Our elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Building Systems Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.
Utilizing its technological prowess and extensive experience, we have remained a leader in the vertical transportation market since entering the business in 1931. The Company's creative, innovative spirit, represented by production of the world's first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Our elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, we promise to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

* Quality in Motion is a trademark of Mitsubishi Electric Corporation.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with our products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Motor</th>
<th>Traction machine</th>
<th>Motor drive</th>
<th>Control circuit</th>
<th>Power consumption / CO2 emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>Induction motor</td>
<td>AC2 control</td>
<td>Relay</td>
<td>10%</td>
<td>40%</td>
</tr>
<tr>
<td>1980</td>
<td>Torque motor</td>
<td>ACV control</td>
<td>Motor</td>
<td>24%</td>
<td>24%</td>
</tr>
<tr>
<td>1990</td>
<td>Permanent magnet motor</td>
<td>VVVF control</td>
<td>Relay</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td>2000</td>
<td>Gearless</td>
<td>leurs</td>
<td>Regenerative converter</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>2010</td>
<td>PM motor</td>
<td>Regenerative converter</td>
<td>Control panel</td>
<td>Approx. 70% reduction</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Alternative current, variable voltage
2. Variable voltage, variable frequency
3. CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.

Energy-saving Features

We offer features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars: ESO-N (Optional for ΣAI-22)

The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control: ESO-W (ΣAI-2200C only)

Based on each elevator's potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic: CFO-A/CLO-A

The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.

Regenerative Converter: PCNV (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.

In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Note: *1 The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.

LED Lighting (Optional)

Energy-efficient LEDs consume less power than conventional lamps. Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, the long service life eliminates the need for frequent lamp replacement.

Devices that Use Less Energy

Reusing Energy

Traction Machine with PM Motor

The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO2 emissions. In addition, we have adopted a 2:1 (single-wrap) roping system, which lessens load on the traction machine, and allows further reductions in traction machine size.

Enhancing Energy Efficiency

Ceiling: L210S LED downlights (yellow-orange)

Regenerative Converter: PCNV (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.

In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Note: *1 The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.

Energy-saving Features

We offer features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars: ESO-N (Optional for ΣAI-22)

The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control: ESO-W (ΣAI-2200C only)

Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic: CFO-A/CLO-A

The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C

ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.

Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control: ESO-W (ΣAI-2200C)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Dynamic Rule-set Optimizer (ΣAI-2200C)
Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Allocation System: DOAS (Optional for ΣAI-2200C)
When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement of hall fixtures (No hall lantern* is provided.)
Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

Note:
*Hall lanterns are available as optional.
Emergency Situations

Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

<table>
<thead>
<tr>
<th>Power failure</th>
<th>Fire</th>
<th>Earthquake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi Emergency Landing Device: MELD (Optional)</td>
<td>Fire Emergency Return: FER (Optional)</td>
<td>Earthquake Emergency Return: EER-P/EER-S (Optional)</td>
</tr>
<tr>
<td>Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.</td>
<td>When a key switch or a building's fire sensors are activated, all cars immediately return to a specified floor and open the doors for passengers to evacuate.</td>
<td>When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Upon power failure, predetermined car(s) use a building's emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) will resume normal operation.</td>
<td>When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate fire-fighting and rescue operations.</td>
<td></td>
</tr>
</tbody>
</table>

For Safe Boarding

Door safety devices

Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

- **Hall Motion Sensor: HMS (Optional)**
- **Multi-beam Door Sensor (Optional)**

Safety and Comfort

User-oriented Design

Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font

The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

1 2 3 4 5 6 7 8 9 0

LCD Position Indicators: Car/hall (Optional)

Clear, bright LCD indicators deliver information clearly and effectively.

Indication examples

LCD Information Display*: 10.4- or 15-inch, for car/hall (Optional)

The cutting-edge LCD display delivers elevator information with stereoscopic direction arrows and animated pictures.

Colors

Select the best color from our five popular and eye-catching background colors.

- Stylish Blue
- Modern White
- Fine Green
- Elegance Brown
- Urban black

*Please consult our local agents for the production terms, etc.
Standard Design

Car

Ceiling: S00

Car Design Example

Walls ——— SUS-HL
Transom panel ——— SUS-HL
Doors ——— SUS-HL
Front return panels ——— SUS-HL
Kickplate ——— Aluminum
Flooring ——— PRB03: Gray
Car operating panel —— CBV1-C760

Ceiling: Painted steel sheet (Y033) with a milky white rear lighting cover
Lighting Central lighting

Hall

Narrow Jamb: E-102

Hall Design Example

Jamb ——— SUS-HL
Doors ——— SUS-HL
Hall position indicator and button ——— PVI-A1010N

CBV1-C760

Segment LED indicators

Tactile button with yellow-orange lighting

Notes:

1. Maximum number of floors: 22 floors
2. Some letters of the alphabets are not available. Please consult our local agents for details.
Operational and Service Features

Features (2/2)

Group Control Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendee Service</td>
<td>AS</td>
<td>Exclusive service where an attendee can be used for executing the functions of a hotel operation such as opening doors, receiving guests, and managing the access control system.</td>
</tr>
<tr>
<td>Automatic Bypass</td>
<td>ABP</td>
<td>If the car cannot carry all passengers because it is full, another car will automatically skip the remaining passengers.</td>
</tr>
<tr>
<td>Automatic Hall Call Registration</td>
<td>FHAR</td>
<td>All hall calls will be automatically registered in the group control system.</td>
</tr>
<tr>
<td>Backup Operation for Group Control Microprocessor</td>
<td>GGBK</td>
<td>If all the car controls have failed, the hall call operation can be automatically restored. (If the hall call on the remaining cars in the other direction misfires and fails from the memory.)</td>
</tr>
<tr>
<td>Car Fan Shut Off</td>
<td>CFSO</td>
<td>If there are no calls for a specified period, the car ventilation will automatically shuts off to conserve energy.</td>
</tr>
<tr>
<td>Car Light Shut Off</td>
<td>CLLO</td>
<td>If there are no calls for a specified period, the car lighting will automatically turn off to conserve energy.</td>
</tr>
<tr>
<td>Closest-car Priority Operation</td>
<td>CNPS</td>
<td>A fully-loaded car bypasses hall calls in order to maintain maximum operational efficiency.</td>
</tr>
<tr>
<td>Elevator and Security System Interface</td>
<td>EL-SCA</td>
<td>If the number of registered car calls does not correspond to the car load, all calls are canceled immediately.</td>
</tr>
<tr>
<td>False Call Cancellation — Automatic</td>
<td>FCC-A</td>
<td>If a passenger presses the same button again twice.</td>
</tr>
<tr>
<td>Non-service to Specific Floors</td>
<td>NS-CB</td>
<td>If the elevator does not open fully at a destination floor, the doors close, and the car automatically moves to the next open floor where the doors open.</td>
</tr>
<tr>
<td>Next Landing</td>
<td>NLO</td>
<td>The elevator automatically moves to the next floor that will open the doors.</td>
</tr>
<tr>
<td>Non-service to Specific Floors — Switch/Timer Type</td>
<td>NS-T</td>
<td>To enhance security, service to specific floors can be disabled using a car panel. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Non-service to Specific Floors — Card Reader Type</td>
<td>NS-CR</td>
<td>Non-service to specific floors can be disabled using a card reader. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Out-of-service by Hall Key</td>
<td>HOE-K</td>
<td>A system which allows communication between passengers inside a car and the building. Intercommunication System</td>
</tr>
<tr>
<td>Overload Holding Stop</td>
<td>OLS</td>
<td>A blower sound to alert the passengers that the car is overloaded. The doors remain open until the car volume has returned to the norm and enough passengers leave the car.</td>
</tr>
<tr>
<td>Regenerative Converter</td>
<td>PCN</td>
<td>An energy regeneration system that can be used to decrease energy consumption.</td>
</tr>
<tr>
<td>Return Operation</td>
<td>RRET</td>
<td>During the first half of lunchtime, calls for a restaurant floor are served with higher priority, and during the second half, all other calls are served with the same priority.</td>
</tr>
<tr>
<td>Secret Call Service</td>
<td>SCS-B</td>
<td>The number of calls can be allocated to the hall button as the user desires. The call button is available only for hall operation.</td>
</tr>
</tbody>
</table>

Signal and Display Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator Call System with Smartphone</td>
<td>ECLS-SP</td>
<td>Users can call an elevator remotely by accessing a dedicated website or a smartphone. (This function is not available to 3C/4C. A car's door automatically opens when the destination floor is reached.)</td>
</tr>
<tr>
<td>Energy-sparing Operation — Automatic</td>
<td>ESNO</td>
<td>To save energy, the number of service cars is automatically reduced to some extent, but not so many that the comfort level is lowered.</td>
</tr>
<tr>
<td>Forced Floor Stop</td>
<td>FFS</td>
<td>Elevators have a function to automatically make a stop at a predetermined floor in emergency without being called.</td>
</tr>
<tr>
<td>Intensive Up Peak</td>
<td>ILP</td>
<td>To manage traffic flow by elevators divided into two groups of cars to serve upper and lower floors separately during uppeak. In addition, the number of cars to be used is adjusted for the number of cars in the group to which the car belongs.</td>
</tr>
<tr>
<td>Main Floor Changeover Operation</td>
<td>MFPS</td>
<td>Exclusive operation where a car is assigned to a floor where no other cars are running. The car is designated as the “main floor” and can change operation to serve other floors as needed.</td>
</tr>
<tr>
<td>Main Floor Parking</td>
<td>MFP</td>
<td>An available car always parks on the main (lobby) floor with the doors open (closed by default).</td>
</tr>
<tr>
<td>Special Car Priority Service</td>
<td>SPSC</td>
<td>Special cars, such as service elevators and elevators with enhanced service, are given higher priority to respond to hall calls. (Cannot be combined with hall position indicators.)</td>
</tr>
<tr>
<td>Special Floor Priority Service</td>
<td>SFPSP</td>
<td>Special floors, such as floors with VIP or executive areas, are given higher priority for use. The automatic function cannot be used during emergency operation.</td>
</tr>
<tr>
<td>Up Peak Service</td>
<td>UPS</td>
<td>Prevents high-traffic elevators from being called by lower-floor passengers who want to go to upper floors.</td>
</tr>
<tr>
<td>VIP Operation</td>
<td>VPSP</td>
<td>A recognized VIP is allowed to move to a floor that is not currently in use by any other car.</td>
</tr>
</tbody>
</table>

Notes

- 1C to 2C: 1-car selective collective — Standard, 2C-2BC: 2-car group control system — Optional
- 3C to 4C: 3-car selective collective — Standard, 4C-4BC: 4-car group control system — Optional
- Notes: 3C/4C: 3-car collective system — Selective, 2C/2BC: 2-car collective system — Optional. 2C/2BC: 2-car group control system — Optional. 3C/4C: 3-car group control system — Optional. 2C/2BC: 2-car group control system — Optional.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Minimum hoistway dimensions</th>
<th>Minimum machine room dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>400</td>
<td>1.0</td>
<td>CO</td>
<td>1400×850</td>
<td>1750×1000</td>
<td>1850×2700</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>500</td>
<td>1.0 (1.5)</td>
<td>CO</td>
<td>1400×1030</td>
<td>1750×1200</td>
<td>1850×2750</td>
<td>2880×2250</td>
</tr>
<tr>
<td>P9</td>
<td>9</td>
<td>600</td>
<td>1.0 (1.75)</td>
<td>CO</td>
<td>1400×1100</td>
<td>1750×1250</td>
<td>1850×2720</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P10</td>
<td>10</td>
<td>700</td>
<td>1.0 (2.0)</td>
<td>CO</td>
<td>1400×1250</td>
<td>1800×1400</td>
<td>1850×2750</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>800</td>
<td>1.0 (2.5)</td>
<td>CO</td>
<td>1400×1350</td>
<td>1850×1500</td>
<td>1850×2750</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P13</td>
<td>15</td>
<td>900</td>
<td>1.0</td>
<td>2S</td>
<td>1600×1350</td>
<td>2000×1500</td>
<td>2050×2650</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P15</td>
<td>15</td>
<td>1000</td>
<td>1.0</td>
<td>2S</td>
<td>1600×1500</td>
<td>2000×1600</td>
<td>2050×2650</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1150</td>
<td>1.0</td>
<td>2S</td>
<td>1600×1550</td>
<td>2000×1650</td>
<td>2050×2650</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P20</td>
<td>20</td>
<td>1350</td>
<td>1.0</td>
<td>2S</td>
<td>1800×1550</td>
<td>2100×1700</td>
<td>2150×2800</td>
<td>2880×2200</td>
</tr>
<tr>
<td>P24</td>
<td>24</td>
<td>1600</td>
<td>1.0</td>
<td>2S</td>
<td>2000×1550</td>
<td>2100×1700</td>
<td>2150×2800</td>
<td>2880×2200</td>
</tr>
</tbody>
</table>

Note:
- The minimum hoistway dimensions (AH and BH) shown in the table above is a space for a car when two or more cars are located in the same hoistway.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Please consult our local agents for other specifications.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Maximum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room floor-to-floor height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1800</td>
<td>40</td>
<td>40</td>
<td>800</td>
<td>60</td>
<td>80<TR≤120</td>
<td>1200</td>
</tr>
<tr>
<td>1.0</td>
<td>2000</td>
<td>90</td>
<td>40</td>
<td>1200</td>
<td>100</td>
<td>80<TR≤120</td>
<td>1200</td>
</tr>
<tr>
<td>2.0</td>
<td>2100</td>
<td>120</td>
<td>36</td>
<td>1500</td>
<td>160</td>
<td>80<TR≤120</td>
<td>1200</td>
</tr>
<tr>
<td>2.5</td>
<td>2200</td>
<td>150</td>
<td>36</td>
<td>1550</td>
<td>160</td>
<td>80<TR≤120</td>
<td>1200</td>
</tr>
</tbody>
</table>

Note:
- The dimensional information shown here in this page is based on Mitsubishi Electric standard car size. For safety features, please consult our local agent.

Elevation

The dimensional information shown here in this page is based on Mitsubishi Electric standard car size. For safety features, please consult our local agent.

Terms of the Table:
- This table shows standard specifications without the fireproof landing door and counterweight safety. Please consult our local agents for other specifications.
- Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm.

Machine Room Plan Example:
- Note: Layouts (position of control panel, etc.) differ depending on capacity.

Vertical Dimensions:
- Maximum travel is 90m when the counterweight is installed in a side drop position.
- *1 Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm.
- *2 Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm.

Horizontal Dimensions:
- Minimum hoistway dimensions (AH and BH) shown in the table above is a space for a car when two or more cars are located in the same hoistway.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Please consult our local agents for other specifications.
- This table shows standard specifications without the fireproof landing door and counterweight safety. Please consult our local agents for other specifications.

Elevation:
- Maximum travel is 90m when the counterweight is installed in a side drop position.
- Note: Layouts (position of control panel, etc.) differ depending on capacity.

Basic code compliance:
- The dimensional information shown here in this page is based on Mitsubishi Electric standard car size. For safety features, please consult our local agent.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counter-weight position</th>
<th>Minimum hoistway width (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>1.0</td>
<td>CO</td>
<td>900</td>
<td>1400+1350 Front</td>
<td>Back 1900/1930</td>
<td>1970/1930</td>
<td>2820×1990</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>1.0</td>
<td>CO</td>
<td>1100</td>
<td>1600+1400 Front</td>
<td>Back 2100/1740</td>
<td>2770/1930</td>
<td>2820×1990</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1225</td>
<td>2.0</td>
<td>CO</td>
<td>1300</td>
<td>2000+1500 Front</td>
<td>Back 2410/1740</td>
<td>3180/1930</td>
<td>2820×1990</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>2.0</td>
<td>CO</td>
<td>1500</td>
<td>2400+1500 Front</td>
<td>Back 2720/1740</td>
<td>3540/1930</td>
<td>2820×1990</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>1.75</td>
<td>1050</td>
<td>90</td>
<td>2</td>
<td>4950</td>
<td>1590</td>
<td>1900</td>
<td>2200</td>
</tr>
<tr>
<td>P12</td>
<td>2.0</td>
<td>1050</td>
<td>50</td>
<td>2</td>
<td>4720</td>
<td>1650</td>
<td>1900</td>
<td>2200</td>
</tr>
<tr>
<td>P13</td>
<td>2.5</td>
<td>1050</td>
<td>30</td>
<td>2</td>
<td>4560</td>
<td>1700</td>
<td>1900</td>
<td>2200</td>
</tr>
</tbody>
</table>

Notes

- The minimum hoistway dimensions (AH and BH) shown in the table above is a space for a car when two or more cars are located in the same hoistway. If only one car is located in the hoistway and the rated speed is 2.5 m/sec, the hoistway dimensions are different from those shown.
- Please consult our local agents for details.
- This table shows standard specifications without the fireproof landing door and counterweight safety. Please consult our local agents for other specifications.

Elevation

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of EN81-1. For other components, please consult our local agent.
Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal width (mm)</th>
<th>Car internal depth (mm)</th>
<th>Minimum hoistway width (AH)</th>
<th>Minimum hoistway height (BH)</th>
<th>Minimum machine room dimensions (AM×BM)</th>
<th>Minimum machine room dimensions (AH×BH/car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>10</td>
<td>750</td>
<td></td>
<td>CO</td>
<td>900</td>
<td>1400×1300</td>
<td>1680</td>
<td>1900</td>
<td>2020</td>
<td>2620×2080</td>
<td>2400×2030</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td></td>
<td>CO</td>
<td>900</td>
<td>1400×1500</td>
<td>1680</td>
<td>1900</td>
<td>2020</td>
<td>2620×2080</td>
<td>2400×2030</td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td></td>
<td>CO</td>
<td>900</td>
<td>1400×1500</td>
<td>1680</td>
<td>1900</td>
<td>2020</td>
<td>2620×2080</td>
<td>2400×2030</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>1.0, 1.6, 2.5</td>
<td>CO</td>
<td>1050</td>
<td>1400×1500</td>
<td>1680</td>
<td>1900</td>
<td>2020</td>
<td>2620×2080</td>
<td>2400×2030</td>
</tr>
<tr>
<td>P16</td>
<td>16</td>
<td>1200</td>
<td></td>
<td>CO</td>
<td>1100</td>
<td>1800×1350</td>
<td>2000</td>
<td>2200</td>
<td>2600</td>
<td>2820×1740</td>
<td>2400×1980</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1350</td>
<td></td>
<td>CO</td>
<td>1200</td>
<td>2000×1350</td>
<td>2200</td>
<td>2600</td>
<td>2800</td>
<td>2820×1700</td>
<td>2400×1940</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1500</td>
<td></td>
<td>CO</td>
<td>1350</td>
<td>2000×1350</td>
<td>2200</td>
<td>2600</td>
<td>2800</td>
<td>2820×1700</td>
<td>2400×1940</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead height (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10-P12</td>
<td>750</td>
<td>750</td>
<td>1</td>
<td>1900</td>
<td>1650</td>
<td>1590</td>
<td>1560</td>
</tr>
<tr>
<td></td>
<td>825</td>
<td>900</td>
<td>1</td>
<td>1900</td>
<td>1650</td>
<td>1590</td>
<td>1560</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1050</td>
<td>2</td>
<td>1900</td>
<td>1650</td>
<td>1590</td>
<td>1560</td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td>1200</td>
<td>3</td>
<td>1900</td>
<td>1650</td>
<td>1590</td>
<td>1560</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1350</td>
<td>4</td>
<td>1900</td>
<td>1650</td>
<td>1590</td>
<td>1560</td>
</tr>
</tbody>
</table>

Elevation

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of GB7588. For other components, please consult our local agent.
Work Not Included in Elevator Contract

The following items are excluded from our elevator installation work. Their conditions and other details are to be conformed to the statement of local laws or our requirements on the responsibility of the building owner or general contractor.

- Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
- Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
- Architectural finishing of the machine room floor, and the walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed hoistway.
- The provision of a ladder to the elevator pit.
- The provision of openings and supporting members as required for equipment installation.
- The provision of separate beams when the hoistway dimensions markedly exceed the specifications, and intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.
- The provision of the main power and power for illumination, and their electrical switch boxes in the machine room, and laying of the wiring from the electrical room.
- The provision of outlets and laying of the wiring in the machine room and the hoistway, plus the power from the electrical switch box.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to our elevator controller, when supplied by the building owner or general contractor.

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Important Information on Elevator Planning

Elevator Site Requirements

- The temperature of the machine room and elevator hoistway shall be below 40˚C.
- The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention against icing and condensation occurring due to a rapid drop in the temperature shall be provided in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of +5% to −10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.
State-of-the-Art Factories…
For the Environment. For Product Quality.

Our elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Building Systems Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality. As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Safety Tips: Be sure to read the instruction manual fully before using this product.