KURZ ZÁKLADŮ BEZPEČNOSTNÍCH ŘADIČŮ

Tento kurz je určen pro začátečníky v oblasti bezpečnostních řadičů, kteří rozumějí základům bezpečnosti.
Úvod

Účel kurzu

Tento kurz je určen pro ty, kteří používají bezpečnostní řadič řady MELSEC-WS poprvé, nebo jej právě začali používat. Tento kurz popisuje základní znalosti o bezpečnostním řadiči řady MELSEC-WS, metodu konfigurace systému pomocí nástroje Setting and Monitoring Tool pro daný bezpečnostní řadič, a metodou kontroly chyb.

Absolvování tohoto kurzu vyžaduje základní znalosti systému bezpečnosti. Doporučujeme, aby zájemci o tento kurz absolvovali nejprve následující kurz.

1. VAŠE PRVNÍ AUTOMATIZACE PODNIKU (BEZPEČNOST STROJŮ)
Struktura kurzu

Tento kurz obsahuje následující kapitoly. Doporučujeme, abyste začali od 1. kapitoly.

1. kapitola – Bezpečnostní řadič
 Tato kapitola obsahuje přehled bezpečnostního řadiče.

2. kapitola – Konstrukce systému
 Tato kapitola popisuje konfiguraci systému zkonstruovaného v tomto kurzu.

3. kapitola – Kontrola propojení bezpečnostního řadiče a osobního počítače
 Tato kapitola obsahuje metodu nastavení k propojení bezpečnostního řadiče a osobního počítače, a metodu kontroly.

4. kapitola – Tvorba nových projektů
 Tato kapitola popisuje, jak vytvářet projekty pro bezpečnostní řadič.

5. kapitola – Stažení projektů
 Tato kapitola popisuje, jak stáhnout projekty na bezpečnostní řadič a jak tyto projekty verifikovat.

6. kapitola – Připojení / odpojení bezpečnostního řadiče
 Tato kapitola popisuje, jak připojit a odpojit bezpečnostní řadič.

7. kapitola – Kontrola provozu systému
 Tato kapitola popisuje, jak zkонтrolovat provoz bezpečnostního řadiče.

Závěrečný test

Celkem 6 sekci (6 otázek) Známka složení testu: 60 % a vyšší.
<table>
<thead>
<tr>
<th>Úvod</th>
<th>Použití tohoto nástroje e-školení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přejít na další stranu</td>
<td>Přejdete na další stranu.</td>
</tr>
<tr>
<td>Zpět na předchozí stranu</td>
<td>Přejdete zpět na předchozí stranu.</td>
</tr>
<tr>
<td>Přejít na požadovanou stranu</td>
<td>Zobrazí se „Obsah“, jehož pomocí přejdete na požadovanou stranu.</td>
</tr>
<tr>
<td>Ukončit školení</td>
<td>Ukončíte školení. Dojde k završení oken, jako jsou obrazovky „Obsah“ a školení.</td>
</tr>
</tbody>
</table>
Úvod Upozornění pro použití

Bezpečnostní opatření
Když se školíte na skutečných výrobcích, důkladně si přečtěte bezpečnostní opatření v odpovídajících příručkách.

Opatření v tomto kurzu
- Zobrazené obrazovky s verzí softwaru, který používáte, se mohou lišit od obrazovek v tomto kurzu.
 Tento kurz je určen pro následující verze softwaru:
 - Nástroj Setting and Monitoring Tool pro bezpečnostní řadič, verze 1.3.0.245

Referenční materiály
Níže je seznam referencí, jež souvisejí s tématy v tomto kurzu. (Poznámka: uvedené referenční materiály nejsou nezbytně nutné, protože tento kurz lze absolvovat i bez jejich použití.) Kliknutím na název referenčního souboru jej stáhnete.

<table>
<thead>
<tr>
<th>Název reference</th>
<th>Formát souboru</th>
<th>Velikost souboru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Záznamový papír</td>
<td>Komprimovaný soubor</td>
<td>7,46 kB</td>
</tr>
</tbody>
</table>
1. kapitola Bezpečnostní řadič

Tato kapitola obsahuje přehled bezpečnostního řadiče.

1.1 Bezpečnostní řadič
1.2 Funkce bezpečnostního řadiče
1.3 Základní konfigurace bezpečnostního řadiče
1.4 Řízení bezpečnosti lze snadno přidat do stávajících programovatelných řadičů MELSEC (CC-Link/Ethernet)
1.5 Souhrn této kapitoly
1.1 Bezpečnostní řadič

Bezpečnostní řadič je kontrolér pro řízení bezpečnosti, který odpovídá mezinárodním bezpečnostním normám. Při připojení k bezpečnostnímu zařízení, jako je spínač nouzového zastavení nebo světelná závora, tento programovatelný řadič provádí řízení bezpečnosti vypnutím bezpečnostního výstupu pomocí uživatelsky vytvořeného programu, který ukončí napájení ve směru zdroje nebezpečí, jako je robot. Strojové řízení robotů, dopravníků atd. se provádí běžným způsobem pomocí standardních programovatelných řadičů.
1.2 Funkce bezpečnostního řadiče

Bezpečnostní řadič je rozšířitelný kompaktní řadič vhodný pro řízení bezpečnosti malých až středně velkých zařízení a systémů.
K řadiči lze připojit až 12 modulů I/O a 2 moduly síťového rozhraní.
Bezpečnostní I/O lze rozšířit na 144 bodů (vstup: 96 bodů, výstup: 48 bodů).
Vyhrazený nástroj „Setting and Monitoring Tool“ disponuje funkčními bloky pro bezpečnostní snímače, připojeními vypínačů, a dokonce i funkčními bloky vyhrazenými pro bezpečnost, a umožňuje konstrukci bezpečnostního systému.
Nástroj „Setting and Monitoring Tool“ lze stáhnout na webových stránkách Mitsubishi Electric FA.

Tento bezpečnostní řadič splňuje bezpečnostní normy ISO 13849-1 PLe a IEC 61508 SIL3.

- Vyhrazený nástroj „Setting and Monitoring Tool“

- Kompatibilní se sítí Flexi Link propojující bezpečnostní řadiče
Bezpečnostní komunikaci mezi bezpečnostními řadiči lze snadno sestavit s nízkými náklady pouhým připojením modulů CPU pomocí vyhrazených kabelů (kabely Flexi Link). Flexi Link umožňuje vzájemnou komunikaci až čtyř bezpečnostních řadičů.
1.3 Základní konfigurace bezpečnostního řadiče

- Nástroj Setting and Monitoring Tool SW1DNN-WS0ADR-B
- Paměťový slot CPU-modulu WS0-MPL0
- Náhradní svorkovnice k zašroubování WS0-TBS4
- Náhradní svorkovnice s pružinovou svorkou WS0-TBC4
- Kabel RS-232 připojující k modulu CPU WS0-C20R2
- Převodní kabel USB/RS-232 WS0-UC-232A
- HMI (GOT)
- Kabel RS-232 připojující k modulu CPU WS0-C20R2
- Modul CPU WS0-CPU0
- Modul CPU (s EFI) WS0-CPU1 (kompatibilní se sítí Flexi Link)
- Modul rozhraní Ethernet WS0-GETH
- Modul rozhraní CC-Link WS0-GCC1
- Modul bezpečnostního I/O WS0-XTIO
- Modul bezpečnostního vstupu WS0-XTDI
- Modul výstupu bezpečnostního relé WS0-4RO
1.3 Základní konfigurace bezpečnostního řadiče

- Kompaktní bezpečnostní řadič s flexibilní rozšiřitelností
 - K řadiči lze přidat až 12 modulů bezpečnostního vstupu a I/O, 4 moduly výstupu bezpečnostního relé a 2 síťové moduly.
 - Počet bodů I/O lze rozšířit až na 144 bodů (jeden vstup).
 Bezpečnostní vstup: 96 bodů (jeden vstup) + bezpečnostní výstup: 48 bodů (jeden vstup)
1.4 Řízení bezpečnosti lze snadno přidat do stávajících programovatelných řadičů MELSEC (CC-Link/Ethernet)

Stávající programovatelný řadič MELSEC-Q/L řídí bezpečnost pomocí bezpečnostního řadiče připojeného k sítii CC-Link. Navíc lze pomocí stávajícího programovatelného řadiče MELSEC-Q/L monitorovat provozní stav i chybový stav bezpečnostního řadiče.
Zlepší se také vizualizaci bezpečnosti a zvýší se efektivita v průběhu identifikace faktoru nouzového zastavení a šetření závady.

<INFO>

Funkce kompatibilní se síťovým rozhraním

<table>
<thead>
<tr>
<th></th>
<th>CC-Link (WS0-GCC1)</th>
<th>Ethernet (WS0-GETH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezpečnostní řadič/ osobní počítač</td>
<td>Monitorovací informace</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Datová notifikace</td>
<td>○</td>
</tr>
<tr>
<td>Nástroj Setting and Monitoring Tool</td>
<td>Připojení pomocí sítě</td>
<td>○</td>
</tr>
</tbody>
</table>

Modul rozhraní CC-Link WS0-GCC1
- Nastavením parametru tento modul umožňuje řadič MELSEC monitorovat bezpečnostní řadič i odesílat data do produktu.
- Pomocí tohoto modulu lze bezpečnostní řadič přidat do stávající sítě CC-Link jako stanici vzdáleného zařízení.

Modul rozhraní Ethernet WS0-GETH
- Tento modul umožňuje dálkovou údržbu pomocí nástroje Setting and Monitoring Tool.
1.5 Souhrn

V této kapitole jste se naučili:

- Bezpečnostní řadič
- Funkce bezpečnostního řadiče
- Základní konfigurace bezpečnostního řadiče
- Řízení bezpečnosti lze snadno přidat do stávajících programovatelných řadičů MELSEC (CC-Link/Ethernet)

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Bezpečnostní řadič</th>
<th>Tato sekce popisuje případy, kdy se používá bezpečnostní řadič.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkce bezpečnostního řadiče</td>
<td>Tato sekce popisuje funkce bezpečnostního řadiče.</td>
</tr>
<tr>
<td>Základní konfigurace bezpečnostního řadiče</td>
<td>Tato sekce popisuje základní konfiguraci bezpečnostního řadiče.</td>
</tr>
<tr>
<td>Řízení bezpečnosti lze snadno přidat do stávajících programovatelných řadičů MELSEC (CC-Link/Ethernet)</td>
<td>Tato sekce popisuje, jak přidat řízení bezpečnosti do stávajícího programovatelného řadiče MELSEC.</td>
</tr>
</tbody>
</table>
2. kapitola Konstrukce systému

Tato kapitola popisuje konfiguraci systému zkonstruovaného v tomto kurzu.

- 2.1 Znázornění systému
- 2.2 Elektrické zapojení
- 2.3 Souhrn této kapitoly
2.1 Znázornění systému

Tato sekce popisuje přehled bezpečnostního systému používaného v tomto kurzu.

- Část montážní linky pro karoserie automobilů

Obrázek. Znázornění použití

Provoz
1. Přeruší-li se světelné paprsky světelné závory, linka se zastaví.
2. Dojde-li k otevření dvířek, linka se zastaví.
3. Stisknutím spínače nouzového zastavení se linka zastaví.

* Toto školení e-Learning používá jednoduchý příklad, kde se motor zapne či vypne jako řízení provozu linky.
2.2 Elektrické zapojení

Tato sekce ukazuje schéma elektrického zapojení zařízení.

![Diagram of electrical connections](image-url)
2.3 Souhrn

V této kapitole jste se naučili:
- Znázornění systému
- Elektrické zapojení

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Znázornění systému</th>
<th>Tato sekce popisuje přehled bezpečnostního systému používaného v tomto kurzu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrické zapojení</td>
<td>Tato sekce popisuje zapojení bezpečnostního systému používaného v tomto kurzu.</td>
</tr>
</tbody>
</table>
3. kapitola **Kontrola propojení bezpečnostního řadiče a osobního počítače**

Tato kapitola obsahuje metodu nastavení k propojení bezpečnostního řadiče a osobního počítače, a metodu kontroly.

3.1 Propojení bezpečnostního řadiče a osobního počítače
3.2 Obsluha nástroje Setting and Monitoring Tool
3.3 Souhrn této kapitoly
3.1 Propojení bezpečnostního řadiče a osobního počítače

Propojte bezpečnostní řadič a osobní počítač jedním z těchto dvou způsobů.

- **Připojení RS232C**

 [Diagram showing connection between laptop and safety controller with RS232C cable]

- **Připojení Ethernet**

 [Diagram showing connection between laptop, switch, and safety controller with Ethernet cable]

Bezpečnostní řadič

Osobní počítač

Kabel RS232C – USB

ROZBOČOVAČ
3.2 Obsluha nástroje Setting and Monitoring Tool

(1) Spusťte nástroj Setting and Monitoring Tool pro bezpečnostní řadič.

* Následující popis je pro připojení RS232C.

Klikněte na odkaz „Edit com. Interface settings“.
(2) Nastavte profil připojení.

Tato sekce popisuje, jak nastavit profil propojení bezpečnostního řadiče a osobního počítače.

Klikněte na odkaz „Edit com. Interface settings“.
3.2 Obsluha nástroje Setting and Monitoring Tool

(3) Zkontrolujte profil připojení.

Symboly pro úpravu profilů připojení v dialogovém okně `Connection settings`:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uložit profil s aktuálním projektem</td>
</tr>
<tr>
<td></td>
<td>Aktivovat profil</td>
</tr>
<tr>
<td></td>
<td>Upravit profil</td>
</tr>
<tr>
<td></td>
<td>Odebrat profil</td>
</tr>
<tr>
<td></td>
<td>Zkontrolovat připojení</td>
</tr>
</tbody>
</table>

Symboly pro úpravu profilů připojení v dialogovém okně Connection settings
3.2 Obsluha nástroje Setting and Monitoring Tool

(4) Upravte profil připojení.

Vyberte ikonu „Modify Profile“.

Klikněte na ikonu „Modify Profile“.
(5) Provedte test komunikace.

Klikněte na ikonu „Communication Test“.

Zobrazí se stav kontroly.
3.2 Obsluha nástroje Setting and Monitoring Tool

(6) Zkontrolujte výsledek testu komunikace (úspěšný).

Test komunikace byl úspěšný.
3.2 Obsluha nástroje Setting and Monitoring Tool

(7) Zkontrolujte výsledek testu komunikace (neúspěšný).

Test komunikace byl neúspěšný

Nápravné opatření
Když se připojení nezdařilo
1. Ověřte, je-li správně připojen kabel.
2. Ověřte, je-li správně nainstalován ovladač.
3.3 Souhrn

V této kapitole jste se naučili:

- Propojení bezpečnostního řadiče a osobního počítače
- Obsluha nástroje Setting and Monitoring Tool (specifikace profilu připojení)

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Propojení bezpečnostního řadiče a osobního počítače</th>
<th>Tato sekce popisuje, jak propojit bezpečnostní řadič a osobní počítač (RS-232C nebo Ethernet).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsluha nástroje Setting and Monitoring Tool (specifikace profilu připojení)</td>
<td>Tato sekce popisuje obsluhu nástroje Setting and Monitoring Tool.</td>
</tr>
</tbody>
</table>
4. kapitola Tvorba nových projektů

Tato kapitola popisuje, jak vytvářet projekty pro bezpečnostní řadič.

4.1 Tvorba nových projektů
4.2 Nastavení hardwaru
4.3 Vkládání prvků a nastavování parametrů
4.4 Úpravy názvů štítků
4.5 Tvorba logiky
4.6 Simulace projektu
4.7 Tvorba výkazu projektu
4.8 Souhrn této kapitoly
4.1 Tvorba nových projektů

Vyberte odkaz „Create new project“.

Klikněte na odkaz „Create new project“.
4.2 Nastavení hardwaru

Vyberte moduly (CPU1, GETH a XTI0) používané v nastavení hardwaru.
(Kliknutí na ikonu modulu vloží tento modul na pravý okraj.)

Klikněte na CPU1 Ver2.

Klikněte na GETH Ver1.

Klikněte na V1.xx v položce Revision, vyberte Ver2 a klikněte na XTI0 Ver2.
4.3 Vkládání prvků a nastavování parametrů

Nastavte prvky na bezpečnostním řadiči podle elektrického zapojení zařízení.

→ Zaktivujte štítek „Elements“.
4.3.1 Vložení prvku světelné závory

Přetáhněte a pustěte (vložte tento prvek do koncovek I1 a I2.)
4.3.2 Nastavení parametru světelné závory

Pro nastavení parametru dvojklikněte na prvek světelné závory.

Dvojklikněte na prvek „MiniTwin curtain“.
4.3.3 Vložení prvku tlačítkového spínače nouzového zastavení

Přetáhněte a pustěte (vložte tento prvek do koncovky I3.)
4.3.4 Nastavení parametru tlačítkového spínače nouzového zastavení

Pro nastavení parametru dvojklikněte na prvek tlačítkového spínače nouzového zastavení.

Dvojklikněte na prvek „E-Stop“.
4.3.5 Vložení prvku spínače resetu

Přetáhněte a pusťte (vložte tento prvek do koncovky I4.)
4.3.6 Nastavení parametru spínače resetu

Pro nastavení parametru dvojklikněte na prvek spínače resetu.

Dvojklikněte na prvek „Reset“.
4.3.7 Vložení prvku bezkontaktního spínače bezpečnostních dvířek

Přetáhněte a pusťte (vložte tento prvek do koncovk I5 a I6.)
4.3.8 Nastavení parametru bezkontaktního spínače bezp. dvířek

Pro nastavení parametru dvojklikněte na prvek bezkontaktního spínače bezpečnostních dvířek.

Dvojklikněte na prvek „RE13/RE23/RE27“.
4.3.9 Vložení prvku spínače bezpečnostních dvířek

Nastavte prvek na bezpečnostním řadiči jako na skutečném zařízení.

Přetáhněte a pustěte (vložte tento prvek do koncovek I7 a I8.)
4.3.10 Nastavení parametru spínače bezpečnostních dvířek

Pro nastavení parametru dvojklikněte na prvek spínače bezpečnostních dvířek.

Dvojklikněte na prvek „Safety switches“.
4.3.11 Vložení prvku motoru

Nastavte prvek na bezpečnostním řadiči jako na skutečném zařízení.

Přetáhněte a pustěte (vložte tento prvek do koncovky Q1.)
Nastavení parametru motoru

Pro nastavení parametru dvojklikněte na prvek motoru.

(1) Dvojklikněte na prvek „Motor“.
(2) Zadejte název štítku.
4.3.13 Vložení prvku indikátoru

Nastavte prvek na bezpečnostním řadiči jako na skutečném zařízení.

Přetáhněte a pustte (vložte tento prvek do koncovků Q2, Q3 a Q4.)
4.3.14 Nastavení parametru indikátoru

Pro nastavení parametru dvojklikněte na prvek indikátoru.

(1) Dvojklikněte na prvek „LED“.

(2) Zadejte název štítku.
Typ těchto prvků je stejný, ale pro každý z nich můžete přiřadit různé názvy.

<table>
<thead>
<tr>
<th>Tag name</th>
<th>Název štítku indikátoru LED koncovky Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED green</td>
<td>Název štítku indikátoru LED koncovky Q3</td>
</tr>
<tr>
<td>LED RESET</td>
<td>Název štítku indikátoru LED koncovky Q4</td>
</tr>
</tbody>
</table>
4.4 Úpravy názvů štítků

Upravte názvy štítků podle potřeby.

(1) Klikněte na ikonu „Edit tag names“.

(2) Klikněte na aktivní sekci na levé straně a vyberte položku, která má cílový název pro úpravu. (Zde je vzata za příklad položka „Local I/O“.)

(3) Názvy štítků vybrané položky jsou uvedeny ve stromu na pravé straně okna. V pohledu stromu vyberte prvek, který má cílový název štítku pro úpravu, a zadejte název do vstupního pole. Má-li již prvek název štítku, lze tento název upravit podle potřeby. (Zobrazí se názvy štítků zadané v nastavení parametrů.)
4.5 **Tvorba logiky**

Programujte v části Logic editor.

4.5.1 **Programování (vkládání vstupů)**

(1) Přepněte zobrazení na pohled Logic editor. → (2) Klikněte na štítek „Inputs“. → (3) Zaregistrujte vstupy.

(1) Klikněte na tlačítko „Logic editor“.

(2) Klikněte na štítok „Inputs“.

(3) Přetáhněte a pustěte
4.5.2 Programování (vkládání funkčních bloků)

(1) Zaktivujte štítok „Function block“. → (2) Vložte funkční bloky.

(1) Klikněte na štítok „Function block“.

(2) Přetáhněte a pustě.

Další stránka popisuje registrační hierarchie a přehled funkčních bloků FB.
4.5.3 Popis použitých FB

<table>
<thead>
<tr>
<th>Použitý FB</th>
<th>Přehled</th>
<th>Registrační hierarchie</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB Reset</td>
<td>FB pro reset</td>
<td>[Start/Edge] - [Reset]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB Směrování 1:N</td>
<td>Funkční blok Směrování 1: N předává vstupní signál z předchozího funkčního bloku do max. osmi výstupních signálů.</td>
<td>[Logic] - [Routing 1:N]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB NOT</td>
<td>Na výstup se předá invertovaná vstupní hodnota.</td>
<td>[Logic] - [NOT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5.4 Programování (vkládání výstupů)

(1) Zaktivujte štítek „Outputs“. → (2) Zaregistrujte výstupy.

(1) Klikněte na štítek „Outputs“.

(2) Přetáhněte a pustte.
4.5.5 Programování (úpravy počtu vstupních polí funkčních bloků)

→ Zvyšte počet vstupních polí funkčního bloku Reset.

(1) Dvojklikněte na FB Reset.
(2) Upravte počet vstupů na 5 v nastavení „Input/Output Settings“.
(3) Počet vstupních polí FB Reset byl změněn na 5.
4.5.6 Programování (úpravy počtu výstupních polí funkčních bloků)

→ Zvyšte počet výstupních polí funkčního bloku Směrování.

(1) Dvojklikněte na FB Směrování 1:N

(2) Upravte počet výstupů na 3 v nastavení „Input/Output Settings“.

(3) Počet výstupních polí FB Směrování 1:N byl změněn na 3.
Připojte inputs, function blocks a outputs, jak uvádí následující obrázek.
4.6 Simulace projektu

(1) Přepněte zobrazení na pohled simulace.

(2) Kliknutím na zařízení jej zapněte.

(3) Kliknutím na tlačítko Přehrát spusťte simulaci.

Obrázek. Pohled simulace
4.7 Tvorba výkazu projektu

Postup tvorby výkazu

(1) Kliknutím na tlačítko Report otevřete pohled výkazu.

(2) Ve výběrovém seznamu na levé straně zaktivujte nebo deaktivujte zaškrtnutí políčka u komponent, jež chcete zahrnout ve výkazu.

(3) Po dokončení výběru klikněte na tlačítko Refresh report. Výkaz je nyní sestaven a zobrazen v pravé části okna.

Jak uložit nebo vytisknout výkaz

Výkaz lze vytisknout nebo uložit ve formátu PDF.

- Chcete-li výkaz uložit jako PDF, klepněte na tlačítko Uložit.
- Chcete-li výkaz vytisknout, klepněte na tlačítko Tisk. Dojde k vytvoření náhledu PDF výkazu, který pak můžete vytisknout.
V této kapitole jste se naučili:

- Tvorba nových projektů
- Nastavení hardwaru
- Vkládání prvků a nastavování parametrů
- Úpravy názvů štítků
- Tvorba logiky
- Simulace projektu
- Tvorba výkazu projektu

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Tvorba nových projektů</th>
<th>Tato sekce popisuje, jak vytvořit nový projekt nástrojem Setting and Monitoring Tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nastavení hardwaru</td>
<td>Tato sekce popisuje, jak vybrat moduly v nastavení hardwaru.</td>
</tr>
<tr>
<td>Vkládání prvků a nastavování parametrů</td>
<td>Tato sekce popisuje, jak vložit prvky a nastavit parametry.</td>
</tr>
<tr>
<td>Úpravy názvů štítků</td>
<td>Tato sekce popisuje, jak upravit názvy štítků.</td>
</tr>
<tr>
<td>Tvorba logiky</td>
<td>Tato sekce popisuje, jak programovat nástrojem Logic editor.</td>
</tr>
<tr>
<td>Simulace projektu</td>
<td>Tato sekce popisuje, jak provádět simulaci projektů.</td>
</tr>
<tr>
<td>Tvorba výkazu projektu</td>
<td>Tato sekce popisuje, jak vytvořit a uložit nebo vytisknout výkazy projektu.</td>
</tr>
</tbody>
</table>
5. kapitola Stažení projektů

Tato kapitola popisuje, jak stáhnout projekty na bezpečnostní řadič a jak tyto projekty verifikovat.

5.1 Propojení s bezpečnostním řadičem
5.2 Stažení projektů
5.3 Verifikace projektů
5.4 Porovnání projektů mezi bezpečnostním řadičem a nástrojem
5.5 Souhrn této kapitoly
5.1 Propojení s bezpečnostním řadičem

Klikněte na tlačítko „Connect“.
5.2 Stažení projektů

(1) Klikněte na tlačítko „Transfer“.

(2) Zadejte heslo.
Výchozí: „MELSECWS“

(3) Klikněte na tlačítko „Log On“.

(4) Klikněte na tlačítko „Yes“.
5.2 Stažení projektů

(5) Klikněte na tlačítko „Yes“.
5.3 Verifikace projektů

Pokud nedošlo k dokončení zpracování verifikace, při dalším zapnutí zůstane modul CPU ve stavu STOP. Chcete-li modul CPU při dalším zapnutí spustit, je nutné dokončení zpracování verifikace.

(1) Klikněte na tlačítko „Upload and verify configuration“.

(2) Klikněte na tlačítko „OK“.

(3) Klikněte na tlačítko „Yes“.
5.4 Porovnání projektů mezi bezpečnostním řadičem a nástrojem

- Neshoda
- Shoda nebo verifikováno

- Je-li stažen projekt, který ještě není verifikován, je nutná jeho verifikace.
V této kapitole jste se naučili:

- Propojení s bezpečnostním řadičem
- Stažení projektů
- Verifikace projektů
- Porovnání projektů mezi bezpečnostním řadičem a nástrojem

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Propojení s bezpečnostním řadičem</th>
<th>Tato sekce popisuje, jak propojit osobní počítač a bezpečnostní řadič.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stažení projektů</td>
<td>Tato sekce popisuje, jak stáhnout projekty.</td>
</tr>
<tr>
<td>Verifikace projektů</td>
<td>Tato sekce popisuje, jak verifikovat projekty.</td>
</tr>
<tr>
<td>Porovnání projektů mezi bezpečnostním řadičem a nástrojem</td>
<td>Tato sekce popisuje pohledy porovnání projektů, které odpovídají výsledkům verifikace.</td>
</tr>
</tbody>
</table>
6. kapitola Připojení / odpojení bezpečnostního řadiče

Tato kapitola popisuje, jak připojit a odpojit bezpečnostní řadič.

6.1 Propojení s bezpečnostním řadičem
6.2 Odpojení
6.3 Znovupřipojení
6.4 Souhrn této kapitoly
6.1 Propojení s bezpečnostním řadičem

Propojte bezpečnostní řadič a osobní počítač prostřednictvím RS-232 a bezpečnostní řadič zapněte. Pak spusťte nástroj Setting and Monitoring Tool a vyberte odkaz „Connect to physical device“.

(1) Vyberte odkaz Connect to physical device.

Klikněte na odkaz „Connect to physical device“.
6.1 Propojení s bezpečnostním řadičem

(2) Nahrajte nastavení.

Nástroj Setting and Monitoring Tool se zeptá, zda se má dané nastavení nahrát. Kliknutím na tlačítko „Yes“ nastavení nahrajte.

Klikněte na tlačítko „Yes“.
6.2 Odpojení

Chcete-li nastavení změnit, zaktivujte režim off-line kliknutím na tlačítko Disconnect.

Klikněte na tlačítko „Disconnect“.
Klikněte na tlačítko „Connect“.

* Tlačítko „Connect“ lze vybrat v případě, že nástroj není spojen s řadičem.
6.4 Souhrn

V této kapitole jste se naučili:

- Propojení s bezpečnostním řadičem
- Odpojení
- Znovupřipojení

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Propojení s bezpečnostním řadičem</th>
<th>Tato sekce popisuje, jak propojit bezpečnostní řadič a osobní počítač</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odpojení</td>
<td>Tato sekce popisuje, jak odpojit bezpečnostní řadič od osobního počítače</td>
</tr>
<tr>
<td>Znovupřipojení</td>
<td>Tato sekce popisuje, jak znovupřipojit bezpečnostní řadič a osobní počítač</td>
</tr>
</tbody>
</table>
7. kapitola Kontrola provozu systému

Tato kapitola popisuje, jak zkontrolovat provoz bezpečnostního řadiče.

7.1 Kontrola provozu systému
7.2 Popis programu
7.3 Provoz bezpečnostních vstupních zařízení
7.4 Přechod stavu provozu systému
7.5 Popis programu
7.6 Diagnostika chyb
7.7 Souhrn této kapitoly
7.1 Kontrola provozu systému
7.2 Popis programu

Není-li v provozu žádné bezpečnostní vstupní zařízení a chybná funkce po zapnutí bezpečnostního řadiče, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>Blikající ZAP.</td>
</tr>
</tbody>
</table>

Signal resetu
Bezpečnostní vstupní signal

Výstup motoru Zelený indikátor Červený indikátor Indikátor tlačítka resetu
7.3 Provoz bezpečnostních vstupních zařízení

- **Provoz spínače nouzového zastavení**
 - Stisknutím spínače nouzového zastavení se zaktiva nouzový signál. → Stiskněte spínač nouzového zastavení.
 - Po obnovení spínače nouzového zastavení se stisknutím spínače či indikátoru reset odstraní nouzový signál.
 → Obnovte spínač nouzového zastavení.

Použití: Zastavení provozu zdroje nebezpečí, je-li stisknut spínač nouzového zastavení, protože bylo zjištěno nebezpečí

- **Provoz bezkontaktního bezpečnostního spínače**
 - Oddělením části bezkontaktního bezpečnostního spínače se zaktiva nouzový signál.
 - Po přiblížení části bezkontaktního bezpečnostního spínače se stisknutím spínače či indikátoru reset odstraní nouzový signál.

Použití: Zastavení provozu zdroje nebezpečí, jsou-li otevřena dvířka nainstalovaná v bezpečnostním plotu
7.3 Provoz bezpečnostních vstupních zařízení

- Provoz bezpečnostního spínače
 - Vytažením bezpečnostního spínače se zaktivuje nouzový signál.
 → Vytáhněte akční člen ze spínače bezpečnostní dvířek.
 - Po znovuvložení bezpečnostního spínače se stisknutím spínače či
 indikátoru reset odstraní nouzový signál.
 → Vrátte zpět vytažený akční člen.

 Použití: Zastavení provozu zdroje nebezpečí, jsou-li otevřena dvířka
 nainstalovaná v bezpečnostním plotu

- Provoz světelné závory
 - Přerušení světelného paprsku světelné závory umístěním předmětu
 zaktivuje nouzový signál.
 → Přerušte světelný paprsek světelné závory.
 - Po odstranění předmětu přerušujícího světelný paprsek světelné závory
 se stisknutím spínače či indikátoru reset odstraní nouzový signál.
 → Odstraňte předmět přerušující světelný paprsek světelné závory.

 Použití: Zastavení provozu zdroje nebezpečí, když je detekován vstup
 operátora z otvoru
7.4 Přechod stavu provozu systému

Zapnutí bezpečnostního řadiče

Provoz bezpečnostního vstupního zařízení

Ne
(1) Ihned po zapnutí (není provozováno žádné zařízení)

Ano
(3) Po zprovoznění bezpečnostního vstupního zařízení

Zrušení provozu bezpečnostního vstupního zařízení

(4) Po zrušení provozu bezpečnostního vstupního zařízení

Operace resetu

(2) Stav resetu (během provozu: otáčení motoru)

Provoz bezpečnostního vstupního zařízení
7.5 Popis programu

7.5.1 Ihned po zapnutí (není provozováno žádné zařízení)

Není-li v provozu žádné bezpečnostní vstupní zařízení a chybná funkce po zapnutí bezpečnostního řadiče, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>Blikající ZAP.</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Stav resetu (během provozu: otáčení motoru)

Není-li v provozu žádné bezpečnostní vstupní zařízení a chybná funkce, přejdou následující komponenty do tohoto stavu, když je zprovozněn spínač resetu.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Stav při resetu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor RUN (= zelený)</td>
<td>VYP. → ZAP.</td>
</tr>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>ZAP. → VYP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Zastavení → Otáčení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>Blikající ZAP. → Vyp.</td>
</tr>
</tbody>
</table>
7.5.3 Po zprovoznění bezpečnostního vstupního zařízení

Po zprovoznění spínače nouzového zastavení

Dojde-li ke stisknutí spínače nouzového zastavení během provozu, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Stav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor RUN (= zelený)</td>
<td>ZAP. VYP.</td>
</tr>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>VYP. ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Otáčení Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>VYP.</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
7.5.3 Po zprovoznění bezpečnostního vstupního zařízení

Po zprovoznění bezpečnostního spínače

Dojde-li k vytážení akčního členu bezpečnostního spínače během provozu, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>ZAP. → VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>VYP. → ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Otáčení → Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>VYP.</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
7.5.3 Po zprovoznění bezpečnostního vstupního zařízení

- **Po zprovoznění bezkontaktního bezpečnostního spínače**
 Pokud se oddělí části bezkontaktního bezpečnostního spínače během provozu, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>ZAP. → VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>VYP. → ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Otáčení → Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>VYP.</td>
</tr>
</tbody>
</table>

Signál resetu
- Reset.XTIO[1].I4
- E-Stop, ES21.XTIO[1].I3
- Safety switch.XTIO[1].I7
- RE13/RE23/RE27.XTIO[1]
- MiniTwin.XTIO[1].I12
- LED green.XTIO[1].Q2
- LED red.XTIO[1].Q3
- LED RESET.XTIO[1].Q4

Výstup motoru
- motor.XTIO[1].Q1

Zelený indikátor
- LED green.XTIO[1].Q2

Červený indikátor
- LED red.XTIO[1].Q3

Indikátor tlačítka resetu
- LED RESET.XTIO[1].Q4
7.5.3 Po zprovoznění bezpečnostního vstupního zařízení

Po zprovoznění světelné závory

Dojde-li k přerušení světelného paprsku světelné závory během provozu, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>ZAP. → VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>VYP. → ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Otáčení → Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>VYP.</td>
</tr>
</tbody>
</table>

![Diagram of safety controller basic course]
7.5.4 Po zrušení provozu bezpečnostního vstupního zařízení

Je-li zprovozněno bezpečnostní vstupní zařízení a pak je jeho provoz zrušen, přejdou komponenty do tohoto stavu.

<table>
<thead>
<tr>
<th>Indikátor RUN (= zelený)</th>
<th>VYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikátor STOP (= červený)</td>
<td>ZAP.</td>
</tr>
<tr>
<td>Motor</td>
<td>Zastavení</td>
</tr>
<tr>
<td>Indikátor Reset</td>
<td>VYP. → Blikající ZAP.</td>
</tr>
</tbody>
</table>

![Diagram of safety controller with labels for reset signal, safety switch, emergency stop, motor output, green indicator, red indicator, and reset button.](Image)
7.6 Diagnostika chyb

Výsledky diagnostiky a provoz bezpečnostního řadiče lze zkontrolovat v nástroji Setting and Monitoring Tool.

Tato zařízení lze monitorovat. Zobrazí se protokol zařízení, jež jsou připojena k bezpečnostnímu řadiči.

Chyby lze diagnostikovat. Podrobnosti

Blikající

ZAP.
7.7 Souhrn

V této kapitole jste se naučili:

- Kontrola provozu systému
- Popis programu
- Provoz bezpečnostních vstupních zařízení
- Přechod stavu provozu systému
- Popis programu
- Diagnostika chyb

Důležité body

Níže je uveden obsah, který jste se v této kapitole naučili.

<table>
<thead>
<tr>
<th>Téma</th>
<th>Detaily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis programu</td>
<td>Tato sekce popisuje stav programu v případě, že nejsou zprovozněna bezpečnostní vstupní zařízení.</td>
</tr>
<tr>
<td>Provoz bezpečnostních vstupních zařízení</td>
<td>Tato sekce popisuje provoz a použití bezpečnostních vstupních zařízení</td>
</tr>
<tr>
<td>Přechod stavu provozu systému</td>
<td>Tato část popisuje přechod stavu provozu systému ve vývojovém diagramu.</td>
</tr>
<tr>
<td>Popis programu</td>
<td>Tato sekce popisuje stav programu v případě, že jsou zprovozněna bezpečnostní vstupní zařízení.</td>
</tr>
<tr>
<td>Diagnostika chyb</td>
<td>Tato sekce popisuje pohled pro diagnostiku chyb.</td>
</tr>
</tbody>
</table>
Test

Závěrečný test

Nyní, když jste dokončili všechny lekce kurzu ZÁKLADY BEZPEČNOSTNÍCH ŘADIČŮ, jste připraveni absolvovat závěrečný test. V případě nejasností u jakéhokoli témat využijte této příležitosti k jejich zopakování. Tento závěrečný test obsahuje celkem 6 otázek (6 položek).

Závěrečný test můžete absolvovat třeba několikrát.

Výpočet skóre testu

Po výběru odpovědi nezapomeňte stisknout tlačítko Odpověď. Jinak nedojde k výpočtu skóre testu. (Považuje se za nezodpovězené otázky.)

Výsledky skóre

Na straně skóre se zobrazí počet správných odpovědí, počet otázek, procento správných odpovědí a úspěšný/neúspěšný výsledek.

- Počet správných odpovědí: 6
- Celkový počet otázek: 6
- Hodnota v procentech: 100%

Pokračovat Revidovat

- Stisknutím tlačítka Pokračovat test ukončíte.
- Stisknutím tlačítka Revidovat test zrevidujete. (Kontrola správných odpovědí)
- Stisknutím tlačítka Opakovat test zopakujete.

Pro úspěšné složení testu je potřeba 60 % správných odpovědí.
V bezpečnostním řadiči (MELSEC-WS) lze k modulu CPU připojit „max. 10“ modulů bezpečnostního I/O.
Nástroj Setting and Monitoring Tool – programovací nástroj pro bezpečnostní řadič, je k dispozici zdarma.
Programovacím jazykem nástroje Setting and Monitoring Tool pro bezpečnostní řadič je „FBD“.
Funkce tvorby výkazu nástroje Setting and Monitoring Tool pro bezpečnostní řadič dokáže generovat výstup konfigurací hardwaru a historii chyb do souborů PDF.
Výchozí heslo pro uživatelskou úroveň „Administrátor“, které je nutné ke stahování projektů v bezpečnostních řadičích, je „MELSECWS“.
Bezpečnostní řadič nelze propojit s programovatelným řadičem řady MELSEC-Q prostřednictvím sítě a nemůže monitorovat provozní stav programovatelného řadiče.
Právě jste dokončili závěrečný test. Vaše výsledky jsou následující.
Pro ukončení závěrečného testu přejděte na další stranu.

Počet správných odpovědí: 0

Celkový počet otázek: 6

Hodnota v procentech: 0%

Pokračovat Revidovat Opakovat

Váš test byl neúspěšný.
Právě jste dokončili kurz ZÁKLADY BEZPEČNOSTNÍCH ŘADIČŮ.

Děkujeme za absolvování tohoto kurzu.

Doufáme, že se vám lekce líbily a že informace získané v tomto kurzu v budoucnu zužitkujete ke konfiguraci systémů.

Závěrečný test můžete revidovat třeba několikrát.

Revidovat Zavřít