.866			210	210									P1 P2	
	LAG	0.707			225	225									P1 and P3 are reversed in addition, both of	
	LEAD	0.707			135	315									CTs are switched and reversed each other.	
	LEAD	0.866			150	330	W ₁ =Negative value		I1=12				+03-03	+01-01	K k +C1 C1 +C2	
47	140	1.000	0	180	180	0	W ₃ =Negative value	V _{1N} =V _{3N} <v<sub>13</v<sub>	I _N =0	P3	PN	P1	Reverse	Reverse	К <u>к</u>	
	LAG	0.000			210	30									P1 P2 P3	
	LAG	0.707			225	45				l I		l				

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

MITSUBISHI Electronic Multi-Measuring Instrument

Please refer to our website for service network. Our website address: https://www.mitsubishielectric.com/fa/

