Our elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Building Systems Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

www.MitsubishiElectric.com/elevator

2022 Mitsubishi Electric Building Solutions Corporation

Mitsubishi Electric Building Solutions Corporation Inazawa Building Systems Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.
Utilizing its technological prowess and extensive experience, we have remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Our elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is place on consideration for the environment. As the times change, we promise to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

*Quality in Motion is a trademark of Mitsubishi Electric Corporation.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with our products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Motor</th>
<th>Traction machine</th>
<th>Motor drive</th>
<th>Control circuit</th>
<th>Power consumption</th>
<th>CO2 emissions*3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>AC2 control</td>
<td>VVVF*1 control</td>
<td>Relay</td>
<td>Microcomputer</td>
<td>100%</td>
<td>37%</td>
</tr>
<tr>
<td>1980</td>
<td>AC2 control</td>
<td>VVVF*1 control</td>
<td>Relay</td>
<td>Microcomputer</td>
<td>33%</td>
<td>20%</td>
</tr>
<tr>
<td>1990</td>
<td>AC2 control</td>
<td>VVVF*1 control</td>
<td>Relay</td>
<td>Microcomputer</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>2000</td>
<td>DC control</td>
<td>AC control</td>
<td>Relay</td>
<td>Microcomputer</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>2010</td>
<td>DC control</td>
<td>AC control</td>
<td>Relay</td>
<td>Microcomputer</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Advantages of LEDs

<table>
<thead>
<tr>
<th>Ceiling</th>
<th>Service life (hr)</th>
<th>Power consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L210S</td>
<td>25000</td>
<td>32.5</td>
</tr>
<tr>
<td>L210S</td>
<td>LED</td>
<td>LED</td>
</tr>
</tbody>
</table>

Approximately 12.5 times longer
Approximately 75% reduction

Notes:
- *1: Alternative current, variable voltage
- *2: Variable voltage, variable frequency
- *3: CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control: ESO-W (ZAI-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Group Control Systems: ΣAI-22 and ΣAI-2200C

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

ΣAI-2200C Performance

![Graph showing average waiting time and long-wait rate comparison for ΣAI-2200C and ΣAI-2200C (latest)]

- Improved: Max. 40%
- Improved: Max. 80%

Note: Simulated with 6 cars, 20 persons each at 2.1m/sec for 15 stops.

Forecasting a Near-future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Allocating Passengers to Cars Depending on Destination Floors

Destination Oriented Allocation System: DOAS (Optional for ΣAI-2200C)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement of hall fixtures (No hall lantern* is provided.)

- Can receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

* Hall lanterns are available as optional.
Variable Traveling Speed Elevator System: VSE (Optional)

With our industry-first variable traveling speed elevator system, an elevator can travel faster than its rated speed according to the number of passengers, ultimately reducing waiting and traveling time.

Waiting Time Reduction

Traveling Time Reduction

According to our simulation, waiting time can be reduced up to approximately 15% when VSE is applied.

Traveling time can be reduced by approximately 32% when the elevator travels from the bottom to the top floor directly under rapid mode in VSE.

(Conditions)
Travel: 36m, Floor height: 4.0m, 10 floors, Car load: 50%

Variable Traveling Speed Elevator System: VSE (Optional) Machine-room-less Elevators

Machine-room-less Elevators

As all equipment is installed within the hoistway, there are fewer restrictions on building design except for the actual space required for the hoistway. Architects and interior designers have more design freedom.
Emergency Operations
To ensure passenger safety, our elevators are equipped with functions for emergencies like a power failure, fire or earthquake.

Power failure
- **Mitsubishi Emergency Landing Device: MELD (Optional)**
 - Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

- **Operation by Emergency Power Source–Automatic/Manual: OEPS (Optional)**
 - Upon power failure, predetermined car(s) use a building’s emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) resume normal operation.

Fire
- **Firefighters’ Emergency Operation: FE (Optional)**
 - When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate firefighting and rescue operations.

- **Fire Emergency Return: FER (Optional)**
 - When a key switch or a building’s fire alarm is activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.

Earthquake
- **Earthquake Emergency Return: EER-P/EER-S (Optional)**
 - When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.
Features (1/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Management System</td>
<td>BMS-UL</td>
<td>Each elevator's status and operation can be monitored and controlled using a building management system which manages various facilities in the building through the interface for the elevator system.</td>
</tr>
<tr>
<td>Earthquake Emergency Return</td>
<td>EER-P</td>
<td>Upon activation of primary or secondary wave sensors, all cars stop at the nearest floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Emergency Car Lighting</td>
<td>ECL</td>
<td>Car lighting which turns on immediately when power fails, providing a minimum level of lighting with the car. (Choice of dry-cell battery or trickle-charge battery)</td>
</tr>
<tr>
<td>Fire Emergency Return</td>
<td>FER</td>
<td>Upon activation of a smoke switch or audible fire alarm, all cars cancel, and the car immediately returns to the predetermined floor. The car then responds to only car calls which facilitate fire-fighting and rescue operations.</td>
</tr>
<tr>
<td>Firefighters' Emergency Operation</td>
<td>FE</td>
<td>During a fire, when the fire operation switch is activated, the car of a specified car and all hall calls are canceled and the car immediately returns to the predetermined floor.</td>
</tr>
<tr>
<td>Mellaite Mitsubishi Elevators & Escalators Monitoring and Control System</td>
<td>WP-W</td>
<td>Each elevator's status and operation can be monitored and controlled using an advanced Webcast technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analysis are also available.</td>
</tr>
<tr>
<td>Mitsubishi Emergency Landing Device</td>
<td>MEED</td>
<td>Upon power failure, a car equipped with this function automatically slows and stops at the nearest floor using a rechargeable battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor-to-floor distance is 1 meter.)</td>
</tr>
<tr>
<td>Operation by Emergency Power Source</td>
<td>OEPS</td>
<td>Upon power failure, predetermined units use the building's emergency power source to move to a specified floor, where the doors then open to facilitate the safe evacuation of passengers. After all cars have arrived, the predetermined unit's resume normal operation.</td>
</tr>
</tbody>
</table>

DOOR OPERATION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Door-open Time Adjustment</td>
<td>DOT</td>
<td>The time doors are open will automatically be adjusted depending on whether the stop was called from the hall or the car, to allow smooth boarding of passengers or loading of baggage.</td>
</tr>
<tr>
<td>Automatic Door Speed Control</td>
<td>DSAC</td>
<td>Door speed on each floor, which can depend on the type of hall door, is monitored to adjust the door speed, thereby making the door speed constant throughout all floors.</td>
</tr>
<tr>
<td>Door Load Detector</td>
<td>DLD</td>
<td>When excessive door load has been detected while opening or closing, the doors immediately reverse.</td>
</tr>
<tr>
<td>Door Nudging Feature</td>
<td>NDG</td>
<td>A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With the AND10 or AND20 feature, a beep and voice guidance sound instead of the buzzer.</td>
</tr>
<tr>
<td>Door Sensor Self-diagnosis</td>
<td>DDD</td>
<td>Failure of non-contact door sensors is checked automatically, and if a problem is diagnosed, the door closing timing is delayed and the closing speed is reduced to maintain elevator service and ensure passenger safety.</td>
</tr>
<tr>
<td>Electronic Doorman</td>
<td>EDM</td>
<td>Door open times is monitored using the SW or Multi-beam Door Sensor feature that detects passengers boarding or exiting.</td>
</tr>
<tr>
<td>Extended Door-open Button</td>
<td>DBO-TX</td>
<td>When the button inside a car is pressed, the doors will remain open longer to allow loading and unloading of baggage, a Stretcher, etc.</td>
</tr>
<tr>
<td>Hall Motion Sensor</td>
<td>HMS</td>
<td>A Hall Motion Sensor is used to scan a 3D area near the open doors to detect passengers or objects.</td>
</tr>
<tr>
<td>Multi-beam Door Sensor</td>
<td>—</td>
<td>Multiple infrared light beams scan a certain area to detect passengers or objects.</td>
</tr>
<tr>
<td>Reopen with Hall Button</td>
<td>ROHB</td>
<td>Closing doors cannot be reopened by pressing the hall button corresponding to the traveling direction of the car.</td>
</tr>
<tr>
<td>Repeated Door-Close</td>
<td>RDC</td>
<td>Should an obstacle prevent the doors from closing, the doors will repeatedly open and close until the obstacle is cleared from the doorway.</td>
</tr>
<tr>
<td>Safety Door Edge</td>
<td>SDE</td>
<td>The sensitive door edge detects passengers or objects during door closing.</td>
</tr>
<tr>
<td>Safety Ray</td>
<td>SR</td>
<td>Safety switches detect passengers or objects when the car is moving. (Choice of dry-cell battery or trickle-charge battery)</td>
</tr>
</tbody>
</table>

NOTES

1. Maximum number of floors: 22 floors
2. Some letters of the alphabets are not available. Please consult our local agents for details.
3. Please consult our local agents for the production terms, etc.
Features (2/2)

OPERATIONAL AND SERVICE FEATURES

- **Attendant Service**
 - AS: In the case of elevator operation by an operator, the operator can control the elevator by using buttons and switches located in the car operating panel, allowing smooth boarding of passengers or loading of baggage.

- **Automatic Bypass**
 - ABP: A fully-loaded car bypasses all calls in order to maintain maximum operational efficiency.

- **Automatic Hall Call**
 - FST: When the car arrives at the final or initial floor in the direction of the call, the car automatically makes a stop at the next or nearest floor.

- **Backup Operation for Group Control Microprocessor**
 - GCMB: Backup operation is ensured by a microprocessor, and the car automatically moves to the next or nearest floor if the microprocessor is not available.

- **Car Call Cancelling**
 - CCC: When a passenger has registered a hall call, the best car to respond to that call is immediately selected, the corresponding hall lantern lights up and a chime sounds once.

- **Car Fan Shut Off**
 - CFA-O: If one car cannot carry all waiting passengers because it is full, another car will automatically move to the next or nearest floor.

- **Car Light Shut Off**
 - CSL-O: If the number of registered calls does not correspond to the car load, all cars are cancelled and no unnecessary stops are made.

- **Continuity of Service**
 - COS: For energy conservation, power regenerated by a traction machine can be used by other elevators.

- **Elevator and Security System Interface**
 - EL-SCA, EL-SCA: Personal authentication by building security devices or biometric data, which allows access to private floors, automatic hall call in an emergency, and priority service.

- **False Call Cancelling**
 - FCC-A: When a call button is pressed and then released, the car moves directly to the next or nearest floor.

- **False Call Cancelling - Car Button Type**
 - FCC-P: If the operator turns on the car call, the car will cancel the call and move directly to the next or nearest floor.

- **Independent Service**
 - INS: Car control is independent, the car can be taken out of service temporarily for maintenance or repair, and responds only to car calls.

- **Next Landing**
 - NXL: The elevator doors do not open at the designated floor, the doors are kept open to allow passengers to enter the car.

- **Non-service to Specific Floor - Car Button Type**
 - NS-CB: To enhance security, service to specific floors can be disabled using the car operating panel.

- **Non-service to Specific Floor - Card Switch/Timer Type**
 - NS-TS: To ensure security, service to specific floors can be disabled using a manual or timer switch.

- **Non-service Temporary Release for Car Call - Card Reader Type**
 - NSR-K: For maintenance or energy-saving reasons, a car can be taken out of service temporarily with a key switch (without a vehicle inside) or by a specific call.

- **Out-of-service by Hall Key**
 - OOS-HK: With a key switch (without a vehicle inside) or by a specific call.

- **Overload Holding Stop**
 - OHL: A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open, and the car does not leave the floor until enough passengers enter the car.

- **Regenerative Converter**
 - PCV: For energy conservation, power regenerated by a traction machine can be used by other elevators.

- **Return Operation**
 - RET: Using a key switch on the car operating panel, a car can be taken out of service temporarily.

- **Safe Landing**
 - SFL: If the car has stopped between floors due to some equipment malfunction, the controller checks the cause, and if it is believed to be due to the car, the car will move to the nearest floor at slow speed.

- **Secret Call Service**
 - SCS-B: To enhance security, calls for disabled floors can be registered only by entering secret codes using the car operating panel. The function is automatically deactivated during emergency operation.

- **Variable Traveling Time Indicator**
 - VTE: According to the number of passengers in the car, the car travels faster than the rated speed.

GROUP CONTROL FEATURES

- **Bank Separation Operation**
 - BSD: Full buttons and the cars called by each button channel divide into several groups for independent group control operation to serve special needs or different floors.

- **Closest-car Priority Service**
 - CNPS: A function to give priority to the car closest to the floor where a call button has been pressed, or to reverse the closest cars of the doors opened or closed by the car of the preceding floor.

- **Congested-floor Service**
 - CBS: This function is used to determine all calls to floors where meeting rooms or ballrooms exist and the traffic intensities for short periods of time are controlled according to the detected traffic density data for those floors.

SIGNAL AND DISPLAY FEATURES

- **Automatic Hall Call**
 - CFA-O: If one car cannot carry all waiting passengers because it is full, another car will automatically move to the next or nearest floor.

- **Audible Call Back**
 - AB: When a call button is pressed and then released, the car moves directly to the next or nearest floor.

- **Automatic Shut Off**
 - AS: In the case of elevator operation by an operator, the operator can control the elevator by using buttons and switches located in the car operating panel, allowing smooth boarding of passengers or loading of baggage.

- **Automatic Bypass**
 - ABP: A fully-loaded car bypasses all calls in order to maintain maximum operational efficiency.

- **Backup Operation for Group Control Microprocessor**
 - GCMB: Backup operation is ensured by a microprocessor, and the car automatically moves to the next or nearest floor if the microprocessor is not available.

- **Car Call Cancelling**
 - CCC: When a passenger has registered a hall call, the best car to respond to that call is immediately selected, the corresponding hall lantern lights up and a chime sounds once.

- **Car Light Shut Off**
 - CSL-O: If the number of registered calls does not correspond to the car load, all cars are cancelled and no unnecessary stops are made.

- **Continuity of Service**
 - COS: For energy conservation, power regenerated by a traction machine can be used by other elevators.

- **Elevator and Security System Interface**
 - EL-SCA, EL-SCA: Personal authentication by building security devices or biometric data, which allows access to private floors, automatic hall call in an emergency, and priority service.

- **False Call Cancelling**
 - FCC-A: When a call button is pressed and then released, the car moves directly to the next or nearest floor.

- **False Call Cancelling - Car Button Type**
 - FCC-P: If the operator turns on the car call, the car will cancel the call and move directly to the next or nearest floor.

- **Independent Service**
 - INS: Car control is independent, the car can be taken out of service temporarily for maintenance or repair, and responds only to car calls.

- **Next Landing**
 - NXL: The elevator doors do not open at the designated floor, the doors are kept open to allow passengers to enter the car.

- **Non-service to Specific Floor - Car Button Type**
 - NS-CB: To enhance security, service to specific floors can be disabled using the car operating panel.

- **Non-service to Specific Floor - Card Switch/Timer Type**
 - NS-TS: To ensure security, service to specific floors can be disabled using a manual or timer switch.

- **Non-service Temporary Release for Car Call - Card Reader Type**
 - NSR-K: For maintenance or energy-saving reasons, a car can be taken out of service temporarily with a key switch (without a vehicle inside) or by a specific call.

- **Out-of-service by Hall Key**
 - OOS-HK: With a key switch (without a vehicle inside) or by a specific call.

- **Overload Holding Stop**
 - OHL: A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open, and the car does not leave the floor until enough passengers enter the car.

- **Regenerative Converter**
 - PCV: For energy conservation, power regenerated by a traction machine can be used by other elevators.

- **Return Operation**
 - RET: Using a key switch on the car operating panel, a car can be taken out of service temporarily.

- **Safe Landing**
 - SFL: If the car has stopped between floors due to some equipment malfunction, the controller checks the cause, and if it is believed to be due to the car, the car will move to the nearest floor at slow speed.

- **Secret Call Service**
 - SCS-B: To enhance security, calls for disabled floors can be registered only by entering secret codes using the car operating panel. The function is automatically deactivated during emergency operation.

- **Variable Traveling Time Indicator**
 - VTE: According to the number of passengers in the car, the car travels faster than the rated speed.

NOTE:

- **Feature Abbreviation Description:**
 - 3C to 8C: Feature is available from 3 to 8 cars.
 - 1C to 2C: Feature is available from 1 to 2 cars.
 - ΣAI-22: Optional feature for 3 to 4-car group control system.
 - ΣAI-2200C: Optional feature for 3 to 8-car group control system.
 - 1C - 2BC: Standard feature for 1-car selective collective system.
 - 2C - 2BC: Optional feature for 2-car group control system.

- **Notes:**
 - ΣAI-22: Optional feature for 3 to 4-car group control system.
 - ΣAI-2200C: Optional feature for 3 to 8-car group control system.
 - 1C - 2BC: Standard feature for 1-car selective collective system.
 - 2C - 2BC: Optional feature for 2-car group control system.

- **Additional notes:**
 - The DOAS cannot be combined with some features. Please refer to the ΣAI-2200C brochure for those features.
Basic Specifications

Horizontal Dimensions <1-Door 1-Gate>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm)</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>1.0</td>
<td>450</td>
<td>25</td>
<td>1100x1400</td>
<td>Side</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P7</td>
<td>7</td>
<td>1.0</td>
<td>550</td>
<td>25</td>
<td>1000x1400</td>
<td>Side</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>1.0</td>
<td>630</td>
<td>25</td>
<td>1100x1400</td>
<td>Side</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>1.0</td>
<td>825</td>
<td>25</td>
<td>1100x1400</td>
<td>Side</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1.0</td>
<td>1050</td>
<td>25</td>
<td>1100x1400</td>
<td>Side</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1.0</td>
<td>1275</td>
<td>25</td>
<td>1100x1400</td>
<td>Rear</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1.0</td>
<td>1350</td>
<td>25</td>
<td>1100x1400</td>
<td>Rear</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1.0</td>
<td>1600</td>
<td>25</td>
<td>1100x1400</td>
<td>Rear</td>
<td>1900x1800</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Vertical Dimensions <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>450/50(1.550)</td>
<td>1550/1500</td>
<td>1370</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>1550/1600</td>
<td>1350</td>
<td>1350</td>
<td>1350</td>
</tr>
</tbody>
</table>

Specifications for Variable Traveling Speed Elevator System (Optional) <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Speeds (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0/1.25/1.5/1.6</td>
<td>1550/1600</td>
<td>1350</td>
<td>1350</td>
<td>1350</td>
</tr>
</tbody>
</table>

Hoistway Plan <1-Door 1-Gate>

Elevation <1-Door 1-Gate>

Basic code compliance
The dimensional information shown here is based on the requirements of EN81-1. For other components, please consult our local agent.
Basic Specifications

Horizontal Dimensions <1-Door 2-Gate> <Counterweight position: side>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>8</td>
<td>1.0, 1.6, 1.75</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>1.0, 1.6, 2.0</td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1.0, 1.6, 2.0, 2.5</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1.0, 1.6, 2.0</td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1.0, 1.6, 2.0</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Terms of the table]
- The table shows standard specifications without the fireproof landing door and counterweight safety.
- Please consult our local agents for other specifications.
- The layout (position of traction machine, etc.) differs depending on capacity.

Important Information on Elevator Planning

Work Not Included in Elevator Contract

The following items are excluded from our elevator installation work. Their conditions and other details are to be confirmed to the statement of local laws or our requirements on the responsibility of the building owner or general contractor.

- Architectural finishing of walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed hoistway.
- The provision of a ladder to the elevator pit.
- The provision of openings and supporting members as required for equipment installation.
- The provision of separate beams when the hoistway dimensions markedly exceed the specifications, and intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.
- The provision of the main power and power for illumination in the hoistway by laying of the feeder wiring from the electrical switch boxes in electrical room into the hoistway.
- The provision of outlets and laying of the wiring in the hoistway, plus the power from the electrical switch box.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the works as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to our elevator controller, when supplied by the building owner or general contractor.

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Elevator Site Requirements

- The temperature of the elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the elevator hoistway.
 c. The elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of ±5% to ±10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of EN81-1. For other components, please consult our local agent.
State-of-the-Art Factories...
For the Environment. For Product Quality.

Our elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort.

The technologies and skills cultivated at the Inazawa Building Systems Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Electric Building Solutions Corporation Inazawa Building Systems Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management.

The plant has also acquired environmental management system standard ISO 14001 certification.

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management.

The plant has also acquired environmental management system standard ISO 14001 certification.

Safety Tips: Be sure to read the instruction manual fully before using this product.