HOSPITAL BED ELEVATORS

NEXIEZ - MR

HOSPITAL
Optimum Design for Hospital Use

Mitsubishi Electric’s hospital bed elevators are designed to provide safe, convenient transportation for everyone, from transporting patients in beds to moving medical equipment.

Usability

Safety Door Edge: SDE
A mechanical safety device with a micro-switch reverses closing doors if there is physical contact with a passenger or an object.

Extended Door-open Button Function: DKO-TB
When the hold button on the car operating panel is pressed, the doors will remain open longer to allow safe loading and unloading of passengers, including patients in beds.

Regenerative Converter: PCNV (Optional)
Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%. A Regenerative Converter has the effect of decreasing harmonic currents.

Reserved Operation for Emergencies: HE-B
When set to this mode, the car will not respond to other calls and exclusively transport hospital beds, medical equipment, etc.

Extended Door-open Button Function: DKO-TB
When the hold button on the car operating panel is pressed, the doors will remain open longer to allow safe loading and unloading of passengers, including patients in beds.

Models

There are two models to choose from to suit various hospital requirements and conditions. While the B750 can accommodate most kinds of medical equipment or hospital beds, the larger B1000 model allows for more space to accommodate up to two stretchers.

Reserved Operation for Emergencies: HE-B
When set to this mode, the car will not respond to other calls and exclusively transport hospital beds, medical equipment, etc.

The standard control system for hospital bed elevators is 1C-2BC (1-car selective collective). To control multiple elevators in a group, 2C-2BC (2-car group control system) or 3C-SAI-22 (3-car group control system) are available as options.

Reusing Energy

Regenerative Converter: PCNV (Optional)
Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%. In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Note:
* The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.
Car Design

L220 LED lighting Milky white resin panels

Model: B750

S00 Standard
Milky white resin lighting cover

Model: B750

Design Image

- **Ceiling**: Painted steel sheet (Y033: White) (ceiling height: 2200mm in *2)
- **Walls**: Painted steel sheet (Y033: White)
- **Transom panel**: Painted steel sheet (Y033: White)
- **Doors**: Painted steel sheet (Y033: White)
- **Front return panels**: SUS-HL
- **Kickplate**: SUS-HL
- **Flooring**: PR812: Dim-gray
- **Car operating panel**: CBV1-N710
- **Handrails (standard)**: SUS-HL (YH-56S)

Walls, doors and transom panel

- **Stainless-steel, hairline-finish (SUS-HL)**
- **Pattern-printed steel sheet**
 - Minimal stripe
 - Bright plate
 - Primary grain
 - Dark grain

- **Colored stainless-steel, hairline-finish**
 - Bronze
 - Gold
 - Etching patterns (Gold or bronze)
 *Please refer to etching finish pattern book, EFA1, for details.

- **Etching patterns** (Stainless-steel)
 *Please refer to etching finish pattern book, EFA1, for details.

- **Painted steel sheet**
 - Y033: White
 - Y044: Beige
 - Y071: Neutral beige
 - Y042: Brown
 - Y035: Dark gray

- **Colored stainless-steel, hairline-finish with etched pattern**
 *Available only in dark gray.

- **Colored stainless-steel, mirror-finish (SUS-M)**

- **Aluminum**
- **Glass windows (1300(H)×200(W)/door panel)**
- **Durable vinyl tiles**
- **See-through doors**
- **Stainless-steel, mirror-finish SK-01**
- **Aluminum checkered plate (18)**
- **Rubber tile/carpet/marble/granite (supplied by customer)**
- **Extended hard aluminum**
- **YH-56S (Type flat bar)**

Notes

1. The ceilings N120, N130, N140 are also available. Please refer to Design Guide for detail.
2. The ceiling height is 2200mm as standard or 2300mm as an option.

Actual colors may differ slightly from those shown.
Entrance Finishes

<table>
<thead>
<tr>
<th>Material/finish</th>
<th>Jamb</th>
<th>Transom panel</th>
<th>Doors</th>
<th>SSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless-steel, hairline-finish (SUS-HL)</td>
<td>Standard</td>
<td>Optional</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Painted steel sheet</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Stainless-steel, hairline-finish with etched pattern (SUS-HE)</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Glass windows (1300(H)×200(W)/door panel)</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass windows (1300(H)×200(W)/transom panel)</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless-steel</td>
<td></td>
<td></td>
<td></td>
<td>Optional</td>
</tr>
</tbody>
</table>

Note:
* Some letters of the alphabets are not available. Please consult our local agents for details.

Hall Design

Jams

E-102 Narrow Jamb

- Jamb: SUS-HL
- Doors: SUS-HL
- Hall position indicator and call button: PIV1-A1010N

E-302 Splayed Jamb

- Jamb: Painted steel sheet (Y116: Blue)
- Doors: SUS-HL
- Hall position indicator: PIV1-A1010N
- Hall button: HBV1-C710N

E-202 Square Jamb

- Jamb: Painted steel sheet (Y116: Blue)
- Doors: SUS-HL
- Hall position indicator: PIV1-A1010N
- Hall button: HBV1-C710N

E-312 Splayed Jamb with Transom Panel

- Jamb: SUS-HL
- Transom panel: SUS-HL
- Doors: SUS-HE (EP-B-009)
- Hall position indicator: PID-D417
- Hall button: HBV1-C710N

E-212 Square Jamb with Transom Panel

- Jamb: SUS-HL
- Transom panel: SUS-HL
- Doors: SUS-HE (EP-B-009)
- Hall position indicator: PID-D417
- Hall button: HBV1-C710N

Note:
* Some letters of the alphabets are not available. Please consult our local agents for details.

Actual colors may differ slightly from those shown.
Notes:
*1: Faceplates with stainless-steel, mirror-finish are also available (optional). Please consult our local agents for details.
*2: Some letters of the alphabets are not available. Please consult our local agents for details.
*3: Dot LED indicators are also available (optional). Please consult our local agents for details.
*4: The symbol ■ is replaced with a number representing the button type and illumination color (e.g. CBV1, CBV2, etc.)
*5: Maximum number of floors: 22 floors.

Actual colors may differ slightly from those shown.
Hall Signal Fixtures

Hall position indicators and buttons

- Segment LED indicator
 - With plastic case
 - PIV-A1010N
 - HBV-A1010B

- Tactile button with yellow-orange lighting
 - PIV-A1010N
 - HBV-A1010B

- Dot LED indicator
 - PIV-C710N
 - PIV-C730N
 - PIV-C766N

- LCD indicator

Hall buttons

- With plastic case
 - PIH-D415
 - (Dot LED indicator)
 - PIH-D417
 - (Segment LED indicator)
 - PID-D417
 - (Built into transom panel)

Hall position indicators

- LCD information displays
 - PIH-C216 (10.4-inch)
 - PIH-C226 (15-inch)

Notes:
*1: The symbol ■ is replaced with a number representing the button type and illumination color (e.g. PIV1, PIV2, etc.) Please refer to page 7 for button types and illumination colors.
*2: Some letters of the alphabet are not available. Please consult our local agents for details.
*3: Dot LED indicators are also available (optional). Please consult our local agents for details.
*4: Faceplates with stainless-steel, mirror-finish are also available (optional). Please consult our local agents for details.

Cross-section of boxless fixtures

These hall signal fixtures can be easily mounted on the wall surface without having to cut into the wall to embed the back box.

Actual colors may differ slightly from those shown.
EMERGENCY OPERATIONS AND FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Management System-SafetyKey</td>
<td>BMS-GX</td>
<td>Each elevator’s status and operation can be monitored and controlled using a building management system which manages various facilities in the building via the interface for the elevator system.</td>
</tr>
<tr>
<td>Earthquake Emergency Operation</td>
<td>EER-P</td>
<td>Upon activation of primary and/or secondary wave seismic sensors, all cars stop at the nearest floor, and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Emergency Car Lighting</td>
<td>ECL</td>
<td>Car lighting which turns on immediately when power fails, providing a minimum level of lighting within the car. (Choice of dry-cell battery or trickle-charge battery).</td>
</tr>
<tr>
<td>Fire Emergency Return</td>
<td>FER</td>
<td>Upon activation of a key switch or a building’s fire alarm, all cars are cancelled, all cars immediately return to a specified evacuation floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighters’ Emergency Operation</td>
<td>FE</td>
<td>During a fire, when the fire operation switch is activated, the cars of a specified car and all hall cars are cancelled and the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate firefighting and rescue operations.</td>
</tr>
<tr>
<td>Mitsubishi Emergency & Elevators Monitoring and Control System</td>
<td>MELD</td>
<td>Each elevator’s status and operation can be monitored and controlled using an advanced Web-based technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analyses are also available.</td>
</tr>
<tr>
<td>Mitsubishi Emergency Landing Device</td>
<td>WP-W</td>
<td>Each elevator’s status and operation can be monitored and controlled using an advanced Web-based technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analyses are also available.</td>
</tr>
<tr>
<td>Operation by Emergency Power Source—Automatic/Manual</td>
<td>OBPS</td>
<td>Upon power failure, a car equipped with the function automatically moves and stops at the nearest floor using a rechargeable battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor-to-floor distance is 11 meters).</td>
</tr>
<tr>
<td>Supervisory Panel</td>
<td>WP</td>
<td>Each elevator’s status and operation can be remotely monitored and controlled through a panel installed in a building’s supervisory room, etc.</td>
</tr>
</tbody>
</table>

OPERATIONAL AND SERVICE FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendant Service</td>
<td>AS</td>
<td>Exclusive operation where an elevator can be operated using the buttons and switches located in the car operating panel, allowing smooth boarding of passengers or loading of baggage.</td>
</tr>
<tr>
<td>Automatic Bypass</td>
<td>ABP</td>
<td>A fully-automatic operation for fast passenger service.</td>
</tr>
<tr>
<td>Automatic Hall Call Registration</td>
<td>FSAT</td>
<td>If one car cannot carry all waiting passengers because it is full, another car will automatically be assigned for the remaining passengers.</td>
</tr>
<tr>
<td>Backup Operation for Group Control Microprocessor</td>
<td>GCBK</td>
<td>An operation by car controllers which automatically maintains elevator operation in the event that a microprocessor or transmission line in the group controller has failed.</td>
</tr>
<tr>
<td>Car Call Canceling</td>
<td>CCC</td>
<td>When a car has responded to the final car call in one direction, the system regards remaining calls in the other direction as mistakes and clears them from the memory.</td>
</tr>
<tr>
<td>Car Fan Shut-off—Automatic</td>
<td>CFO-A</td>
<td>If there are no calls for a specified period, the car ventilation fan will automatically turn off to conserve energy.</td>
</tr>
<tr>
<td>Car Light Shut-off—Automatic</td>
<td>CLO-A</td>
<td>If there are no cars for a specified period, the car lighting will automatically turn off to conserve energy.</td>
</tr>
<tr>
<td>Continuity of Service</td>
<td>COS</td>
<td>A buzzer sounds and the doors slowly close when they have approached the closed position.</td>
</tr>
<tr>
<td>Elevator and Security System Interface</td>
<td>EL-SCA</td>
<td>Personal authorization by building’s security devices can trigger predetermined elevator operation such as permission of access to private floors, automatic registration of a hall call and a destination floor, and priority service.</td>
</tr>
<tr>
<td>False Call Canceling</td>
<td>FCC-A</td>
<td>If the number of registered car calls does not correspond to the car load, all calls are cancelled to avoid unnecessary stops.</td>
</tr>
<tr>
<td>False Call Canceling Car Button Type</td>
<td>FCC-P</td>
<td>If a wrong car button is pressed, it can be canceled by quickly pressing the same button again twice.</td>
</tr>
<tr>
<td>Independent Service</td>
<td>IND</td>
<td>Exclusive operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and responds only to car calls.</td>
</tr>
<tr>
<td>Non-service Temporary Release for Car Call—Automatic</td>
<td>NSCR-C</td>
<td>To enhance security, car calls for desired floors can be registered only by placing a card over a card reader. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Non-service to Specific Floors—Car Button Type</td>
<td>NS-CB</td>
<td>To enhance security, service to specific floors can be disabled using the car operating panel. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Non-service to Specific Floors—Switch/Timer Type</td>
<td>NS-T</td>
<td>To enhance security, service to specific floors can be disabled using a manual or timer switch. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Out-of-service by Hall Key Switch</td>
<td>HOS-HS-T</td>
<td>For maintenance or energy-saving measures, a car can be taken out of service temporarily with a key switch or without a timer mounted in a specified hall.</td>
</tr>
<tr>
<td>Out-of-service-remote</td>
<td>RSC</td>
<td>Using a key switch on the supervisory panel, etc., a car can be called to a specified floor after responding to all car calls, and then automatically be taken out of service.</td>
</tr>
<tr>
<td>Overload Holding Stop</td>
<td>OHL</td>
<td>A buzzing sound is heard to the passengers that the car is overloaded. The doors remain open and the car will not leave that floor until enough passengers exit the car.</td>
</tr>
<tr>
<td>Regenerative Converter</td>
<td>PCNV</td>
<td>For energy conservation, power regenerated by a traction machine can be used by other electrical systems in the building.</td>
</tr>
<tr>
<td>Reserved Operation for Emergency</td>
<td>H-E</td>
<td>Applicable only for hospital bed elevators. The car transports a hospital bed, medical equipment, etc. exclusively to the destination floor without responding to other calls.</td>
</tr>
<tr>
<td>Return Operation</td>
<td>RET</td>
<td>Using a key switch on the supervisory panel, a car can be withdrawn from group control operation and called to a specified floor. The car will park on that floor with the doors open, and not accept any car calls, until independent operations begin.</td>
</tr>
<tr>
<td>Safe Landing</td>
<td>SPL</td>
<td>If a car has stopped between floors due to some equipment malfunction, the controller checks the cause, and if it is considered safe to move the car, the car will move to the nearest floor at a low speed and the doors will open.</td>
</tr>
<tr>
<td>Secret Call Service</td>
<td>SCS-B</td>
<td>To enhance security, calls for desired floors can be registered only by entering secret codes using the car buttons on the car operating panel. This function is automatically deactivated during emergency operation.</td>
</tr>
</tbody>
</table>

Notes: 1C-3BC 2C-3BC 2C-3BC 3C-3BC 4C-3BC | Standard | Optional | Not applicable | #1: Please consult our local agents for the production terms, etc.
GROUP CONTROL FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank separation operation</td>
<td>BSO</td>
<td>Hall buttons and the cars called by each button can be divided into several groups for independent group control operation to serve special needs or different floors.</td>
</tr>
<tr>
<td>Car travel time evaluation</td>
<td>CTS</td>
<td>The car then responds only to car calls, moves to a specified floor and parks there with the doors open. The car then responds only to car calls.</td>
</tr>
<tr>
<td>Closest-car priority service</td>
<td>CNPS</td>
<td>A function to give priority allocation to the car closest to the floor where a hall call button has been pressed, or to reverse the closing of the doors closest to the pressed hall call button on that floor. (Cannot be combined with hall position indicators.)</td>
</tr>
<tr>
<td>Congested floor service</td>
<td>CFS</td>
<td>The timing of car allocation and the number of cars to be allocated to floors where meeting rooms or balconies exist and the traffic interfaces for short periods of time are controlled according to the detected traffic density data for those floors.</td>
</tr>
<tr>
<td>Down peak service</td>
<td>DPS</td>
<td>Controls the number of cars to be allocated and the timing of car allocation in order to meet increased demands for downward travel during office leaving time, hotel check-out time, etc. to minimize passenger waiting time.</td>
</tr>
<tr>
<td>Energy-saving operation — Number of Cars</td>
<td>ESO-N</td>
<td>To save energy, the number of service cars is automatically reduced to some extent, but not so much that it adversely affects passenger waiting time.</td>
</tr>
<tr>
<td>Expert System and Fuzzy Logic</td>
<td>EFSF</td>
<td>Artificial expert knowledge, which has been programmed using 'expert system' and 'fuzzy logic', is applied to select the ideal operational rule which maximizes the efficiency of group control operations.</td>
</tr>
<tr>
<td>Forced floor stop</td>
<td>FFS</td>
<td>All cars in a bank automatically make a stop at a predetermined floor on every trip without being called.</td>
</tr>
<tr>
<td>Light-load car priority operation</td>
<td>UCFS</td>
<td>When traffic is light, empty or lightly-loaded cars are given higher priority to respond to hall calls in order to minimize passenger travel time. (Cannot be combined with hall position indicators.)</td>
</tr>
<tr>
<td>Lunchtime service</td>
<td>LTS</td>
<td>During the first half of lunchtime, calls for a restaurant floor are served with higher priority, and during the latter half, the number of cars allocated to the restaurant floor, the allocation timing for each car and the door opening and closing timing are all controlled based on predicted data.</td>
</tr>
<tr>
<td>Main floor changeover operation</td>
<td>TFS</td>
<td>The feature is effective for buildings with two main (lobby) floors. The floor designated as the "main floor" in a group control operation can be changed as necessary using a manual switch.</td>
</tr>
<tr>
<td>Main floor parking</td>
<td>MFP</td>
<td>An available car always parks on the main (lobby) floor with the doors open (or closed only in China).</td>
</tr>
<tr>
<td>Peak traffic control</td>
<td>PTC</td>
<td>A floor which temporarily has the heaviest traffic is served with higher priority over other floors, but not to the extent that it interferes with the service to other floors.</td>
</tr>
<tr>
<td>Psychological waiting time evaluation</td>
<td></td>
<td>Cars are allocated according to the predicted psychological waiting time for each hall call. The rules evaluating psychological waiting time are automatically changed in a timely manner in response to actual service conditions.</td>
</tr>
<tr>
<td>Special car priority service</td>
<td>SCPS</td>
<td>Special cars, such as observation elevators and elevators with basement service, are given higher priority to call when no hall call is made on those cars. (Cannot be combined with hall position indicators.)</td>
</tr>
<tr>
<td>Special floor priority service</td>
<td>SFPs</td>
<td>Special floors, such as floors with VIP rooms or executive rooms, are given higher priority for car allocation when a call is made on those cars. (Cannot be combined with hall position indicators.)</td>
</tr>
<tr>
<td>Strategic overall spotting</td>
<td>SDHS</td>
<td>To reduce passenger waiting time, cars which have finished service are automatically directed to positions where they can respond to predicted hall calls as quickly as possible.</td>
</tr>
<tr>
<td>Up peak service</td>
<td>UPS</td>
<td>Controls the number of cars to be allocated to the lobby floor, as well as the car allocation timing, in order to meet increased demands for upward travel from the lobby floor during office starting time, hotel check-in time, etc., and minimize passenger waiting time.</td>
</tr>
<tr>
<td>VIP operation</td>
<td>VIPS</td>
<td>A specified car is withdrawn from group control operation for VIP service operation. When activated, the car responds only to existing car calls, moves to a specified floor and parks there with the doors open. The car then responds only to car calls.</td>
</tr>
</tbody>
</table>

SIGNAL AND DISPLAY FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic announcement</td>
<td>AAN-B</td>
<td>A synthetic voice (and/or buzzer) alerts passengers inside a car that elevator operation has been temporarily interrupted by overloading or another cause. (Available in limited languages.)</td>
</tr>
<tr>
<td>Car arrival chime</td>
<td>AECC (car)</td>
<td>Electronic chimes sound to indicate that a car will soon arrive. (The chimes are mounted either on the top and bottom of the car, or in each hall.)</td>
</tr>
<tr>
<td>Car LCD position indicator</td>
<td>CID-S</td>
<td>This 5.7-inch LCD for car operating panels shows the date and time, car position, travel direction and elevator status messages.</td>
</tr>
<tr>
<td>Exclusive operation signal light — Car</td>
<td>EXCLC</td>
<td>Indicator on car operating panel displays: RESERVED OPERATION during HE-8 operation.</td>
</tr>
<tr>
<td>Exclusive operation signal light — Hall</td>
<td>EXCL</td>
<td>Hall position indicator displays IN USE during HE-8 operation.</td>
</tr>
<tr>
<td>Hall information display</td>
<td>HID</td>
<td>This LCD (10.4- or 15-inch) for elevator halls shows the date and time, car position, travel direction and elevator status messages. In addition, customized video images can be displayed in full-screen or partial-screen formats.</td>
</tr>
<tr>
<td>Hall LCD position indicator</td>
<td>HID-S</td>
<td>This 5.7-inch LCD for elevator halls shows the date and time, car position, travel direction and elevator status messages.</td>
</tr>
<tr>
<td>Intercommunication system</td>
<td>ITP</td>
<td>A system which allows communication between passengers inside a car and the building personnel.</td>
</tr>
<tr>
<td>Sonic car button — Click type</td>
<td>ACR</td>
<td>A click-type car button which emits electronic beep sounds when pressed to indicate that the call has been registered.</td>
</tr>
<tr>
<td>Voice guidance system</td>
<td>AAN-G</td>
<td>Information on elevator service such as the current floor or service direction is given to the passengers inside a car.</td>
</tr>
</tbody>
</table>

Notes:
- 1C-2BC: 1-car selective collective
- 2C-2BC: 2-car group control system
- ΣAI-22: 3-car group control system
- = Standard
- = Optional
- = Not applicable
- * Please consult our local agents for the production terms, etc.
Basic Specifications

Models

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm)</th>
<th>Entrance width (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B750</td>
<td>11</td>
<td>750</td>
<td>1.0</td>
<td>25</td>
<td>Side</td>
<td>1500x2300</td>
<td>1100</td>
<td>2070x2730</td>
<td>2070x2730</td>
</tr>
<tr>
<td>B1000</td>
<td>15</td>
<td>1000</td>
<td>1.5</td>
<td>1.75</td>
<td>Side</td>
<td>1500x2300</td>
<td>1200</td>
<td>2270x2930</td>
<td>2270x2930</td>
</tr>
</tbody>
</table>

[Terms of the table]
- This table shows standard specifications without the fireproof landing door and counterweight safety. Please consult our local agents for other specifications.
- 2 panel side sliding doors
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.

Hoistway Plan <B750/B1000>

Machine Room Plan Example <B750/B1000>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room height (mm)</th>
<th>Minimum door to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>80</td>
<td>30</td>
<td>4400</td>
<td>1360</td>
<td>2200</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>30</td>
<td>4500</td>
<td>1410</td>
<td>2300 *1</td>
</tr>
<tr>
<td>1.75</td>
<td>90</td>
<td>30</td>
<td>4630</td>
<td>1410</td>
<td>2500 *1</td>
</tr>
</tbody>
</table>

(Terms of the table)
- This table shows standard specifications without counterweight safety. Please consult our local agents for other specifications.

[Note]
- *1 Some specifications require more than 2500mm as a minimum floor height. Please consult us if the floor height is less than entrance height HH + 700mm.

Hoistway Section Example <B750 / B1000>

Basic code compliance
The dimensional information shown here in this page is based on Mitsubishi Electric standard car size.
For safety features, please consult our local agent.
Important Information on Elevator Planning

Work Not Included in Elevator Contract
The following items are excluded from Mitsubishi Electric's elevator installation work. Their details or conditions are to be confirmed to the statement of local laws or Mitsubishi Electric elevator's requirements, and therefore the responsibility of the building owner or general contractor.

• Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
• Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
• Architectural finishing of the machine room floor, and walls and floors in the vicinity of the entrance hall after installation has been completed.
• Construction of an illuminated, ventilated and waterproofed hoistway.
• The provision of a ladder to the elevator pit.
• The provision of openings and supporting members as required for equipment installation.
• Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed.
• The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
• All other work related to building construction.
• The provision of the main power and power for illumination, and their electrical switch boxes in the machine room, and laying of the wiring from the electrical switch box.
• The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
• The power consumed in installation work and test operations.
• All the necessary building materials for grouting in of brackets, bolts, etc.
• The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
• The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
• The security system, such as a card reader, connected to Mitsubishi Electric's elevator controller, when supplied by the building owner or general contractor.

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Elevator Site Requirements
• The temperature of the machine room and elevator hoistway shall be below 40˚C.
• The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
• Voltage fluctuation shall be within a range of ±5% to ±10%.

Ordering Information
Please include the following information when ordering or requesting estimates:
• The desired number of units, speed and loading capacity.
• The number of stops or number of floors to be served.
• The total elevator travel and each floor-to-floor height.
• Operation system.
• Selected design and size of car.
• Entrance design.
• Signal equipment.
• A sketch of part of the building where the elevators are to be installed.
• The voltage, number of phases, and frequency of the power source for the motor and lighting.
State-of-the-Art Factories…
For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality. As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE : TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
www.MitsubishiElectric.com/elevator

⚠️ Safety Tips: Be sure to read the instruction manual fully before using this product.