PLC
Sériová komunikace

Tento kurz je určen osobám, které budou poprvé používat modul sériové komunikace řady MELSEC-Q.
Úvod

Účel kurzu

Tento kurz vysvětluje základy modulu sériové komunikace kompatibilního s programovatelným kontrolérem MELSEC-Q a je určen pro uživatele, kteří budou tento modul používat poprvé.

Tento kurz by měl účastníka seznámit s mechanizmem datové komunikace, specifikacemi, nastaveními a postupem spuštění modulu sériové komunikace.

Tento kurz vyžaduje základní znalosti programovatelných kontrolérů řady MELSEC-Q, sekvenčních programů a programu GX Works2.
Před zahájením tohoto kurzu doporučujeme projít následující kurzy:

1. kurz Základní informace o řadě MELSEC-Q,
2. kurz Základní informace o programu GX Works2,
3. kurz Modul inteligentní funkce.
Úvod

Struktura kurzu

Obsah tohoto kurzu je následující. Doporučujeme, abyste začali 1. kapitolou.

1. kapitola – Základy sériové komunikace
Vysvětluje základy sériové komunikace.

2. kapitola – Podrobnosti o modulu sériové komunikace
Vysvětluje typy modulů sériové komunikace, názvy komponent a funkce modulu a metody zapojení.

3. kapitola – Počáteční konfigurace
Vysvětluje nastavení modulu sériové komunikace a jeho programování pomocí vyhrazených instrukcí.

4. kapitola – Odstraňování problémů
Vysvětluje postup diagnostiky sítě pro odstraňování problémů.

Závěrečný test
Úroveň pro splnění: 60% a vyšší.
<table>
<thead>
<tr>
<th>Úvod</th>
<th>Používání tohoto elektronického výukového nástroje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přejdete na následující stránku</td>
<td>Přejděte na následující stránku.</td>
</tr>
<tr>
<td>Zpět na předchozí stránku</td>
<td>Zpět na předchozí stránku.</td>
</tr>
<tr>
<td>Přesunutí na požadovanou stránku</td>
<td>Zobrazí se „Obsah“, pomocí kterého můžete přejít na požadovanou stránku.</td>
</tr>
<tr>
<td>Ukončit výuku</td>
<td>Ukončit výuku.</td>
</tr>
<tr>
<td></td>
<td>Zavřou se všechna okna, včetně výukového okna a okna „Obsah“.</td>
</tr>
</tbody>
</table>
Úvod

Upozornění na používání

Bezpečnostní opatření

Pokud se učíte používáním aktuálních produktů, pozorně si prosím přečtěte bezpečnostní opatření v odpovídajících návodech.

Preventivní opatření v tomto kurzu

-Zobrazené obrazovky softwarové verze, kterou používáte, se mohou lišit od těch v tomto kurzu.

V tomto kurzu je používána následující verze softwaru:

-GX Works2, verze 1.493P
1. kapitola Základy sériové komunikace

1. kapitola popisuje základy modulu sériové komunikace.
V 1. kapitole se dozvěte o používání modulu sériové komunikace, jeho hlavních funkcích a způsobu datové
komunikace.

1.1 Parametry komunikace
1.2 Komunikační protokoly
1.3 Řízení toku
1.4 Typy rozhraní
1.5 Rozdělení dat
1.6 Shrnutí

Základní informace o sériové komunikaci

Sériová komunikace je vyspělá technologie používaná již mnoho let. Dodnes je populární jako
metoda datové komunikace pro zařízení jako jsou měřicí přístroje a čtečky čárového kódu. Jedním z
důvodů její oblíbenosti jsou levné díly.
V tomto kurzu představujeme RS-232, což je zástupce rozhraní sériové komunikace.
Při sériové komunikaci s modulem sériové komunikace lze poměrně svobodně připojovat různé typy
zařízení. Pro navázání normální komunikace je ale nutné plně pochopit specifikace komunikace
připojeného zařízení (zařízení 3. strany).

Specifikace komunikace lze rozdělit přibližně následovně:

- parametry komunikace,
- komunikační protokol,
- řízení toku.

Obě komunikující zařízení musí již ve fázi návrhu splnit specifikace komunikace.
1.1 Parametry komunikace

Pro sériovou komunikaci jsou důležité následující parametry komunikace:

Počet datových bitů
Alfanumerický znak je vyjádřen 7 bity. Proto lze při odesílání pouze číselného nebo alfanumerického znaku snížit velikost dat vybráním 7 bitů.

Paritní bit
Tento parametr musí být nastaven pro detekci poškození dat v důsledku šumu, atd.

Stop bit
Tento bit označuje konec dat.

Bitová rychlost

1.2 Komunikační protokoly

Komunikační protokol je sada konvencí používaných zařízeními připojenými do sítě.

Mezi příklady komunikačních protokolů (pravidel) patří:

- V případě normálního přijetí dat je vrácen určitý kód označující normální přijetí.
- V případě výskytu chyby je odeslán kód chyby označující výskyt chyby.

Jelikož jsou tyto komunikační protokoly určovány připojeným zařízením 3. strany, je nutné zkontrolovat specifikace tohoto zařízení.

Pro nastavení komunikačního protokolu pro modul sériové komunikace může uživatel použít „funkci podpory předdefinovaného protokolu“ programu GX Works2 (podrobnosti naleznete v následujících kapitolách) a jednoduše zvolit komunikační protokol z nabídky existujících protokolů.
V případě nenalezení požadovaného protokolu lze také přidat nové protokoly. Umožníte tak automatické odesílání nebo přijímání dat prostřednictvím kompatibilních zařízení 3. stran bez nutnosti používat sekvenční programy.
1.3 Řízení toku

Řízení toku je postup zajišťující, že strana přijímající data přijme všechna odeslaná data. Řízení toku lze zhruba rozdělit do dvou typů: hardwarové řízení toku a softwarové řízení toku.

Hardwarové řízení toku
Upravuje časování odesílání dat pomocí linky řízení toku nainstalované odděleně od linky signálu ve stejném kabelu. Pomocí linky řízení toku jsou do zdroje vraceny informace o přijetí dat.
Modul sériové komunikace používá hardwarové řízení toku DTR/DSR. Je možné vytvořit propojení s řídícím zařízením RTS/CTS, ale tato propojení je nutné velice pečlivě navrhnout.

Softwarové řízení toku
Upravuje časování odesílání dat pomocí určitých kódů. Při použití této metody jsou informace o přijetí dat vraceny do zdroje.
Řízení Xon/Xoff, které je představitelem softwarového typu řízení toku, je stejné jako řízení DC1/DC3, což je volba, kterou lze vybrat v programu GX Works2.

Některá zařízení řízení toku nepodporují. V takových případech by měl modul sériové komunikace provádět například následující operace:
• Upravit interval odesílání.
• Zjišťovat, kdy přijímající strana nepřijme data, a pokud k tomu dojde, zrušit nepřijatá data.
1.4 Typy rozhraní

RS-232

Všimněte si, že sériový port osobního počítače kompatibilní se standardem RS-232 je samčí port s vyčínajícími kontakty, zatímco port RS-232 programovatelného kontroléru je samičí port.

Signální kabel se skládá z komunikační linky a řídící linky. Použití určité linky závisí na specifikacích komunikace zařízení 3. strany.

Pokud není požadované zapojení komerčně dostupné, je nutné konektor nakonfigurovat tak, aby takové zapojení akceptoval.

<table>
<thead>
<tr>
<th>Číslo kontaktu</th>
<th>Kód signálu</th>
<th>Funkce signálu</th>
<th>Směr signálu Modul <=> zařízení 3. strany</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD (DCD)</td>
<td>Detekce nosiče pro přijetím datového kanálu</td>
<td>←</td>
</tr>
<tr>
<td>2</td>
<td>RD (RXD)</td>
<td>Přijatá data</td>
<td>←</td>
</tr>
<tr>
<td>3</td>
<td>RS (RTS)</td>
<td>Odeslaná data</td>
<td>←</td>
</tr>
<tr>
<td>4</td>
<td>CS (CTS)</td>
<td>Datový terminál připraven</td>
<td>←</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>Uzemnění signálu</td>
<td>←</td>
</tr>
<tr>
<td>6</td>
<td>DR (DSR)</td>
<td>Datová sada připravena</td>
<td>←</td>
</tr>
<tr>
<td>7</td>
<td>RS (RTS)</td>
<td>Požadavek na odeslání</td>
<td>←</td>
</tr>
<tr>
<td>8</td>
<td>CS (CTS)</td>
<td>Souhlas s odesláním</td>
<td>←</td>
</tr>
<tr>
<td>9</td>
<td>CI (RI)</td>
<td>Indikátor vyzvánění</td>
<td>←</td>
</tr>
</tbody>
</table>
1.4 Typy rozhraní

RS-422 a RS-485

<table>
<thead>
<tr>
<th>Kód signálu</th>
<th>Název signálu</th>
<th>Směr signálu Modul <=> zařízení 3. strany</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA</td>
<td>Odeslaná data (+)</td>
<td></td>
</tr>
<tr>
<td>SDB</td>
<td>Odeslaná data (-)</td>
<td></td>
</tr>
<tr>
<td>RDA</td>
<td>Přijatá data (+)</td>
<td></td>
</tr>
<tr>
<td>RDB</td>
<td>Přijatá data (-)</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>Uzemnění signálu</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Uzemnění kostry</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Uzemnění kostry</td>
<td></td>
</tr>
</tbody>
</table>

Tento kurz vysvětluje velmi všestranné rozhraní RS-232.
1.5 Rozdělení dat

Přijímaná data jsou obvykle rozdělována do částí o určité délce. Existují dva způsoby rozdělení dat: rozdělení podle počtu dat a rozdělení podle kódu dokončení přijetí. Jednotlivé způsoby závisí na specifikacích komunikace zařízení 3. strany, proto si nezapomeňte ověřit jeho specifikace. V případě potřeby lze změnit výchozí nastavení pro kód dokončení přijetí a počet přijatých dat.

Přijímání dat o proměnné délce pomocí kódu dokončení přijetí

Tato metoda se používá k přijímání dat o proměnné délce ze zařízení 3. strany. Před odesláním dat ze zařízení 3. strany je na konec zprávy přidán kód dokončení přijetí (CR+LF nebo jednobajtová data) určený modulem sériové komunikace.

Ukázkový systém používaný v tomto kurzu přijímá data pomocí kódu dokončení přijetí.
1.5 Rozdělení dat

Přijetí dat o pevné délce pomocí počtu přijatých dat

Tato metoda se používá k přijetí dat o pevné délce. Jelikož je délka dat pevně stanovena zařízením 3. strany, je kód dokončení přijetí zbytečný. Zařízení 3. strany odešle množství dat určené v nastavení počtu přijatých dat modulu sériové komunikace.

Pokročilá metoda: přijímání dat o proměnné délce bez kódu dokončení přijetí

Pokud není k datům o proměnné délce odeslaným ze zařízení 3. strany přidán kód dokončení přijetí, budou data přijata a zpracována bajt po bajtu.
1.6 Shrnutí

V této kapitole jste získali informace o následujících tématech:

- parametry komunikace,
- komunikační protokoly,
- řízení toku.
- typy rozhraní,
- rozdělení dat,

Důležité body

<table>
<thead>
<tr>
<th>Parametry komunikace</th>
<th>Důležitými parametry v sériové komunikaci jsou počet datových bitů, paritní bit, stop bit a bitová rychlost.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevná délka a proměnná délka</td>
<td>Komunikační protokoly zpracovávají dva typy dat: data s pevnou délkou a data s proměnnou délkou.</td>
</tr>
<tr>
<td>Řízení toku</td>
<td>Řízení toku lze zhruba rozdělit do dvou typů: hardwarové řízení toku a softwarové řízení toku.</td>
</tr>
<tr>
<td>Typ rozhraní</td>
<td>Mezi rozhraní modulu sériové komunikace patří RS-232, RS-422 a RS-485.</td>
</tr>
<tr>
<td>Rozdělení dat</td>
<td>Přijatá data jsou rozdělena pomocí počtu přijatých dat nebo kódem dokončení přijetí.</td>
</tr>
</tbody>
</table>
2. kapitola **Podrobnosti o modulu sériové komunikace**

2. kapitola popisuje typy modulů sériové komunikace, názvy komponent a funkce modulu a metody zapojení.

- 2.1 Typy modulů sériové komunikace
- 2.2 Zapojení komunikačního kabelu
- 2.3 Komunikační protokoly modulu sériové komunikace
- 2.4 Konfigurace modulu sériové komunikace
- 2.5 Shrnutí
2.1 Typy modulů sériové komunikace

Tato část popisuje typy modulů sériové komunikace, názvy komponent modulu a jeho LED kontrolky.

Modul sériové komunikace

- Q71C24N
 - RS-232: 1 kanál
 - RS-422/485: 1 kanál

- Q71C24N-R2
 - RS-232: 2 kanály

- Q71C24N-R4
 - RS-422/485: 2 kanály

V tomto kurzu používáme jako ukázku jednokanálové rozhraní RS-232 s označením Q71C24N.
2.1.1 Komponenty modulu sériové komunikace

Tato kapitola popisuje komponenty modulu sériové komunikace a jejich funkce.

Názvy komponent a funkce

<table>
<thead>
<tr>
<th>Č.</th>
<th>Název</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>LED kontrolky</td>
<td>Viz seznam LED kontrolek na následující stránce.</td>
</tr>
<tr>
<td>(2)</td>
<td>Rozhraní RS-232</td>
<td>Pro sériovou komunikaci se zařízením 3. strany (9pinový samičí D-sub konektor)</td>
</tr>
<tr>
<td>(3)</td>
<td>Rozhraní RS-422/485</td>
<td>Pro sériovou komunikaci se zařízením 3. strany (2dílná svorkovnice*)</td>
</tr>
<tr>
<td>(4)</td>
<td>Rozhraní RS-422/485</td>
<td>Pro sériovou komunikaci se zařízením 3. strany (2dílný blok zásuvky konektorů*)</td>
</tr>
</tbody>
</table>

* 2dílnou svorkovnicí a 2dílný blok zásuvky konektoru lze odmontovat povolením příslušných šroubů.
V případě poruchy modulu lze jednotlivé svorkovnice snadno vyměnit přímo na modulu bez odpojení kabelů.
2.1.2 LED kontrolky a jejich funkce

Tato kapitola popisuje funkce LED kontroliek nacházejících se na modulu sériové komunikace.

LED kontrolky

<table>
<thead>
<tr>
<th>K.</th>
<th>Název LED kontrolky</th>
<th>Funkce</th>
<th>Svíti nebo bliká</th>
<th>Zhasnuta</th>
<th>Odpoňovací protokol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC</td>
</tr>
<tr>
<td></td>
<td>RUN</td>
<td>Označuje normální provoz</td>
<td>Normální</td>
<td>Abnormální, reset</td>
<td>Non Procedure</td>
</tr>
<tr>
<td></td>
<td>ERR</td>
<td>Označuje chybu *1</td>
<td>Chyba</td>
<td>Normální</td>
<td>Obou Směrný</td>
</tr>
<tr>
<td>K1/2</td>
<td>NEU</td>
<td>Označuje neutrální stav *2</td>
<td>Čekání na přijetí příkazu MC</td>
<td>Přijímání příkazu MC</td>
<td>Předdefinovaný</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>Označuje stav odeslání</td>
<td>Odesílání dat</td>
<td>Neprobíhá odesílání dat</td>
<td>Plattý</td>
</tr>
<tr>
<td></td>
<td>RD</td>
<td>Označuje stav přijetí</td>
<td>Přijetí dat</td>
<td>Neprobíhá přijetí dat</td>
<td>Plattý</td>
</tr>
</tbody>
</table>

*1 Tato kontrolka se rozsvítí, když dojde k chybě v hardwaru nebo v datové komunikaci modulu sériové komunikace.

*2 Tato kontrolka označuje stav datové komunikace prostřednictvím protokolu MC.
Svíti: čekání na přijetí příkazu ze zařízení 3. strany.
Zhasnuta: probíhá přijetí nebo zpracování příkazu ze zařízení 3. strany.
2.2 Zapojení komunikačního kabelu

V této části naleznete příklady zapojení modulů sériové komunikace.

2.2.1 Připojení rozhraní RS-232 k zařízení

Níže naleznete ukázky zapojení rozhraní RS-232, odpovídajícího zařízení 3. strany a modulů QJ71C24N a QJ71C24N-R2.

Příklad zapojení

Při použití QJ71C24N

QJ71C24N

Zapojit lze jeden programovatelný kontrolér a jedno zařízení 3. strany.

Kabel RS-232

Zařízení 3. strany

Při použití QJ71C24N-R2

QJ71C24N-R2

Zapojit lze jeden programovatelný kontrolér a dvě zařízení 3. strany.

Kabel RS-232

Kabel RS-232

Zařízení 3. strany
2.2.2 Zapojení řídicích signálů RS-232

Kliknutím na následující tlačítko si můžete zobrazit odpovídající ukázky zapojení.

Zařízení 3. strany zapíná/vypíná signál CD.
Podporováno je řízení DTR/DSR a řízení kódu DC.

Zařízení 3. strany nezapíná/nevypíná signál CD.
Podporováno je řízení DTR/DSR a řízení kódu DC.

Zařízení 3. strany nezapíná/nevypíná signál CD.
Podporováno je řízení kódu DC.

<table>
<thead>
<tr>
<th>Název signálu</th>
<th>Kontakt č.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD(DCD)</td>
<td>1</td>
</tr>
<tr>
<td>RD(RXD)</td>
<td>2</td>
</tr>
<tr>
<td>SD(TXD)</td>
<td>3</td>
</tr>
<tr>
<td>ER(DTR)</td>
<td>4</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
</tr>
<tr>
<td>DR(DSR)</td>
<td>6</td>
</tr>
<tr>
<td>RS(RTS)</td>
<td>7</td>
</tr>
<tr>
<td>CS(CTS)</td>
<td>8</td>
</tr>
<tr>
<td>CI(RI)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Název signálu</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD(DCD)</td>
</tr>
<tr>
<td>RD(RXD)</td>
</tr>
<tr>
<td>SD(TXD)</td>
</tr>
<tr>
<td>ER(DTR)</td>
</tr>
<tr>
<td>SG</td>
</tr>
<tr>
<td>DR(DSR)</td>
</tr>
<tr>
<td>RS(RTS)</td>
</tr>
<tr>
<td>CS(CTS)</td>
</tr>
</tbody>
</table>

- Obě zařízení používají metodu řízení toku zařízení 3. strany.
- Pokud zařízení 3. strany obsahuje ukázku zapojení pro modul sériové komunikace Mitsubishi, postupujte podle této ukázky.
2.3 Komunikační protokoly modulu sériové komunikace

Následující tabulka obsahuje komunikační protokoly dostupné pro modul sériové komunikace.

<table>
<thead>
<tr>
<th>Protokol</th>
<th>Podrobnosti</th>
<th>Směr řízení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předdefinovaný protokol</td>
<td>Tento protokol vyberte v případě, že je nutné navázat datovou komunikaci na základě protokolu zařízení 3. strany, například měřicího přístroje nebo čtečky čárových kódů. Této komunikaci je při použití modulu CPU přiděleno příslušné zařízení.</td>
<td>Bez specifického směru řízení (Aktivní)</td>
</tr>
<tr>
<td>MC protokol</td>
<td>Protokol MC je způsobem komunikace pro programovatelné kontroléry. Tímto způsobem zařízení 3. strany čte nebo zapisuje data proměnných a programy modulu CPU prostřednictvím modulu sériové komunikace.</td>
<td>Ze zařízení 3. strany do programovatelného kontroléru (Pasivní)</td>
</tr>
<tr>
<td>Obousměrný protokol</td>
<td>Tento jednoduchý předdefinovaný protokol umožňuje externím zařízením, jako jsou například osobní počítače, relativně snadno odesílat a přijímat data. Programovatelný kontrolér používá k odpovídání externímu zařízení vyhrazené instrukce (BIDIN, BIDOUT).</td>
<td></td>
</tr>
</tbody>
</table>

Aktivní: programovatelný kontrolér vydává instrukce svému zařízení 3. strany a přijímá odezvy.

Pasivní: programovatelný kontrolér přijímá instrukce ze zařízení 3. strany a jako odezvy vráti hodnotu a stav uložené ve svých proměnných.

Ukázkový systém v tomto kurzu používá „předdefinovaný protokol“.
2.4 Konfigurace modulu sériové komunikace

Při konfiguraci počátečních nastavení a registraci předdefinovaných protokolů (funkce podpory předdefinovaného protokolu) do modulů sériové komunikace je vhodné používat program GX Works2. Podrobnosti naleznete ve 3. kapitole.

Okno Switch Settings
(Nastavení přepínače)

Okno Predefined Protocol Support Function
(Funkce podpory předdefinovaného protokolu)
2.5 Shrnutí

V této kapitole jste získali informace o následujících tématech:

- typy modulů sériové komunikace,
- zapojení komunikačního kabelu,
- komunikační protokoly modulu sériové komunikace,
- konfigurace modulu sériové komunikace.

Důležité body

<table>
<thead>
<tr>
<th>Protokoly datové komunikace</th>
<th>Protokoly datové komunikace dostupné pro modul sériové komunikace jsou: protokol non procedure, obousměrný protokol, protokol MC a předdefinovaný protokol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předdefinovaný protokol</td>
<td>Funkce „podpory předdefinovaného protokolu“ vytvoří předdefinovaný protokol založený na protokolu zařízení 3. strany</td>
</tr>
</tbody>
</table>
| Způsob zapojení | • QJ71C24N lze připojit k zařízení 3. strany prostřednictvím rozhraní RS-232 nebo RS422/485.
 • QJ71C24N-R2 lze připojit ke dvěma zařízením 3. strany prostřednictvím rozhraní RS-232. |
3. kapitola **Počáteční konfigurace**

3. kapitola popisuje postup nastavení modulu sériové komunikace pro zahájení provozu. Tato kapitola je zaměřena na metodu programování využívající vyhrazené instrukce.

Tato kapitola obsahuje všechny informace vyžadované k provozu modulu sériové komunikace (konfigurace systému, způsob zapojení a různá nastavení a operace modulu sériové komunikace).

- 3.1 Nastavení před provozem a postup nastavení
- 3.2 Nastavení parametrů
- 3.3 Zápis parametrů
- 3.4 Funkce podpory předdefinovaného protokolu
- 3.5 Vyhrazené instrukce
- 3.6 Shrnutí
3.1 Nastavení před provozem a postup nastavení

Tato kapitola popisuje strukturu systému obsahujícího připojené zařízení 3. strany, nastavení modulu sériové komunikace a způsoby zapojení kabelů.

Níže naleznete postup nastavení modulu sériové komunikace.

1. Potvrďte požadované funkce a specifikace zařízení 3. strany.
2. Pomocí kabelu propojte zařízení 3. strany a modul sériové komunikace.
3. Pomocí kabelu propojte program GX Works2 (osobní počítač) a modul CPU.
4. Pomocí programu GX Works2 nakonfigurujte různá nastavení.
5. Provoz

<table>
<thead>
<tr>
<th>Specifikace čtečky čárového kódu použitě v ukázkovém systému</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozhraní</td>
</tr>
<tr>
<td>Přenosová rychlost</td>
</tr>
<tr>
<td>Data bit (Datový bit)</td>
</tr>
<tr>
<td>Paritní bit</td>
</tr>
<tr>
<td>Parita</td>
</tr>
<tr>
<td>Stop bit</td>
</tr>
<tr>
<td>Kód dokončení přijetí</td>
</tr>
</tbody>
</table>
3.1.1 Struktura ukázkového systému

Níže zobrazený ukázkový systém má následující strukturu a provede následující operace:

Struktura
- Blízko sebe jsou nainstalovány čtečka čárového kódu a světelná signalizace.
- Čtečka čárového kódu je pomocí rozhraní RS-232 propojena s programovatelnými kontroléry, včetně modulu sériové komunikace.

Provoz
- Je detekován balíček pohybující se po dopravníku.
- Po detekci načte čtečka čárového kódu čárový kód na balíčku.
- Načtená data jsou odeslána jako data s proměnnou délkou s připojeným kódem dokončení přijetí [CR+LF] do modulu sériové komunikace.
- Data jsou poté uložena do proměnných modulu CPU.

![Diagram ukázkového systému](image.png)
3.2 Nastavení parametrů

Aby bylo možné navázat datovou komunikaci se zařízením 3. strany, je nutné pomocí programu GX Works2 nakonfigurovat různá nastavení.

Přehled nastavení parametrů

- Položky model, číslo slotu pro instalaci, počáteční číslo I/O, atd. modulu sériové komunikace se nastavují v části „Přiřazení I/O“.

- Položky rychlost přenosu, rychlost komunikace, atd. modulu sériové komunikace se nastavují pro jednotlivé kanály v části „Nastavení přepínače“.

- Metoda řízení se nastavuje v části „Podrobná nastavení“ podle cíle řízení modulu sériové komunikace.

Diagram:

1. Parametr
2. Parametr PLC
3. Přiřazení I/O [Vyžadováno]
 - Viz kapitola 3.2.1.
4. Nastavení přepínače [Vyžadováno]
 - Viz kapitola 3.2.2.
5. Podrobná nastavení [Volitelně]
 - Viz kapitoly 3.2.3 a 3.2.4.
3.2.1 Nastavení přiřazení I/O

Vyberte položku „Serial Communication/Modem Interface Module“ (Sériová komunikace/modul rozhraní modemu).

Vyberte položku „QJ71C24N“.

Do pole Mounted Slot No. (Číslo připojeného slotu) nastavte hodnotu „0“.

Okno New Module (Nový modul)
3.2.2 Nastavení přepínače

Switch Setting 0000:QJ71C24N

<table>
<thead>
<tr>
<th>Item</th>
<th>CH1</th>
<th>CH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation setting</td>
<td>Independent</td>
<td>Independent</td>
</tr>
<tr>
<td>Data Bit</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Parity Bit</td>
<td>Exist</td>
<td></td>
</tr>
<tr>
<td>Even/odd parity</td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td>Stop bit</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sum check code</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Online Change</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>Setting modifications</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>Communication rate setting</td>
<td>9600bps</td>
<td></td>
</tr>
<tr>
<td>Communication protocol setting</td>
<td>Predefined protocol</td>
<td></td>
</tr>
</tbody>
</table>

V tomto ukázkovém systému použijte pouze „CH1“.

Vyberte položku „Exist“ (Existující).

Vyberte položku „9600bps“ (9 600 bit/s).

Okno Switch Setting (Nastavení přepínače)

<table>
<thead>
<tr>
<th>Položka</th>
<th>Podrobnosti o nastavení položky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation setting (Nastavení provozu)</td>
<td>Nastavte, jestli mají být dva kanály při datové komunikaci používány odděleně nebo jestli mají být spojené.</td>
</tr>
<tr>
<td>Data bit (Datový bit)</td>
<td>Nastavte bitovou délku jednoho znaku v datech komunikace.</td>
</tr>
<tr>
<td>Parity bit (Paritní bit)</td>
<td>Nastavte, jestli se má do dat komunikace přidat paritní bit.</td>
</tr>
<tr>
<td>Even/odd parity (Lichá/sudá parita)</td>
<td>Nastavte, jestli se má přidat sudý nebo lichý paritní bit.</td>
</tr>
<tr>
<td>Stop bit (Stop bit)</td>
<td>Nastavte délku stop bitu dat vyměňovaných se zařízením 3. strany.</td>
</tr>
<tr>
<td>Sum check code (Kontrolní kód součtu)</td>
<td>Nastavte, jestli se má k odesiláným a přijímaným zprávám přidávat kontrolní kód součtu.</td>
</tr>
<tr>
<td>Online change (Změna on-line)</td>
<td>Nastavte, jestli se má provádět zápis, i když je modul CPU ve stavu „RUN“ (SPUSTIT).</td>
</tr>
<tr>
<td>Setting modifications (Změny nastavení)</td>
<td>Nastavte, jestli chcete povolit změny nastavení po spuštění modulu.</td>
</tr>
<tr>
<td>Communication rate setting (Nastavení rychlosti komunikace)</td>
<td>Nastavte rychlost komunikace se zařízením 3. strany.</td>
</tr>
<tr>
<td>Communication protocol setting (Nastavení komunikačního protokolu)</td>
<td>Nastavte podrobnosti komunikace se zařízením 3. strany.</td>
</tr>
<tr>
<td>Station number setting (0 to 31) (Nastavení čísla stanice (0 až 31))</td>
<td>Při použití protokolu MC nastavte číslo stanice nastavené zařízením 3. strany.</td>
</tr>
</tbody>
</table>
3.2.3 Změna jednotek slovo/bajt

Nastavte jednotky odeslaných nebo přijatých dat na slovo nebo bajt. Výchozí jednotkou je slovo. Aby bylo možné zpracovávat data v jednotkách bajt, je nutné toto nastavení změnit.

<table>
<thead>
<tr>
<th>For specification of communication control</th>
<th>The user can change the communications method to match the specifications of the external device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word/byte units specification</td>
<td>1:Byte Unit</td>
</tr>
<tr>
<td>CD terminal check specification (for RS-232)</td>
<td>0:Word Unit</td>
</tr>
</tbody>
</table>

Okno Various Control Specification (Specifikace různých ovládacích prvků)
3.2.4 Změna počtu přijatých dat a kódu dokončení přijetí

Zde lze nakonfigurovat počet (velikost) přijatých dat a kód dokončení přijetí dat.

<table>
<thead>
<tr>
<th>Způsob přijetí</th>
<th>Počet přijatých dat</th>
<th>Kód dokončení přijetí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Výchozí hodnota: 511 (1FFH) slov</td>
<td>Výchozí hodnota: CR+LF</td>
</tr>
<tr>
<td>Proměnná délka</td>
<td>Budete-li přijímat data o stejné či menší délce než je výchozí hodnota, použijte toto nastavení v nezměněné podobě.</td>
<td>Toto nastavení změňte, chcete-li použít kód dokončení přijetí odlišný od výchozí hodnoty.</td>
</tr>
<tr>
<td></td>
<td>Budete-li přijímat větší data než je výchozí hodnota, změňte toto nastavení společně s ostatními nastaveními.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podrobnosti naleznete v příslušné příručce k modulu sériové komunikace.</td>
<td></td>
</tr>
<tr>
<td>Pevná délka</td>
<td>Změňte toto nastavení podle délky přijímaných dat.</td>
<td>Změnit na „Not specified (FFFFH)” (Není specifikováno (FFFFH)).</td>
</tr>
</tbody>
</table>

Příklad nastavení dat s pevnou délkou (10 slov)

Zadejte „10“ nebo „Ah“.

<table>
<thead>
<tr>
<th>For data reception</th>
<th>For data transmission using the non procedure protocol, register system setting values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received data count specification</td>
<td>10 (Ah)</td>
</tr>
<tr>
<td>Receive complete code specification</td>
<td>65535 (FFFFH)</td>
</tr>
</tbody>
</table>

Okno Various Control Specification (Specifikace různých ovládacích prvků)

Zadejte „65535“ nebo „FFFFh“.
3.3 Zápis parametru

Okno Write to PLC (Zapsat do PLC)
3.4 Funkce podpory předdefinovaného protokolu

„Funkce podpory předdefinovaného protokolu“ programu GX Works2 umožňuje komunikaci protokolu se zařízením 3. strany pomocí jednoduchých sekvenčních programů obsahujících vyhrazené instrukce. Funkce podpory předdefinovaného protokolu snižuje velikost programu a zkracuje dobu jeho vytváření v porovnání s používáním jednotlivých sekvenčních programů.

Klikněte na položku „New“ (Nový).

Kliknutím na položku „Add“ (Přidat) otevřete okno „Add Protocol“ (Přidat protokol).

Okno Predefined Protocol Support Function
(Funkce podpory předdefinovaného protokolu)

Některé předdefinované protokoly jsou již v programu GX Works2 obsaženy, ale pokud protokol zařízení 3. strany nenaleznete, můžete vytvořit protokol nový.

(1) Když je předdefinovaný protokol již obsažen v programu GX Works2
 V okně „Add Protocol“ (Přidat protokol) vyberte výrobce, model a název protokolu.

(2) Když předdefinovaný protokol není obsažen v programu GX Works2
 Vytvořte nový předdefinovaný protokol.

V ukázkovém systému tohoto kurzu bude předdefinovaný protokol nově vytvořen podle zařízení 3. strany.
3.4.1 Přidání protokolu

(1) Když je předdefinovaný protokol již obsažen v programu GX Works2

Pokud požadovaný předdefinovaný protokol již existuje, tak jej vybráním výrobce a modelu v okně „Add Protocol“ (Přidat protokol) zaregistrujte.

Okno Add Protocol (Přidat protokol)

Vyberte položku „Predefined Protocol Library“ (Knihovna předdefinovaných protokolů).

Nastavte hodnotu Protocol No. (Č. protokolu), která bude popsána ve speciálních pokynech pro předdefinovaný protokol.

Toto číslo může být v rozsahu od 1 do 128.

Vyberte výrobce, model a název protokolu zařízení 3. strany.
3.4.1 Přidání protokolu

(2) Když předdefinovaný protokol není obsažen v programu GX Works2

V okně „Add Protocol“ (Přidat protokol) vyberte v části Type (Typ) položku „Add New“ (Přidat nový).

Vyberte položku „Add New“ (Přidat nový).

Nastavte hodnotu Protocol No. (Č. protokolu), která bude popsána ve speciálních pokynech pro předdefinovaný protokol.

Toto číslo může být v rozsahu od 1 do 128.
3.4.2 Nastavení protokolu

Nastavte informace pro nově přidaný protokol a podrobnosti dat komunikace.

Hodnota Protocol No. (Č. protokolu) bude popsána ve speciálních pokynech pro předefinovaný protokol. Tuto hodnotu lze změnit i po přidání protokolu.

Nastavte podrobnosti o datech vyměněných po jedné komunikační lince se zařízením 3. strany. Podrobnosti naleznete v kapitole 3.4.3.

Okno Predefined Protocol Support Function (Funkce podpory předdefinovaného protokolu)
3.4.2 Nastavení protokolu

Podrobné nastavení protokolu

Nastavte informace o připojeném zařízení, protokolu a datové komunikaci.

Nastavte informace o připojeném zařízení.

Vyberte, jestli chcete před spuštěním programu protokolem vymazat oblast OS modulu (oblast přijatých dat).

Nastavte počet opakování, když nedojde k dokončení přenosu z modulu po dobu označenou jako „monitoring time“ (doba monitorování).

Nastavte dobu, po kterou bude modul čkat před odesláním dat na základě instrukce z předdefinovaného protokolu.

Nastavte informace o protokolu.

Nastavte časové období čekání na přijem dat modulu sériové komunikace.

Nastavte časové období, po kterém modul přeje do stavu „Odesílání“ až do dokončení přenosu.
3.4.3 Nastavení paketu

Data vyměněná po jedné komunikační lince se zařízením 3. strany se nazývají „paket“ a paket se skládá z různých prvků. Konfigurace paketu se nastavuje v části „Packet Setting“ (Nastavení paketu).

Okno Predefined protocol support function (Funkce podpory předdefinovaného protokolu)

Nastavte název paketu.

Vyberte prvky paketu, které chcete přidat. Tyto prvky jsou popsány na následujících stránkách.

Kliknutím na položku „Add New“ (Přidat nový) přidejte nový prvek paketu.
3.4.4 Typ prvku paketu

Záhlaví
Do záhlaví paketu můžete přidat určitý kód nebo řetězec znaků.
- Při odeslání: zadaný kód nebo řetězec znaků je odeslán.
- Při přijít: záhlaví bude ověřeno na základě přijatých dat.

Terminátor
Konec paketu můžete označit přidáním kódu nebo řetězce znaků.

Statická data
Do paketu lze zahrnout určitý kód nebo řetězec znaků, například příkaz.
- Při odeslání: zadaný kód nebo řetězec znaků je odeslán.
- Při přijít: přijatá data jsou ověřena.

Nastavte název prvku.

Vyberte typ dat hodnoty nastavení. (řetězec ASCII/řídící kód ASCII/HEX)

Nastavte data na 1 až 50 bajtů.

<table>
<thead>
<tr>
<th>Typ kódu</th>
<th>Příklad nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Řetězec ASCII</td>
<td>ZÁHLAVÍ</td>
</tr>
<tr>
<td>Řídící kód ASCII</td>
<td>STX, ETX*</td>
</tr>
<tr>
<td>HEX (hexadecimální)</td>
<td>FFFF</td>
</tr>
</tbody>
</table>

Ovno Element Setting (Nastavení prvku)
(záhlaví, terminátor, statická data)

* STX: Počátek textu, EXT: Konec textu
3.4.4 Typ prvku paketu

Délka

Do paketu lze zahrnout prvek označující délku dat.

- Při odesílání: délka dat v určeném rozsahu je automaticky vypočtena, přidána do paketu a odeslána.
- Při přijatí: přijatá data jsou porovnána s informacemi (hodnotou) o délce dat obsaženými v přijatých datech.

Nastavte název prvku.

Vyberte délku dat v rozsahu 1 až 4.

Pokud není délka dat „1“, vyberte pořadí toku dat.

Vyberte formát délky dat. (ASCII hexadecimál / ASCII decimal / HEX) (hexadecimální ASCII/Decimální ASCII/HEX)

Vyberte počátek a konec rozsahu, ve kterém je vypočtena délka dat. Výběr založte na čísle prvku paketu.
3.4.4 Typ prvku paketu

Nekonverzní proměnná

Nekonverzní proměnnou použijte v následujících případech:
- Data v zařízení nebo ve vyrovnávací paměti jsou odesílána bez konverze dat.
- Část přijatého paketu je uložena v zařízení nebo ve vyrovnávací paměti bez konverze dat.

Element Setting - Non-conversion Variable (Send)

- Nastavte název prvku označujícího oblast ukládání dat.
- Nastavte délku dat. Pokud se délka dat mění, nastavte maximální délku dat.
- Vyberte, jestli chcete provést prohosení bajtů.
- V případě pevné délky dat nastavte počáteční adresu proměnné, ve kterém je proměnná uložena. Koncová adresa se nastaví automaticky.
- V případě proměnné délky dat se tato oblast nastaví automaticky podle nastavení v části Send Data Storage Area (Oblast ukládání dat odeslání).

Vyberte možnost „Fixed Length“ (Pevná délka) nebo „Variable Length“ (Proměnná délka).

Vyberte možnost „Lower Byte + Upper Byte“ (Spodní bajt + horní bajt) nebo „Lower Byte Only“ (Pouze spodní bajt).

Tuto část nastavte pouze v případě, že je vybraná možnost „Variable Length“ (Proměnná délka).

Nastavte počáteční adresu proměnných, ve kterých je uložena délka odesláných/přijatých dat prvku.
3.4.4 Typ prvku paketu

Konverzní proměnná

Data v zařízení nebo ve vyrovnávací paměti jsou odeslána po konverzi a přijatá data jsou konvertována a poté uložena do zařízení nebo do vyrovnávací paměti. Tento proces konverze dat nevyžaduje sekvenční program a snižuje celkovou velikost programu a dobu programování.

- Když jsou data odeslána
 - „HEX -> ASCII hexadecimal“ (HEX -> hexadecimální ASCII)
 - „HEX -> ASCII decimal“ (HEX -> decimální ASCII)
- Když jsou data přijímána
 - „ASCII hexadecimal -> HEX“ (Hexadecimální ASCII -> HEX)
 - „ASCII decimal -> HEX“ (Decimální ASCII -> HEX)

Nastave název prvku označujícího oblast ukládání dat.

Vyberte možnost „Fixed Number of Data“ (Pevný počet dat) nebo „Variable Number of Data“ (Proměnný počet dat).

Vyberte počet číslic „1 až 10“ nebo „Variable Number of Digits“ (Proměnný počet číslic).

Určete, kolik slov dat v oblasti ukládání dat bude zpracováno jako jedna sada dat.
- „Word“ (Slovo)/„Double word“ (Dvojslovo)

Okno Element Setting (Nastavení prvku) (konverzní proměnná)

Element Setting - Conversion Variable (Send)

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Number of Data</td>
<td>HEX->ASCII Decimal</td>
</tr>
<tr>
<td>Variable Number of Data</td>
<td>Fixed Number of Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Send Data</th>
<th>Setting Range: 1 to 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Send Digits of Data</th>
<th>Setting: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank-padded Character at Send</th>
<th>Setting: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversion Unit</th>
<th>Setting: Word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign</th>
<th>Setting: Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Character</th>
<th>Setting: No Decimal Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Decimals</th>
<th>Setting: No Delimiter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Storage Area Specification

Send Data Storage Area

<table>
<thead>
<tr>
<th></th>
<th>(1 Word)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Specifiable Device Symbol]

X, Y, M, L, B, D, W, R, ZR, G (Buffer Memory)

(Pokračování na další stránce)
3.4.4 Typ prvku paketu

(Pokračování z předchozí stránky)

Vyberte možnost „Unsigned“ (bez znaménka) nebo „Signed“ (se znaménkem).

Vyberte možnost „No Decimal Point“ (Bez desetinné tečky), „1 až 9“ nebo „Variable Point“ (Proměnná tečka).

Pokud je v části Sign (Znaménko) vybraná možnost „Signed“ (Se znaménkem), vyberte možnost „None“ (Žádný), „+“, „0“ nebo „-“.

Vyberte možnost „No Delimiter“ (Bez oddělovače), „One-byte Comma“ (Jednobajtová čárka) nebo „Space“ (Mezera).

Tuto část nastavte pouze v případě, že je vybraná možnost „Variable Number of Data“ (Proměnný počet dat).

Nastavte počáteční adresu proměnných, ve kterých je uloženo množství odeslaných/přijatých dat prvku.

• V případě pevné délky dat nastavte počáteční adresu proměnné, ve které je proměnná uložena. Koncová adresa se nastaví automaticky.

• V případě proměnné délky dat se tato oblast nastaví automaticky podle nastavení v části Send Data Storage Area (Oblast ukládání dat odeslání).

* Vyberte „+“. Záporné hodnoty vždy vyžadují symbol „-“.
3.4.4 Typ prvku paketu

Kontrolní kód

Do paketu lze zahrnout prvek kontrolující správnost dat. Kontrolní kód lze přidat do odesílaného paketu nebo jej lze porovnat s přijímaným paketem. Výpočet kontrolního kódu se automaticky provede při přijetí/odeslání dat.

Okno Element Setting (Nastavení prvku) (kontrolní kód)

- **Element Name**: Nastavte název prvku.
- **Processing Method**: Vyberte formát odeslání/přijímání.
 - Horizontal Parity / Sum Check / 16-bit CRC (for MODBUS) (Horizontální parita/Kontrola součtu/16bitové CRC (pro MODBUS))
- **Code Type**: (ASCII Hexadecimal / ASCII Decimal / HEX)
- **Data Length**: Nastavte délku dat v rozsahu 1 až 4.
- **Data Flow**: Pokud je délka dat nastavena na jinou hodnotu než „1“, nastavte ji zde.
- **Complement Calculation**: Vyberte možnost „No Complement Calculation“ (Bez výpočtu doplnku), „One’s Complement“ (Jedničkový doplněk) nebo „Two’s Complement“ (Dvojkový doplněk).
- **Calculating Range (Start)**
- **Calculating Range (End)**: Vyberte počátek a konec rozsahu výpočtu. Nastavení založte na čísle prvku paketu.
3.4.5 Nastavení ukázkového systému

Tato část vysvětluje pakety odeslané/přijaté předdefinovaným protokolem v ukázkovém systému.

1) Send packet (Odeslání paketu)

Odeslaný paket obsahuje řetězec znaků příkazu s instrukcí k načtení čárového kódu. Skládá se z řetězce znaků záhlaví „M“, řetězce znaků příkazu „TR“ (statická data, znak ASCII) a koncového kódu paketu „CR+LF“ (terminátor, znak ASCII).

<table>
<thead>
<tr>
<th>Protocol No.</th>
<th>Protocol Name</th>
<th>Packet Type</th>
<th>Packet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bar code reader</td>
<td>Send Packet</td>
<td>BR read trigger</td>
</tr>
</tbody>
</table>

Element List

<table>
<thead>
<tr>
<th>Element No.</th>
<th>Element Type</th>
<th>Element Name</th>
<th>Element Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Header</td>
<td>Header</td>
<td>"M" (2Byte)</td>
</tr>
<tr>
<td>2</td>
<td>Static Data</td>
<td>Trigger</td>
<td>"TR" (2Byte)</td>
</tr>
<tr>
<td>3</td>
<td>Terminator</td>
<td>Footer</td>
<td>"CRLF" (4Byte)</td>
</tr>
</tbody>
</table>

2) Receive packet (Přijetí paketu)

Přijatý paket obsahuje identifikační kód země (JPN/USA) načtený čtečkou čárového kódu. Přijatý paket se skládá z počtu znaků identifikačního kódu země „3“ (statická data, znak ASCII), identifikačního kódu země (nekonverzní proměnná, znak ASCII) a koncového kódu paketu „CR+LF“ (terminátor, znak ASCII). Po přijetí paketu dojde k uložení identifikačního kódu země do „D600“ a „D601“.

<table>
<thead>
<tr>
<th>Protocol No.</th>
<th>Protocol Name</th>
<th>Packet Type</th>
<th>Packet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bar code reader</td>
<td>Receive Packet</td>
<td>BR read data output</td>
</tr>
<tr>
<td>Packet No. 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Element List

<table>
<thead>
<tr>
<th>Element No.</th>
<th>Element Type</th>
<th>Element Name</th>
<th>Element Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Header</td>
<td>Header</td>
<td>"M" (2Byte)</td>
</tr>
<tr>
<td>2</td>
<td>Static Data</td>
<td># of chara.</td>
<td>"3" (1Byte)</td>
</tr>
<tr>
<td>3</td>
<td>Non-conversion Variable</td>
<td>Read data</td>
<td>[D600-D601] (Fixed Length/3Byte/Lower/Upper Byte/No Swap)</td>
</tr>
<tr>
<td>4</td>
<td>Terminator</td>
<td>Footer</td>
<td>"CRLF" (4Byte)</td>
</tr>
</tbody>
</table>
3.4.6 Uložení a zápis vytvořených protokolů

Chcete-li uložit vytvořený protokol do souboru nastavení protokolu, vyberte v okně Predefined Protocol Support Function (Funkce podpory předdefinovaného protokolu) možnost „File“ (Soubor) – „Save as“ (Uložit jako).
Vytvořený protokol je nutné zapsat do modulu sériové komunikace.

Vyberte modul, do kterého chcete protokol zapsat.

Kliknutím na tlačítko „Execute“ (Spustit) provedeš zápis protokolu do vybraného modulu.

Okno Module Write (Zápis do modulu)
3.5 Vyhrazené instrukce

Vyhrazené instrukce programů sekvence slouží ke spuštění předdefinovaného protokolu zapsaného do modulu.

Vyhrazená instrukce

<table>
<thead>
<tr>
<th>Symbol instrukce</th>
<th>Podmínka spuštění</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.CPRTCL</td>
<td></td>
</tr>
<tr>
<td>GP.CPRTCL</td>
<td></td>
</tr>
</tbody>
</table>

Data nastavení

<table>
<thead>
<tr>
<th>Data nastavení</th>
<th>Podrobnosti</th>
<th>Nastavuje</th>
<th>Typ dat</th>
<th>Hodnota pro ukázkový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un</td>
<td>Počáteční signál I/O modulu (00 až FE: První dvě číslice třímístného signálu I/O)</td>
<td>Uživatel</td>
<td>BIN 16 bitů</td>
<td>Nastavte slot instalace modulu 0.</td>
</tr>
<tr>
<td>n1</td>
<td>Kanál pro komunikaci se zařízením 3. strany 1: Kanál 1 (strana CH1) 2: Kanál 2 (strana CH2)</td>
<td>Uživatel</td>
<td>BIN 16 bitů název proměnné</td>
<td>Nastavte „1“ pro použití kanálu 1.</td>
</tr>
<tr>
<td>n2</td>
<td>Počet kontinuálních spuštění protokolu (1 až 8)</td>
<td>Uživatel</td>
<td>BIN 16 bitů název proměnné</td>
<td>Počet současně zpracovaných protokolů. Nastavte „1“.</td>
</tr>
<tr>
<td>(S)</td>
<td>Počáteční číslo proměnné, ve které jsou uložena řídící data.</td>
<td>Uživatel, systém</td>
<td>Název proměnné</td>
<td>Nastaveno „D500“.</td>
</tr>
<tr>
<td>(D)</td>
<td>Číslo bitové proměnné, která se zapne po dokončení spuštění.</td>
<td>Systém</td>
<td>Bit</td>
<td>„M1000“</td>
</tr>
</tbody>
</table>
3.5 Vyhrazené instrukce

Řídící data

Řídící data jsou oblasti dat uchovávající parametry, které budou spuštěny instrukcí GP.CPRCTCL. Uloženy jsou zde také výsledky spuštění.

<table>
<thead>
<tr>
<th>Data nastavení</th>
<th>Položka</th>
<th>Nastavte data</th>
<th>Rozsah nastavení</th>
<th>Nastavuje</th>
<th>Hodnota pro ukázkový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S) + 0 = D500</td>
<td>Výsledek spuštění</td>
<td>Výsledek spuštění instrukce G (P).CPRCTCL. V případě spuštění více předdefinovaných protokolů se uloží výsledek spuštění naposledy spuštěného předdefinovaného protokolu. 0: Normální. Jiná hodnota než 0: Kód chyby</td>
<td>-</td>
<td>Systém</td>
<td>„0“ označuje normální odezvu. V případě chyby provede systém automaticky zápis kódu chyby.</td>
</tr>
<tr>
<td>(S) + 1 = D501</td>
<td>Výsledek přijetí</td>
<td>Počet spuštěných předdefinovaných protokolů. V počtu spuštěných protokolů je zahrnut také protokol, který způsobil chybu. „0“ se uloží v případě, když dojde k chybě v datech nastavení nebo v nastaveních řídicích dat.</td>
<td>1 až 8</td>
<td>Systém</td>
<td>Normální odezva, systém automaticky zapiše „1“.</td>
</tr>
<tr>
<td>(S) + 2 = D502</td>
<td>Č. protokolu, který bude spuštěn jako první nebo č. funkčního protokolu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Č. protokolu pro spuštění</td>
<td></td>
<td>1 až 128 201 až 207</td>
<td>Uživatel</td>
<td>Zapsat „1“ do D503, protože se používá pouze protokol č. 1.</td>
</tr>
<tr>
<td>(S) + 9 = D509</td>
<td>Číslo protokolu, který bude spuštěn jako 8. v pořadí nebo č. funkčního protokolu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.1 Příklad sekvenčního programu

Níže naleznete ukázku sekvenčního programu používajícího vyhrazené instrukce.

Když balíček projde fotoelektrickým spínačem, dojde ke spuštění nastavení předdefinovaného protokolu s instrukcí zahájit čtení pro čtečku čárového kódu.

V M10 se nastaví stav ZAP (balíček prošel).

(10 = ZAP)

Zapne se, když balíček projde fotoelektrickým spínačem.

Zapne se, když balíček projde.

M1000 = ZAP:
Spuštění vyhrazené instrukce je dokončeno.

Příznak dokončení spuštění

Zkontroluje výsledek spuštění vyhrazené instrukce. D500 = 0: Spuštění dokončeno normálně

Po normálním dokončení spuštění vyhrazené instrukce se spustí třídící stroj s načtenými daty (identifikačním kódem země) ze čtečky čárového kódu uloženými v D600 a D601.

Zkontroluje výsledek spuštění vyhrazené instrukce.

D500 > 0: Spuštění dokončeno nenormálně

V případě nenormálního dokončení spuštění se do D500 uloží kód chyby.

Spustí třídící stroj 1.

Spustí třídící stroj 2.

Rozsvítí se normální světelná signalizace (modrá).

Rozsvítí se nenormální světelná signalizace (červená).

[MST] D600 "JPN"

[MST] D600 "USA"

Provede se reset stavu ZAP (balíček prošel).

(M10 = VYP)
3.6 Shrnutí

V této kapitole jste získali informace o následujících tématech:

- nastavení před provozem a postup nastavení,
- nastavení parametrů pomocí programu GX Works2,
- funkce podpory předdefinovaného protokolu,
- vyhrazené instrukce,
- příkład sekvenčního programu.

Důležité body

<table>
<thead>
<tr>
<th>Nastavení parametrů pomocí programu GX Works2</th>
<th>Pomocí programu GX Works2 se konfiguruji nastavení přepínače a různá nastavení řízení. Program GX Works2 také konfiguruje potřebná nastavení pro modul sériové komunikace, který bude nainstalován v programovatelném kontroloře.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zápis parametrů</td>
<td>Nastavení přepínače a různá nastavení řízení nakonfigurované v programu GX Works2 je nutné zapsat do modulu sériové komunikace.</td>
</tr>
<tr>
<td>Funkce podpory předdefinovaného protokolu</td>
<td>„Funkce podpory předdefinovaného protokolu“ programu GX Works2 umožňuje datovou komunikaci se zařízením 3. strany na základě protokolu zařízení 3. strany. Tato funkce používá jednoduché sekvenční prostory obsahující vyhrazené instrukce.</td>
</tr>
<tr>
<td>Vyhrazené instrukce</td>
<td>Pomocí vyhrazených instrukcí (CPRTCL) lze spustit předdefinovaný protokol zapsaný ve flash-ROM.</td>
</tr>
</tbody>
</table>
4. kapitola Odstraňování problémů

4. kapitola popisuje diagnostiku problémů se sítí.

4.1 Odstraňování problémů
4.2 Shrnutí
4.1 Odstraňování problémů

V následující tabulce naleznete podrobnosti o chybách, které mohou nastat při datové komunikaci mezi modulem sériové komunikace a zařízením 3. strany a možnosti nápravy těchto chyb.

<table>
<thead>
<tr>
<th>Problém</th>
<th>Možná příčina</th>
<th>Postup nápravy</th>
<th>Odkaz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozsvítí se LED kontrolka ERR.</td>
<td>• Došlo k chybě komunikace.</td>
<td>• Zkontrolujte kód chyby v monitoru systému a odstraňte příčinu chyby.</td>
<td>Kapitola 4.1.1</td>
</tr>
<tr>
<td>Kontrolka „RD“ neblíží, když zařízení 3. strany odešle zprávu.</td>
<td>• Řídící signál odeslání zařízení 3. strany je vypnutý.</td>
<td>• Upravte zapojení tak, aby byl signál CTS na zařízení 3. strany připraven.</td>
<td>-</td>
</tr>
<tr>
<td>Ačkoliv kontrolka „RD“ blízí poté, co zařízení 3. strany odešle zprávu, signal požadavku přijetí a načtení (X3/XA) modulu sériové komunikace se nezapne.</td>
<td>• Nesprávné nastavení předdefinovaného protokolu. Zařízení 3. strany nepřidalo kód dokončení přijetí.</td>
<td>• Zkontrolujte nastavení předdefinovaného protokolu.</td>
<td>Kapitola 3.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pomocí funkce trasování obvodu zkontrolujte odeslaná/přijatá data.</td>
<td>Kapitola 4.1.3</td>
</tr>
</tbody>
</table>
4.1.1 Kontrola kódů chyb v monitoru systému

Pomocí monitoru systému můžete potvrdit kódy chyb.

V okně „Module’s Detailed Information“ (Podrobné informace o modulu) potvrďte kódchyby.
4.1.2 Kontrola signálů v monitoru stavu

V okně State Monitor (Monitor stavu) si můžete zkontrolovat stavy řídících signálů RS-232. Lze zde také zkontrolovat stav jednotlivých signálů do/z modulu sériové komunikace.

Přepínače ●/ ○ znázorňují stav ZAP/VYP jednotlivých signálů.
4.1.3 Kontrola odeslaných/přijatých dat pomocí funkce trasování obvodu

Pomocí funkce trasování obvodu zkontrolujte odeslaná/přijatá data.

Zobrazí se výsledky trasování.
4.2 Shrnutí

V této kapitole jste získali informace o následujících tématech:

- odstraňování problémů.

Důležité body

Kontrola chyb, když svíti LED kontrolka ERR.	Chyba je indikována LED kontrolkou ERR. na modulu sériové komunikace.
Kontrola chyb řídícího signálu RS-232	Stav jednotlivých signálů lze zde také zkontrolovat v monitoru stavu.
Kontrola chyb pomocí funkce trasování obvodu	Pomocí funkce trasování obvodu lze zkontrolovat chyby v odeslaných/přijatých datech.
Test Závěrečný test

Když jste nyní dokončili všechny lekce kurzu Sériová komunikace PLC, můžete podstoupit závěrečný test. Pokud si nejste jisti ohledně nějakého tématu, máte nyní možnost si jednotlivá témata zopakovat. Tento závěrečný test obsahuje celkem 11 otázek (30 položek).
Závěrečný test můžete podstoupit kolikrát chcete.

Způsob provedení testu
Po vybírání odpovědí nezapomeňte kliknout na tlačítko Odpověď. Pokud nekliknete na tlačítko Odpověď, bude vaše odpověď ztracena. (Otázka bude tedy považována za nezodpovězenou.)

Hodnocení výsledků
Na stránce hodnocení se zobrazí počet správných odpovědí, počet otázek, procento správných odpovědí a výsledek úspěšný/neúspěšný.

- Počet správných odpovědí: 4
- Celkový počet odpovědí: 4
- Procento: 100%

Abyste úspěšně složili tento test, musíte správně odpovědět na 60 % otázek.

- Test můžete ukončit kliknutím na tlačítko Pokračovat.
- Test si můžete zkontrolovat kliknutím na tlačítko Zkontrolovat. (Kontrola správnosti odpovědí)
- Test si můžete zopakovat kliknutím na tlačítko Znovu.
Parametry sítě

Pro každý popis vyberte správný výraz.

(1) Bit označující konec dat. : --Select--

(2) Hodnota označující rychlost přenosu následovaná jednotkou „bit/s“. : --Select--

(3) Bit označující hlavičku dat. : --Select--

Odpovědět Zpět
Řízení toku

Pro každý popis vyberte správný výraz.

(1) Metoda řízení, která upravuje časování odesílání dat pomocí linky řízení toku nainstalované oddělené od linky signálu ve stejném kabelu. :

--Select--

(2) Metoda řízení, která upravuje časování odesílání dat pomocí určitých kódů. :

--Select--

Odpověděť Zpět
Kabel RS-232

Vyberte správný popis kabelu RS-232 používaného pro modul sériové komunikace.

- Použít lze libovolný křížený kabel RS-232 dostupný na trhu.
- Kabel musí být pečlivě vybraný podle protokolu zařízení 3. strany.

Odpověď
Zpět
ZÁVĚREČNÝ TEST 4

Postup přijetí dat

Následující tabulka obsahuje způsoby přijetí dat dostupné pro modul sériové komunikace. Pro každý popis vyberte správný postup přijetí dat.

<table>
<thead>
<tr>
<th>Vlastnosti dat přijatých ze zařízení 3. strany</th>
<th>Postup přijetí dat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka dat se liší. Data mají na konci přidáno CR+LF.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Délka dat je pevně stanovena na 4 bajty.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Délka dat se liší. Data neobsahují kód dokončení přijetí.</td>
<td>--Select--</td>
</tr>
</tbody>
</table>

Odpověď | Zpět
Závěrečný test 5

Postup výměny dat

Následující tabulka obsahuje protokoly dostupné pro modul sériové komunikace. Pro každý popis vyberte správný protokol.

<table>
<thead>
<tr>
<th>Protokol</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>--Select--</td>
<td>Data lze vyměňovat mezi zařízením 3. strany a modulem CPU v libovolném formátu zpráv a libovolným komunikačním protokolem.</td>
</tr>
<tr>
<td>--Select--</td>
<td>Komunikační protokol pro programovatelné kontroly řady Q. Pomocí tohoto protokolu zařízení 3. strany čte nebo zapisuje data proměnných a programy modulu CPU prostřednictvím modulu sériové komunikace.</td>
</tr>
<tr>
<td>--Select--</td>
<td>Tento protokol se používá, když je nutné navázat datovou komunikaci na základě protokolu zařízení 3. strany, například měřicího přístroje nebo čtečky čárových kódů.</td>
</tr>
<tr>
<td>--Select--</td>
<td>Pokud zařízení 3. strany dokáže odesílat nebo přijímat data pomocí protokolu MC, může přistupovat do modulu CPU.</td>
</tr>
<tr>
<td>--Select--</td>
<td>Pomocí existujícího jednoduchého protokolu lze relativně snadno vyměňovat data s externím zařízením, jako je například osobní počítač.</td>
</tr>
<tr>
<td>--Select--</td>
<td>Datová komunikace prostřednictvím protokolu zařízení 3. strany se provádí pomocí „funkce předdefinovaného protokolu“.</td>
</tr>
</tbody>
</table>
Protokol non procedure

Následující popisy se týkají datové komunikace pomocí protokolu non procedure.
Výběrem správných položek věty doplňte.

<table>
<thead>
<tr>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>K příjmu dat [Select] [Select] pomocí protokolu non procedure se použije kód dokončení přijetí. K příjmu dat [Select] se použije počet přijatých dat.</td>
</tr>
</tbody>
</table>

Kód dokončení přijetí a počet přijatých dat lze pro účely příjmu dat nastavit [Select].

[Odpovědět] [Zpět]
Závěrečný test 7

GX Works2

Následující tabulka obsahuje nastavení počtu přijatých dat a kódů dokončení přijetí v programu GX Works2. Výběrem správných hodnot a položek tabulku doplňte.

<table>
<thead>
<tr>
<th>Postup přijetí dat</th>
<th>Počet přijatých dat</th>
<th>Kód dokončení přijetí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Výchozí hodnota: (---Select--- ▼) slov</td>
<td>Výchozí hodnota: (---Select--- ▼)</td>
</tr>
<tr>
<td>Pevná délka</td>
<td>Pokud je počet přijatých dat nižší než výchozí hodnota, změna nastavení [---Select--- ▼].</td>
<td>Pokud je kód dokončení přijetí odlišný od výchozí hodnoty, změna nastavení [---Select--- ▼].</td>
</tr>
<tr>
<td>Proměnná délka</td>
<td>Změna nastavení je vyžadována podle délky přijatých dat.</td>
<td>Nastavení je nutné změnit na „Not specified (FFFFH)“ (Nespecifikováno (FFFFH)).</td>
</tr>
</tbody>
</table>
Provozní kontrola 1

Vyberte větu, která správně popisuje řídící signály RS-232, které se používají mezi modulem sériové komunikace a jeho zařízením 3. strany.

- Stav signálu lze zkontrolovat pomocí funkce „System Monitor“ (Monitor systému) programu GX Works2.
- Stav signálu lze zkontrolovat pomocí funkce „State Monitor“ (Monitor stavu) programu GX Works2.
- Stav signálu lze zkontrolovat pomocí funkce „Circuit Trace“ (Trasování obvodu) programu GX Works2.

Odpověď
Zpět
Provozní kontrola 2

Níže uvedená tabulka uvádí přehled odstraňování problémů se závadou datove komunikace mezi modulm sériové komunikace a jeho zařízením 3. strany. Vyberte správnou položku pro každou z možných příčin a nápravné opatření.

<table>
<thead>
<tr>
<th>Příznak</th>
<th>Externí zařízení odeslalo zprávu a zablikala kontrolka „RD“, ale nebyl zapnutý signál požadavku čtení (X3/XA) z modulu sériové komunikace.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Možná příčina</th>
<th>Ot. 1 (A) Dochází k chybě komunikace.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(B) Signál řazení přenosu v zařízení 3. strany je vypnutý.</td>
</tr>
<tr>
<td></td>
<td>(C) Komunikační protokol je nesprávně nastaven. Kód dokončení přijetí nebyl přidán zařízením 3. strany.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postup nápravv</th>
<th>Ot. 2 (D) Zkontrolujte kód chyby v monitoru systému a odstraňte příčinu chyby.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E) Pomocí monitoru stavu zkontrolujte, jestli je signál CS zapnutý.</td>
</tr>
<tr>
<td></td>
<td>(F) Zkontrolujte nastavení komunikačního protokolu. Pomocí funkce testování obvodu zkontrolujte odesílání/přijem dat.</td>
</tr>
</tbody>
</table>

Ot. 1 --Select-- ▼ Ot. 2 --Select-- ▼

Odpovědět Zpět
Funkce podpory předdefinovaného protokolu 1

Vyberte větu, která správně popisuje funkci podpory předdefinovaného protokolu.

- Tato funkce umožňuje komunikaci protokolu se zařízením 3. strany pomocí jednoduchých sekvenčních programů obsahujících vyhrazené instrukce.

- Tato funkce umožňuje automatickou analýzu parametrů komunikace odesílaných ze zařízení 3. strany, aby bylo možné vytvořit protokol vhodný pro toto zařízení 3. strany.
Závěrečný test 11

Funkce podpory předdefinovaného protokolu 2

Níže uvedené věty popisují „nekonverzní proměnnou“ a „konverzní proměnnou“. Pro každý popis vyberte správný výraz.

(1) Data jsou odesílána a přijímána bez konverze.:

---Select--

(2) Data jsou odesílána a přijímána po provedení konverze.

Tento proces konverze dat nevyžaduje sekvenční program a snižuje celkovou velikost programu a dobu programování.:

---Select--

Odpovědět Zpět
Test

Hodnocení testu

Počet správných odpovědí: 11

Celkový počet otázek: 11

Procento: 100%

Pokračovat Zkontrolovat

Gratulujeme. Úspěšně jste prošli v testu.
Dokončili jste kurz Sériová komunikace PLC.

Děkujeme za vaši účast v tomto kurzu.

Doufáme, že se vám lekce líbily a že informace získané v průběhu tohoto kurzu vám budou užitečné.

Celý kurz si můžete projít kolikrát chcete.

Zkontrolovat Zavřít