Tento kurz je dostupný jako součást systému školení on-line (e-školení), který umožňuje naučit se způsobu tvorby servosystému pomocí řady MELSERVO-J4.
Úvod

CÍL VÝUKY TOHOTO KURZU

Tento kurz je určen pro ty, kteří poprvé pracují na konstrukci servosystému pomocí řady MELSERVO-J4 a potřebují se naučit instalaci i zapojení takového systému a provádět další postupy až do zkušebního provozu a monitorování.

Předpokladem pro tento kurz jsou základní znalosti střídavých serv.

Začátečníkům doporučujeme absolvovat tento kurz:
• „Zařízení FA pro začátečníky (serva)“
Úvod

OSNOVA KURZU

Stručný obsah tohoto kurzu je uveden níže. Doporučujeme probírat kapitoly v daném pořadí počínaje 1. kapitolou.

1. kapitola – Výuka řady MELSERVO-J4
Tato kapitola popisuje vlastnosti, základní konfiguraci a sortiment výrobků řady MELSERVO-J4.

2. kapitola – Ukázkový systém a konfigurace zařízení
Tato kapitola popisuje způsob výběru servosystému a uvádí názvy dílů i jejich funkce.

3. kapitola – Instalace/zapojení servozesilovače a servomotoru
Tato kapitola popisuje instalaci/zapojení servozesilovače a servomotoru.

4. kapitola – Nastavení/spuštění servozesilovače
Tato kapitola popisuje způsob nastavení parametrů a postup zkušebního provozu pomocí MR Configurator2.

5. kapitola – Seřízení/údržba servozesilovače
Tato kapitola popisuje způsob kontroly provozu v ukázkovém systému s nainstalovanými servomotory.

6. kapitola – Funkce dodržování bezpečnosti a úspora energie
Tato kapitola popisuje funkce dodržování bezpečnosti a provoz s úsporou energie řady MELSERVO-J4.

SOUBORNÝ TEST
Známka složení testu: 60 % a vyšší.
<table>
<thead>
<tr>
<th>Úvod</th>
<th>Použití tohoto nástroje e-školení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přejít na další stranu</td>
<td>Přejdete na další stranu.</td>
</tr>
<tr>
<td>Zpět na předchozí stranu</td>
<td>Přejdete zpět na předchozí stranu.</td>
</tr>
<tr>
<td>Přejít na požadovanou stranu</td>
<td>Zobrazí se „Obsah“, jehož pomocí přejdete na požadovanou stranu.</td>
</tr>
<tr>
<td>Ukončit školení</td>
<td>Ukončíte školení. Dojde k zavření oken, jako jsou obrazovky „Obsah“ a školení.</td>
</tr>
</tbody>
</table>
Úvod

UPOZORNĚNÍ PRO POUŽITÍ

Bezpečnostní opatření

Používáte-li během tohoto kurzu některý z výrobků, přečtěte si bezpečnostní pokyny v příručce výrobku, který je používán, a také přijměte veškerá nezbytná bezpečnostní opatření k zajištění, že tento výrobek používáte řádným způsobem.

Opatření v tomto kurzu

- V závislosti na verzi softwaru, který používáte, se obrazovka skutečného produktu může lišit od příkladu obrazovky použitého ve vysvětlení v tomto kurzu.
 Níže jsou uvedeny software a verze, s nimiž se v tomto kurzu seznámíte.

 - MR Configurator2 Ver.1.12N
 - MRZJW3–MOTSZ111E Ver.C5

Referenční materiály

Níže je seznam referencí, jež souvisejí s těmaty v tomto kurzu. (Poznámka: uvedené referenční materiály nejsou nezbytně nutné, protože tento kurz lze absolvovat i bez jejich použití.) Kliknutím na název referenčního souboru jej stáhnete.

<table>
<thead>
<tr>
<th>Název reference</th>
<th>Formát souboru</th>
<th>Velikost souboru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzorový program</td>
<td>Komprimovaný soubor</td>
<td>9kB</td>
</tr>
</tbody>
</table>
1. kapitola Výuka řady MELSERVO-J4

V tomto kurzu se naučíte, jak navrhnout servosystém pomocí univerzálního střídavého serva MELSERVO-J4 (dále uváděného jen jako „MR-J4“) značky Mitsubishi.
Kapitola 1 nabízí přehled servosystému a příklady jeho použití, a zároveň se dozvíte o servomotorech servozesilovačích řady MR-J4.

1.1 Přehled servosystému

Servosystém se skládá z kontroléru servosystému, servozesilovače a servomotoru.

- Do servozesilovače je přiveden příkaz polohy z dat polohování, která jsou nastavena uživatelem.
- Vyberte z CPU pohybu, modulu jednoduchého pohybu a polohovacího modulu podle vhodnosti pro konkrétní použití.
- Pro pohon servomotoru je obdržen příkaz polohy z řízení servosystému.
- Konfigurační software MR Configurator2 slouží k nastavení a seřízení servozesilovače.
K pohonu hřídele servomotoru slouží napájení ze servozesilovače. Zároveň jsou data polohy, která detekuje kodér v motoru, přiváděna zpět do servozesilovače.

Vyberte servomotor, který se nejlépe hodí ke konkrétnímu použití.
Příklady použití servosystému

Příklady použití servosystému lze aplikovat na různé systémy, které vyžadují řízení polohy či rychlosti nebo jiné druhy řízení.

- Montážní lininky vozidel
- Systémy pro manipulaci s materiály

Funkce dodržování bezpečnosti zajišťují bezpečnost a ochranu

- Zařízení pro výrobu polovodičů
- Zařízení pro výrobu tekutých krystalů

K přesnému polohování slouží vizuální snímače

Dopravní linky lze snadno realizovat

Lineární serva realizují vícehlavou konfiguraci
1.3 Servozesilovač

Servozesilovače MR-J4 patří v tomto oboru mezi nejrychlejší a nejpřesnější serva. Podporují také širokou škálu motorů od rotačních servomotorů přes lineární servomotory až po motory s přímým pohonem.

1.3.1 Vlastnosti serva MELSERVO-J4

Servo MR-J4 má následující vlastnosti.

- Řízení servomotoru dosahuje špičkové odezvy díky proprietární architektuře. To pomáhá zkrátit dobu taktu zařízení a zvýšit přesnost.

Srovnání doby ustálení s předchozím modelem

MR-J3

Doba ustálení 23,6 ms

MR-J4

Doba ustálení 14,2 ms

* Výsledek je založen na naší podmínce hodnocení.

- Jsou standardně vybaveny enkodérem absolutních hodnot s vysokým rozlišením. To umožňuje vysoce přesné polohování a plynulé otáčení.

Srovnání rozlišení s předchozím modelem

Rozlišení 16x

18 bitů řady MR-J3 = 262,144 impulzů/ot.

Rozlišení 16x

4000000-impulz. enkodér

22 bitů řady MR-J4 = 4,194,304 impulzů/ot.
1.3.2 Vlastnosti serva MELSERVO-J4

- Rozšířená funkce ladění jedním dotykem
Zisky serva včetně filtru pro potlačení rezonanci stroje, rozšířeného řízení potlačení vibrací II* a robustního filtru jsou seřízeny pouhým zapnutím funkce ladění jedním dotykem. Pomocí funkce rozšířeného řízení potlačení vibrací je výkon stroje využíván naplně. Kliknutím na tlačítko ověřte opakující se pohyb.

* Rozšířené řízení potlačení vibrací II automaticky seřizuje jednu frekvenci.

- Příkaz
- Skutečná operace

Když je pohyb stroje nestabilní

Před

<table>
<thead>
<tr>
<th>Rychlost</th>
<th>Čas</th>
</tr>
</thead>
</table>

Seřízení robustního filtru a řízení potlačení vibrací jedním dotykem.

Po

<table>
<thead>
<tr>
<th>Rychlost</th>
<th>Čas</th>
</tr>
</thead>
</table>

Přesná shoda. Vysokorychlostní polohování.

Když je načasování pohybu zpožděné

Před

<table>
<thead>
<tr>
<th>Rychlost</th>
<th>Doba</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Doba ustálení</th>
<th>Čas</th>
</tr>
</thead>
</table>
1.3.2 Vlastnosti serva MELSERVO-J4

Když je načasování pohybu zpožděné

Před

Rychlost

Doba ustálení

Čas
1.3.3 Vlastnosti servo MELSERVO-J4

- Rozšířené řízení potlačení vibrací II
 Dvě nízkofrekvenční vibrace lze potlačit současně pomocí algoritmu k potlačení vibrací.
 Seřízení lze také provést jen jedním dotykom.
 Účinnost řízení lze prokázat u potlačení zbytkové vibrace na koncích ramen nebo tělesech zařízení.

Následující video uvádí případ, kde je rozšířeným řízením potlačení vibrací II potlačena zbytková vibrace – ta nastane, když je motor řízen pro polohování jednotky s 3osým inerciálním systémem se dvěma různými rezonancemi stroje v rámu a ramenu.

(Trvání: 01:14)
1.4 Typy servozesilovačů

V závislosti na příkazovém rozhraní existují dva následující typy servozesilovačů MR-J4.

- MR-J4-B • Servozesilovač kompatibilní se servosystémem vysokorychlostní synchronizované sítě „SSCNETIII/H“
- MR-J4-A • Servozesilovač kompatibilní s univerzálním rozhraním (např. analogový vstup nebo sled impulsů)

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Konfigurace systému</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompatibilní s SSCNET III/H</td>
<td></td>
</tr>
<tr>
<td>MR-J4-B</td>
<td>Lze připojit k CPU pohybu, modulu jednoduchého pohybu atd., který je vhodný pro víceosé synchronní řízení.</td>
</tr>
<tr>
<td></td>
<td>Rychlost přenosu/příjmu dat byla zvýšena více než 3krát oproti konvenčním metodám na plné duplexních 150 Mbps (rovná se 300 Mbps při polovičním duplexu). Tím se radikálně zvyšuje odezva systému.</td>
</tr>
<tr>
<td></td>
<td>Kompletně synchronní komunikace dosahuje zvýšeného výkonu zařízení.</td>
</tr>
<tr>
<td></td>
<td>Optická komunikace radikálně zvyšuje odolnost proti šumu.</td>
</tr>
<tr>
<td></td>
<td>V systému lze zapojit až 1600 m kabeláže.</td>
</tr>
<tr>
<td></td>
<td>V zapojení lze docílit značných úspor.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompatibilní s univerzálním rozhraním</td>
<td></td>
</tr>
<tr>
<td>MR-J4-A</td>
<td>Lze připojit ke generátoru impulsů, řízení polohování atd.</td>
</tr>
<tr>
<td></td>
<td>Podporován max. kmitočet příkazových impulsů 4 Mpps.</td>
</tr>
<tr>
<td></td>
<td>Příkazy analogového napětí jsou také podporovány.</td>
</tr>
<tr>
<td></td>
<td>Řízení rychlosti či řízení točivého momentu je také povoleno příkazy analogového napětí.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pro řízení dvou, resp. tří servomotorů je také k dispozici 2osý servozesilovač MR-J4W2-B a 3osý servozesilovač MR-J4W3-B.
1.4.1 Sestava servozesilovačů

Zde představíme sortiment servozesilovačů MR-J4.

<table>
<thead>
<tr>
<th>Servozesilovač</th>
<th>Počet os</th>
<th>Specifikace napájecího zdroje</th>
<th>Příkazové rozhraní</th>
<th>Režim řízení</th>
<th>Kapacita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSCNET IIIH</td>
<td></td>
<td>0.1kW</td>
</tr>
<tr>
<td>MR-J4-B</td>
<td>1</td>
<td>1fázový 100 V AC</td>
<td>○</td>
<td>○</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Uvolnění v budoucnu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR-J4W2-B</td>
<td>2</td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>MR-J4W3-B</td>
<td>3</td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>MR-J4-A</td>
<td>1</td>
<td>1fázový 100 V AC</td>
<td>○</td>
<td>○</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Uvolnění v budoucnu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(per Juní, 2013)
1.5 Servomotor

Rotačních a lineárních servomotory disponují vysokorychlostním, velmi přesným polohováním. Existují ale také motory s přímým pohonem, které jsou ideální pro použití v podmínkách malých rychlostí a velkého točivého momentu.

1.5.1 Sestava rotačních servomotorů

Zde představíme sortiment rotačních servomotorů.

<table>
<thead>
<tr>
<th>Řada rotačních servomotorů</th>
<th>Jmenovitá rychlost (maximální otáčky) [ot./min]</th>
<th>Specifikace napájecího zdroje</th>
<th>Vlastnosti</th>
<th>Jmenovitý výstup</th>
<th>Příklady použití</th>
</tr>
</thead>
</table>
| Řada HG-KR | 3000 (6000) | 3fázový 200 V AC | Nízká setrvačnost Perfektní pro obecné průmyslové stroje. | 0.05 0.75 | • Řemenové pohony
• Roboty
• Montážní stroje
• Šicí stroje
• Souřadnicové stoly
• Stroje na zpracování potravin
• Zařízení pro výrobu polovodičů
• Pletací a vyšívací stroje |
| Řada HG-MR | 3000 (6000) | 3fázový 200 V AC | Ultránízká setrvačnost Dobře se hodí pro provozy s vysokou propustností. | 0.05 0.75 | • Vsazovače
• Montážní stroje |
| Řada HG-SR | 1000 (1500) | 3fázový 200 V AC | Střední setrvačnost Tato řada je dostupná se 2 imennitvými | 0.5 4.2 | • Systémy pro manipulaci s materiály
• Roboty
• Souřadnicové stoly |
| | 2000 (3000) | | | 0.5 7.0 | |
1.5 Servomotor

<table>
<thead>
<tr>
<th>Řada HG-SR</th>
<th>1000 (1500)</th>
<th>3fázový 200 V AC</th>
<th>Střední setrvačnost</th>
<th>0.5</th>
<th>4.2</th>
<th>• Systémy pro manipulaci s materiály</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 (3000)</td>
<td>3fázový 200 V AC</td>
<td>Tato řada je dostupná se 2 jmenovitými rychlostmi.</td>
<td>0.5</td>
<td>7.0</td>
<td>• Roboty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3fázový 400 V AC</td>
<td></td>
<td></td>
<td></td>
<td>• Souřadnicové stoly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Řada HG-JR</th>
<th>3000 (6000: 0,5 až 5 kW 5000: 7, 9 kW)</th>
<th>3fázový 200 V AC</th>
<th>Nízká setrvačnost</th>
<th>0.5</th>
<th>9.0</th>
<th>• Stroj na balení potravin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500 (3000: 11, 15 kW 2500: 22 kW)</td>
<td>3fázový 400 V AC</td>
<td>Dobře se hodí pro provozy s vysokou propustností a velkým zrychlením/zpomalením.</td>
<td>11</td>
<td>22</td>
<td>• Tiskařské stroje</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Řada HG-RR</th>
<th>3000 (4500)</th>
<th>3fázový 200 V AC</th>
<th>Střední setrvačnost</th>
<th>1.0</th>
<th>5.0</th>
<th>• Systémy pro manipulaci s materiály s ultravysokou propustností</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Řada HG-UR</th>
<th>2000 (3000: 0,75 až 2 kW 2500: 3,5, 5 kW)</th>
<th>3fázový 200 V AC</th>
<th>Plochý typ</th>
<th>0.75</th>
<th>5.0</th>
<th>• Roboty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Díky ploché konstrukci je tato jednotka vhodná v situacích, kde je omezen instalační prostor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Stroje na zpracování potravin</td>
</tr>
</tbody>
</table>
Sestava lineárních servomotorů

Zde představíme sortiment lineárních servomotorů.

<table>
<thead>
<tr>
<th>Řada lineárních servomotorů</th>
<th>Maximální rychlost</th>
<th>Metoda chlazení</th>
<th>Vlastnosti</th>
<th>Tah</th>
<th>Příklady použití</th>
</tr>
</thead>
</table>
| Řada LM-H3 | 3.0 | Přirozené chlazení | Hodí se pro úsporu prostoru. Kompaktní rozměry a vysoký tah. | 70 960 Kontinuální 175 2400 Maximální | • Systémy pro montáž polovodičů
 • Systémy pro čištění plátků
 • Stroje k sestavování LCD
 • Manipulace s materiály |
| Řada LM-F | 2.0 | Přirozené chlazení | Kompaktní rozměry. Integrovaný systém kapalinového chlazení zdvojnásobuje kontinuální tah. | 300 3000 Kontinuální
 1800 1800 Maximální | • Nakladače archů
 • Obráběcí stroje NC
 • Manipulace s materiály |
| Řada LM-K2 | 2.0 | Kapalinové chlazení | Vysoká denzita tahu. Díky struktuře reakční síly magnetické přitažlivosti je možná delší životnost lineárních vodítek a nižší hlučnost. | 120 2400 Kontinuální
 300 6000 Maximální | • Systémy pro montáž polovodičů
 • Systémy pro čištění plátků
 • Stroje k sestavování LCD |

Typ s jádem
1.5.2 Sestava lineárních servomotorů

<table>
<thead>
<tr>
<th>Typ bez jádra</th>
<th>Řada LM-U2</th>
<th>Přirozené chlazení</th>
<th>Žádná nerovnoměrnost chodu ani malé kolísání rychlosti. Absence struktury magnetické přitažlivé síly produkuje životnost lineárních vodítek.</th>
<th>50</th>
<th>800</th>
<th>Kontinuální</th>
<th>150</th>
<th>3200</th>
<th>Maximální</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Šířitové systémy
- Škenovací expoziční systémy
- Systémy kontroly
- Manipulace s materiály
Sestava motorů s přímým pohonem

Zde představíme sortiment motorů s přímým pohonem.

<table>
<thead>
<tr>
<th>Řada motorů s přímým pohonem</th>
<th>Jmenovitá rychlost (maximální otáčky) [r/min]</th>
<th>Vnější průměr motoru [mm]</th>
<th>Vlastnosti</th>
<th>Točivý moment</th>
<th>Příklady použití</th>
</tr>
</thead>
<tbody>
<tr>
<td>Řada TM-RFM</td>
<td></td>
<td></td>
<td></td>
<td>1N·m 10N·m 100N·m 1000N·m</td>
<td></td>
</tr>
</tbody>
</table>
| | 200 (500) | φ130 | • Hodí se pro operace s malou rychlostí a velkým tahem.
• Plynulý provoz a nižší hlucnost.
• Nízkoprofilový návrh motoru přispívá ke skladné konstrukci a nízkému těžišti a tím ke zlepšení stability stroje.
• Kompatibilní s čistým provozem. | 2 6 6 18 | Jmenovitá
Maximální |
| | 200 (500) | φ180 | | 6 18 54 | Zařízení pro výrobu polovodičů
Zařízení pro výrobu tekutých krystalů
Obráběcí stroje |
| | 200 (500) | φ230 | | 12 72 36 216 | |
| | 100 (200) | φ330 | | 40 240 120 720| |
1.6 **Kombinace servozesilovače / servomotoru**

Zde představíme kombinace servomotorů a servozesilovačů MR-J4.

- **●**: Kompatibilní
- **O**: Dostupné v budoucnu
- **-**: Nekompatibilní

<table>
<thead>
<tr>
<th>Servozesilovač</th>
<th>Specifikace napájecího zdroje</th>
<th>Rotační servomotor</th>
<th>Lineární servomotor</th>
<th>Motor s přímým pohonem</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR-J4-B</td>
<td>1fázový 100 V AC</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>3fázový 400 V AC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MR-J4W2-B</td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>MR-J4W3-B</td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>MR-J4-A</td>
<td>1fázový 100 V AC</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3fázový 200 V AC</td>
<td>●</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3fázový 400 V AC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(stav k červnu 2013)
1.7 Systém detekce absolutní polohy

Řada MR-J4 používá absolutní enkodér, aby bylo možné snadno zkonstruovat systém detekce absolutní polohy.

U běžných přírůstkových systémů nešlo při vypnutí napájení detekovat ani ukládat do paměti polohu a rychlost otáčení. Takže kdykoli bylo zapnuto napájení servosystému, např. při spuštění systému či obnovení po chybné funkci nebo výpadku napájení, byla nutná operace najetí na výchozí polohu (návrat do výchozí polohy).

Nicméně u systémů detekce absolutní polohy lze při vypnutí napájení detekovat i ukládat do paměti polohu a rychlost otáčení. Takže je-li výchozí poloha nastavena při úvodní operaci, lze provoz obnovit, aniž by bylo potřeba provádět návrat do výchozí polohy. Díky tomu lze zkrátit dobu obnovení po chybné funkci nebo výpadku napájení.

Při konstrukci systému detekce absolutní polohy pomocí řady MR-J4 je pro uložení dat absolutní polohy potřeba bateriová jednotka.

Kliknutím na příslušné tlačítko níže spustíte animaci pro zobrazení toho, jak funguje „systém detekce absolutní polohy“ a „Přírůstkový systém“.
1.7 Systém detekce absolutní polohy

Přírůstkový systém

Daya HIDUP
1.8 Postup oživení servosystému

Následující schéma ukazuje postup pro oživení servosystému. V tomto kurzu se naučíte postup od „(1) Výběr“ až do „(5) Seřízení“.

(1) Výběr servozesilovače/servomotoru .. 2. kap.

(2) Instalace/zapojení servozesilovače/servomotoru .. 3. kap.

(3) Nastavení/spuštění servozesilovače
 • Nastavení parametrů
 • Kontrola zapojení servozesilovače/servomotoru
 • Zkušební provoz

(4) Provoz bez motoru připojeného ke kontroléru .. 4. kap.

(5) Seřízení servozesilovače upevněného na stroji .. 5. kap.
1.9 **Souhrn**

V této kapitole jste se naučili:

- Vlastnosti serva MELSERVO-J4
- Sestava servozesilovačů
- Sestava servomotorů
- Systém detekce absolutní polohy
- Postup oživení servosystému

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumávejte a zajistěte, abyste se seznámili s jejich obsahem.

| Vlastnosti serva MELSERVO-J4 | • Algoritmus pro řízení serv je založen na proprietární architektuře a slouží k dosažení v oboru nejrychlejší a nejvyšší přesnosti.
 | • Rotační servomotor disponuje absolutním enkodérem 4,194,304 imp./ot. (22bitový), který umožňuje vysoce přesné polohování a plynulé otáčení. |
|-------------------------------|--|
| Systém detekce absolutní polohy | • U systému detekce absolutní polohy, je-li nastavena výchozí poloha při úvodním spuštění zařízení, systém vykompenzuje posun polohy. Proto není po opětovném zapnutí napájení nutný návrat do výchozí polohy. |
2. kapitola Ukázkový systém a konfigurace zařízení

2.1 Ukázkový systém

V tomto kurzu se jako ukázkový systém naučíte souřadnicový stůl.
V následujícím souboru PDF si ověřte schéma vzoru provozu a specifikace stroje.

Podrobnosti ukázkového systému <PDF>
2.2 Výběr kapacity servomotoru

Nejprve musíte vybrat optimální kapacitu servozesilovače/servomotoru pro použití v ukázkovém systému. Ke zvolení kapacity slouží Software pro výběr kapacity střídavého serva (freeware).

Software pro výběr kapacity střídavého serva

- Po nastavení specifikací stroje a vzoru provozu lze vybrat optimální servozesilovač, servomotor a volbu rekuperační jednotky.
- K dispozici je také nabídka pro výběr lineárních servomotorů a motorů s přímým pohonem.
- Podporováno je deset typů konfigurací zařízení, jako jsou horizontální kuličkový šroub, vertikální kuličkový šroub, ozubnice s pastorkem a válečkové podávací zařízení.

Na další obrazovce zkusíme provést výběr pomocí Software pro výběr kapacity střídavého serva.

Software pro výběr kapacity MRZW3-MOTS111E Ver.C5

* Software pro výběr kapacity lze stáhnout zdarma. O další informace požádejte místní obchodní zastoupení.
2.2 Výběr kapacity servomotoru

Amplifier: MR-J4-A/B
Motor: HG-KR 3000 r/min

Sizing Result

Motor: HG-KR053 [50 W]
Amplifier: MR-J4-10A/B
Regeneration needless
Side-by-side mounting is possible.

Load Inertia: 0.470 [kg-cm²] 10.4 Times
Peak Torque: 0.323 [N-m] 201.9%
RMS Torque: 0.084 [N-m] 52.2%
Regen. Pwr.: 0.000 [W] 0.0%

The sizing software calculated the system equations and can only be used as a guide. Independently ensure the design has suitable parameters.

Dojde k zobrazení výsledku výpočtu. Kliknutím na přejdete k další obrazovce.
2.3 Konfigurace zařízení

Zkonstruujte ukázkový systém podle následujícího postupu. Následující text uvádí diagram konfigurace zařízení a seznam pro ukázkový systém.

<table>
<thead>
<tr>
<th>Model</th>
<th>Název modelu</th>
<th>Počet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolér</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesor CPU kontroléru PLC</td>
<td>Q04UDEHCPU</td>
<td>1</td>
</tr>
<tr>
<td>Modul napájecího zdroje</td>
<td>Q62P</td>
<td>1</td>
</tr>
<tr>
<td>Hlavní základní jednotka</td>
<td>Q35DB</td>
<td>1</td>
</tr>
<tr>
<td>Modul vstupu</td>
<td>QX40</td>
<td>1</td>
</tr>
<tr>
<td>Modul výstupu</td>
<td>QY41P</td>
<td>1</td>
</tr>
<tr>
<td>Řízení servosystému (modul jednoduchého pohybu)</td>
<td>QD77MS2</td>
<td>1</td>
</tr>
<tr>
<td>Servozesilovač</td>
<td>MR-J4-10B</td>
<td>2</td>
</tr>
<tr>
<td>Servomotor</td>
<td>HG-KR053</td>
<td>2</td>
</tr>
<tr>
<td>Napájecí kabel servomotoru</td>
<td>MR-PWS1CBL2M-A2-L</td>
<td>2</td>
</tr>
<tr>
<td>Kabel enkodéru</td>
<td>MR-J3ENCBL2M-A2-L</td>
<td>2</td>
</tr>
<tr>
<td>Kabel SSCNET III</td>
<td>MR-J3BUS1M</td>
<td>2</td>
</tr>
<tr>
<td>Sada konektorů</td>
<td>MR-CCN1</td>
<td>2</td>
</tr>
<tr>
<td>Baterie</td>
<td>MR-BAT6V1SET</td>
<td>2</td>
</tr>
<tr>
<td>Komunikační kabel počítače PC (kabel USB)</td>
<td>MR-J3USBCBL3M</td>
<td>1</td>
</tr>
<tr>
<td>Software nastavení</td>
<td>MR Configurator2</td>
<td>1</td>
</tr>
</tbody>
</table>

Jistič (MCCB) a magnetický stykač (MC) jsou potřeba zvlášť.
2.4 Bezpečná tvorba ukázkového systému

Přezkoumáme bezpečnostní opatření v místech, které jsou navržena pro spolehlivé zastavení systému v nouzových situacích, aby nedocházelo k poškození zařízení či chybné funkci a nehodám při výskytu problémů v systému.

Klikněte na tlačítko obvodu, o němž se chcete dozvědět více. (Kliknutím na tlačítko „Zobrazit všechny obvody“ zobrazíte zařízení bezpečnostních opatření u všech obvodů.)
2.5 Servozesilovač

2.5.1 Úvod do názvů a funkcí dílů servozesilovače

Názvy a funkce servozesilovače „MR-J4-10B“ se naučíte pomocí příkladu.

<table>
<thead>
<tr>
<th>Č.</th>
<th>Název/použití</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Displej 3číslicový sedmisegmentový displej LED ukazuje stav serva a číslo alarml.</td>
</tr>
<tr>
<td>2</td>
<td>Otočný přepínač nastavení osy (SW1) Slouží k nastavení čísla osy servozesilovače.</td>
</tr>
<tr>
<td>3</td>
<td>Přepínač nastavení osy řízení (SW2) K dispozici jsou volba zkušebního provozu, volba nastavení deaktivace osy řízení a volba nastavení čísla pomocné osy.</td>
</tr>
<tr>
<td>4</td>
<td>Konektor komunikace USB (CN5) Slouží k připojení počítače PC.</td>
</tr>
<tr>
<td>5</td>
<td>Konektor signálů I/O (CN3) Slouží k připojení signálů digitálního I/O.</td>
</tr>
<tr>
<td>6</td>
<td>Konektor signálů vstupu STO (CN8) Slouží k připojení jednotky bezpečnostní logiky MR-J3-D05 a relé externí bezpečnosti.</td>
</tr>
<tr>
<td>7</td>
<td>Konektor kabelu SSCNET III (CN1A) Slouží k připojení řadiče servosystému nebo servozesilovače předchozí osy.</td>
</tr>
<tr>
<td>8</td>
<td>Konektor výstupu napájení servomotoru (CNP3) Slouží k připojení servomotoru.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Č.</th>
<th>Název/použití</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Konektor enkodéru (CN2) Slouží k připojení kodéru servomotoru.</td>
</tr>
<tr>
<td>10</td>
<td>Konektor baterie (CN4) Slouží k připojení baterie pro zálohovat dat absolutní polohy.</td>
</tr>
<tr>
<td>11</td>
<td>Držák baterie Slouží k instalaci baterie pro zálohovat dat absolutní polohy.</td>
</tr>
<tr>
<td>12</td>
<td>Konektor ochranné země (PE) Slouží k připojení uzemnění</td>
</tr>
<tr>
<td>13</td>
<td>Konektor napájecího zdroje hlavního obvodu (CNP1) Slouží k připojení napájecího zdroje.</td>
</tr>
<tr>
<td>14</td>
<td>Štítek hodnot</td>
</tr>
<tr>
<td>15</td>
<td>Napájecí zdroj řidičího obvodu (CNP2) Slouží k připojení napájecího zdroje řidičího obvodu a rekuperační jednotky.</td>
</tr>
<tr>
<td>16</td>
<td>Konektor výstupu napájení servomotoru (CNP3) Slouží k připojení servomotoru.</td>
</tr>
</tbody>
</table>
2.5 Servozesilovač

| (7) | Konektor kabelu SSCNET III (CN1A)
Slouží k připojení řadiče servosystému nebo servozesilovače předchozí osy. |
| (8) | Konektor kabelu SSCNET III (CN1B)
Slouží k připojení servozesilovače další osy. U poslední osy nasadte krytku. |
| (16) | Konektor výstupu napájení servomotoru (CNP3)
Slouží k připojení servomotoru. |
| (17) | Indikátor nabíjení
Rozsvítí se v případě nabíjení hlavního obvodu.
Když tento indikátor svítí, nepřepojujte kably. |
2.5.2 Jednotka zobrazení pro servozesilovač

Displej pro servozesilovač je uveden níže. (Pro servozesilovač modelu MR-J4-B)

Displej používá sedmisegmentové diody LED pro indikaci podmínek os serva a upozornění na alamy.

(1) Normální zobrazení
Při absenci alarmu se zobrazují šťedavě č. osy a prázdny displej.

(2) Zobrazení alarmu
Při výskytu alarmu se zobrazují střídavě číslo alarmu (dvě číslice) a detail alarmu (jedna číslice) a zobrazení stavu. Např. následující alarm ukazuje výskyt [AL. 32 Nadproud].
2.5.2 Jednotka zobrazení pro servozesilovač

Stav (1 číslice)
Č. osy (2 číslice)

„b“: Indikuje stav připraven vyp. a servo vyp.
„C“: Indikuje stav připraven zap. a servo vyp.
„d“: Indikuje stav připraven zap. a servo zap.

Stav (1 číslice)
Č. osy (2 číslice)
Č. alarmu (2 číslice)
Detail alarmu (1 číslice)

„n“: Označuje výskyt alarmu.
2.6 Úvod do názvů dílů servomotoru

Názvy servomotoru "HG-KR053" se naučíte pomocí příkladu.

- Napájecí konektor
- Konektor enkodéru
- Hřídel servomotoru
- enkodér
2.7 Souhrn

V této kapitole jste se naučili:

- Výběr kapacity servosystému
- Konfigurace zařízení servosystému
- Bezpečná konstrukce ukázkového systému
- Úvod do názvů a funkcí dílů servozesilovače
- Úvod do názvů dílů servomotoru

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumejte a zajistěte, abyste se seznámili s jejich obsahem.

<table>
<thead>
<tr>
<th>Výběr kapacity servosystému</th>
<th>Vyberte kombinaci servozesilovače a servomotoru, která je v rámci vhodného rozsahu kapacity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfigurace zařízení servosystému</td>
<td>Vyberte kontrolér, servozesilovač, servomotor, kably atd. podle specifikace systému, jenž má být zkonstruován, a které má servosystém obsahovat.</td>
</tr>
<tr>
<td>Bezpečná konstrukce ukázkového systému</td>
<td>Zrealizujeme bezpečnostní opatření v místech, které jsou navržena pro spolehlivé zastavení systému v nouzových situacích, aby nedocházelo k poškození zařízení či chybné funkci a nehodám.</td>
</tr>
<tr>
<td>Úvod do názvů a funkci dílů servozesilovače</td>
<td>Servozesilovače obsahují displej, díl nastavení osy, rozhodnout, držák baterie a indikátor nabíjení.</td>
</tr>
<tr>
<td>Úvod do názvů dílů servomotoru</td>
<td>Servomotory obsahují konektor napájecího zdroje, hřídel servomotoru, konektor enkodéru a enkodér.</td>
</tr>
</tbody>
</table>
3. kapitola Instalace/zapojení

3.1 Instalace servozesilovačů

Zkontrolujte orientaci a prostor pro instalaci okolo MR-J4-10B.

- **Instalace jednoho servozesilovače**

 Skřín

 10 mm (0,39") a více

 10 mm (0,39") a více

 40 mm (1,57") a více

 Místo pro kabeláž (80 mm (3,15") a více)

 Horní část

 Dolní část

- **Instalace dvou a více servozesilovačů**

 Skřín

 1 mm (0,04") a více

 100 mm (3,94") a více

 1 mm (0,04") a více

 30 mm (1,18") a více

 40 mm (1,57") a více

Upozornění

- Namontujte servozesilovač na svislou stěnu a zajistěte správnou orientaci s horní stranou nahoru a dolní směrem dolů.
- Použijte jej v prostředí s teplotou místnosti v rozsahu 0 až 55 °C (32 až 131 °F).
- Použijte ventilátor k prevenci přehřátí systému.
- Zajistěte, aby se do servozesilovače při montáži nebo z ventilátoru chlazení nedostaly žádné cizí předměty ani materiál.
- Při instalaci servozesilovačů v místech s toxickými plyny či prachem zajistěte čištění vzduchu (přívádějte čistý vzduch do skříně z vnějšího, aby byl vnitřní tlak větší než vnější).

Upozornění

- Při instalaci servozesilovačů blízko sebe zajistěte 1mm odstupy mezi sousedními servozesilovači a vezměte v potaz montážní tolerance.
 V tomto případě udržujte teplotu okolí v rozsahu 0 až 45 °C (32 až 113°F) nebo použijte servo-zesilovač s efektivním poměrem zatižení 75 % a nižším.
3.2 **Uzemnění servozesilovače**

Před zapojením napájecího zdroje uzemněte servozesilovač a servomotor. Servozesilovač i servomotor spolehlivě uzemněte jako opatření k prevenci šumu a úrazu elektrickým proudem.

- Zajistěte připojení konektoru ochranné země zesilovače k ochranné zemi skříně, aby nedošlo k úrazu elektrickým proudem.
- Podle toho, kudy je vedena kabeláž a jak je provedeno uzemnění, má na servozesilovače vliv šum spínání z tranzistorů. Takže pro uzemnění viz níže uvedené schéma.

![Schéma uzemnění servozesilovače](image)

Zajistěte připojení vodiče ke konektoru PE servozesilovače. Vodič nepřipojujte přímo k uzemnění skříně.

Připojte zemní vodič ze servomotoru ke konektoru ochranné země (PE) servozesilovače. Uzemnění proveďte připojením konektoru ochranné země (PE) servozesilovače k ochranné zemi (PE) skříně.
3.3 Zapojení signálů externího I/O k servozesilovači

Zapojte zařízení externích I/O ke konektoru signálů I/O (model: MR-CCN1).
Připojte již zapojený konektor signálů I/O ke konektoru CN3 na servozesilovači.

Schéma zapojení signálů pro konektor signálů I/O je uveden níže.
Následující text uvádí pouze zařízení externího I/O používané v tomto kurzu.
Podrobnosti o jiných zařízení viz příslušné příručky.

<table>
<thead>
<tr>
<th>Č. kolíku</th>
<th>Symbol</th>
<th>Funkce/použití</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>EM2</td>
<td>Zapojuje spínáč nuceného zastavení.</td>
</tr>
<tr>
<td>2</td>
<td>DI1</td>
<td>Zapojuje spínáč horní meze zdvihu hardwaru.</td>
</tr>
<tr>
<td>12</td>
<td>DI2</td>
<td>Zapojuje spínáč dolní meze zdvihu hardwaru.</td>
</tr>
<tr>
<td>19</td>
<td>DI3</td>
<td>Vodiče s čidlem přítomnosti.</td>
</tr>
<tr>
<td>15</td>
<td>ALM</td>
<td>Provádí výstup signálu alarmu. Připojuje k externí sekvenci pro změnu stavu magnetického stykače (MC) na ZAP./VYP. pomocí signálu alarmu.</td>
</tr>
<tr>
<td>5</td>
<td>DICOM</td>
<td>Vstup 24VDC (24VDC±10% 0.3A) pro rozhraní I/O. Kapacita napájecího zdroje je liší v závislosti na počtu bodů na rozhraní I/O, které mají být použity. Připojuje externí napájecí zdroj 24V (+).</td>
</tr>
</tbody>
</table>
Zapojení signálů externího I/O k servozesilovači

Schéma z pohledu části zapojení konektoru

<table>
<thead>
<tr>
<th>5</th>
<th>DICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DOCOM</td>
</tr>
</tbody>
</table>

Vstup 24VDC (24VDC±10% 0.3A) pro rozhraní I/O. Kapacita napájecího zdroje se liší v závislosti na počtu bodů na rozhraní I/O, které mají být použity. Připojuje externí napájecí zdroj 24 V= (+).

Společný konektor pro EM1 a další vstupní signály

Kompatibilita zapojení kolektoru/emitoru

Podporováno je kolektorové i emitorové zapojení digitálních vstupů a výstupů

Příklad digitálního vstupu

Podporován je kolektor i emitor
3.4 Připojení servozesilovače k servomotoru

Upozornění
- Fáze (U/V/W) napájecího zdroje servomotoru a servozesilovače připojte správně. Nesprávné připojení fází způsobí chybnou funkci servomotoru.
- Servozesilovač připojte k servomotoru pomocí vyhrazeného kabelu. Mezi zesilovač a motor také nepřipojte výkonový kondenzátor, filtr ani magnetický stykač (MC) atd.
- Připojte zemnicí vodič ze servomotoru ke konektoru ochranné země (PE) servozesilovače. Podrobnosti o uzemnění viz položka 3.2.
3.5 Zapojení napájecího zdroje servozesilovače

Napájecí zdroj připojte k servozesilovači na dvou místech – pro hlavní a řídicí obvod.
Pro vodiče vstupu napájecího zdroje vždy používejte jistíč v lisovaném pouzdru (MCCB).
Zároveň vždy zapojte magnetický stykač (MC) mezi napájecí zdroj hlavním obvodem a konektory L1, L2 a L3 servozesilovače tak, aby vypnul stykače vypnulo napájecí zdroj hlavního obvodu v případě, když je signál alarma či signál vstupu nuceného zastavení v nevodivém stavu.

Následující příklad ukazuje zapojení MR-J4-10B.

![Diagram zápojení napájecího zdroje servozesilovače](image)
3.6 Rozhraní SSCNET III/H

Zde se dozvíte, jak zapojit servozesilovače společně.
Servozesilovač MR-J4-B disponuje rozhraním SSCNET III/H.
Rozhraní SSCNET III/H nabízí vysokorychlou, plně duplexní komunikaci s výbornou tolerancí vůči šumu pomocí optického komunikačního systému.
Pro toto připojení se používají vyhrazené kably. Kably jsou opatřeny konektory, aby mohly být snadno připojeny či odpojeny.

Při manipulaci s kabelem SSCNET III zajistěte, abyste pečlivě dodržovali níže uvedená opatření.
- Nevystavujte kabel napnutí či bočnímu tlaku, neohybejte jej pod úhlem, nekrutěte s ním ani za něj netahejte. Jinak dojde k deformaci či zlomení vnitřních optických vláken a tím k nedostupnosti optického přenosu.
- Optický kabel nevystavujte blízkosti ohně ani vysokým teplotám, neboť je vyroben ze syntetické pryskyřice. Ta se může zahráti a tím způsobit nedostupnost optické komunikace.
- Nenechte usadit nečistoty ani jiné cizí předměty na žádném konci optického kabelu, protože může dojít k blokování přenosu světla a tím k chybné funkci zařízení.
- Nezkoušejte se dívat přímo na výstup světla z konců konektorů ani kabelů.
• Nezkoušejte se dívat přímo na výstup světla z konců konektorů ani kabelů.
• Z bezpečnostních a ochranných důvodů nasadte přiložené krytky na nepoužité konektory (CN1B) v servozesilovači poslední osy, aby blokovaly vyzařované světlo.
3.7 Upevnění bateriové jednotky pro systém detekce absolutní polohy

Při použití systému detekce absolutní polohy je pro uložení dat absolutní polohy potřeba baterie. Aby nedošlo k úrazu elektrickým proudem či ztráte dat absolutní polohy při připojení (nebo výměně) baterie u servozesilovače, věnuje pozornost těmto informacím.

- Pro prevenci úrazu elektrickým proudem nechte servozesilovač stát po dobu nejméně 15 minut po vypnutí napájecího zdroje hlavního obvodu, potom ověřte zhasnutí indikátoru nabíjení. Před připojením baterie ověřte napětí mezi konektory P(+) a N(-) pomocí zkoušečky napětí nebo jiného nástroje.
- Odpojení kabelu enkodéru odstraní data absolutní polohy. Po odpojení kabelu enkodéru zajistěte provedení návratu do výchozí polohy.

V tomto příkladu připojte k MR-J4-10B.

Nainstalujte baterii a zasuňte zástrčku do konektoru CN4.

Baterie

Indikátor nabíjení

U servozesilovače, který má držák baterie na dolní straně, nelze zapojit uzemnění s nainstalovanou baterií. Baterii vložte po provedení zapojení uzemnění servozesilovače.
3.8 **Nastavení č. osy**

U servozesilovače nastavte číslo osy řízení serva pomocí kombinace nastavení pro otočný přepínač nastavení osy (SW1) a přepínače nastavení osy řízení (SW2), které jsou umístěny uvnitř krytu displeje na servozesilovači.

![Diagram s nastavením servozesilovače](image)

Po provedení jakékoliv změny pomocí otočného přepínače nastavení osy (SW1) a přepínače nastavení osy řízení (SW2) zajistěte restart napájení hlavního obvodu i řídícího obvodu servozesilovače.
3.9 Zapnutí napájení servozesilovače

Zapněte napájecí zdroj hlavního obvodu i řídícího obvodu servozesilovače. Po spuštění servozesilovače se na displeji zobrazí „Ab“ (pohotovostní režim ZAP. napájení kontroléru servosystému).
Servozesilovač nastavte a spusťte v tomto stavu, protože není zapnuté napájení řízení servosystému.

Přepněte napájení servozesilovače na ON.

Na displeji se zobrazí „Ab“
3.10 Souhrn

V této kapitole jste se naučili:

- Instalace servozesilovače
- Uzemnění servozesilovače
- Zapojení signálů externího I/O k servozesilovači
- Připojení servozesilovače k servomotoru
- Zapojení napájecího zdroje servozesilovače
- Připojení SSCNET III/H
- Upevnění bateriové jednotky pro systém detekce absolutní polohy
- Nastavení č. osy
- Zapnutí napájení servozesilovače

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumejte a zajistěte, abyste se seznámili s jejich obsahem.

| Instalace servozesilovače | · Namontujte servozesilovač na svislou stěnu a zajistěte správnou orientaci s horní stranou nahoru a dolní směrem dolů.
| · Používejte jej v prostředí s teplotou místnosti v rozsahu 0 až 55 °C (32 až 131 °F). (V rozsahu 0 až 45 °C (32 až 113 °F) v případě použití servozesilovačů upevněných blízko sebe.)
| · Používejte ventilátor k prevenci přehřátí systému.
| · Zajistěte, aby se do servozesilovače při montáži nebo z ventilátoru chlazení nedostaly žádné cizí předměty ani materiál.
| · Při instalaci servozesilovačů v místech s toxickými plyny či prachem zajistěte čištění vzduchu.
| · Při instalaci servozesilovačů blízko sebe zajistěte 1mm odstupy mezi sousedními servozesilovači a vezměte v potaz montážní tolerance. |
| Uzemnění servozesilovače | · Servozesilovač i servomotor spolehlivě uzemněte jako opatření k prevenci šumu a úrazu elektrickým proudem.
| · Zajistěte připojení konektoru ochranné země zesilovače k ochranné zemi skříně, aby nedošlo k úrazu elektrickým proudem. |
3.10 Souhrn

| Uzemnění servozesilovače | Servozesilovač i servomotor spolehlivě uzemněte jako opatření k prevenci šumu a úrazu elektrickým proudem.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zajistěte připojení konektoru ochranné země zesilovače k ochranné zemi skříně, aby nedošlo k úrazu elektrickým proudem.</td>
</tr>
</tbody>
</table>

| Zapojení napájecího zdroje servozesilovače | Napájecí zdroj je připojen k servozesilovači pomocí konektorů pro napájení hlavního obvodu a napájení řídicího obvodu.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pro vodiče vstupu napájecího zdroje vždy použivejte jistič v lisovaném pouzdru (MCCB).</td>
</tr>
</tbody>
</table>

| Připojení SSCNET III/H | Toto připojení nabízí vysokorychlostní, plně duplexní komunikaci s výbornou tolerancí vůči šumu pomocí optického komunikačního systému.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pro toto připojení se používají vyhrazené kabely.</td>
</tr>
</tbody>
</table>

| Upevnění baterie pro systém detekce absolutní polohy | Pro uložení dat absolutní polohy je potřeba baterie. Aby nedošlo k úrazu elektrickým proudem či ztrátě dat absolutní polohy při připojování (nebo výměně) baterie u servozesilovače, dbejte na informace v bodu 3.7. |

| Nastavení č. osy | U servozesilovače lze nastavit až 16 os řízení pomocí kombinace nastavení pro otočný přepínač nastavení osy a přepínač nastavení osy řízení, které jsou umístěny uvnitř krytu displeje na servozesilovači.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ověřte, že jste v jednom servosystému nezadali stejné č. osy řízení více servozesilovačům, protože to způsobilo chybnou funkci provozu systému.</td>
</tr>
</tbody>
</table>
4. kapitola Nastavení/spuštění servozesilovače

V této kapitole se dozvěte o nastavení a spuštění servozesilovače pomocí konfiguračního softwaru „MR Configurator2“.

4.1 Konfigurační software „MR Configurator2“

Zde uvedeme funkce a použití konfiguračního softwaru „MR Configurator2“ (SW1DNC-MRC2-E).
MR Configurator2 běžící na počítači PC umožňuje jednoduše provádět seřízení a diagnostiku, zobrazovat monitory, načítat/zapisovat parametry a provádět zkušební provoz.

Spuštění
Je možné nastavení různých parametrů potřebných pro běh servosystému a zapisování parametrů do servozesilovače. Provozní stav lze sledovat v grafu apod.

Seřízení
Všechny zisky jsou seřízeny automaticky a max. výkon serva lze docílit pouhým kliknutím na tlačítko.

Údržba
Stav servosystému a příčiny chybných funkcí lze vyšetřit a diagnostikovat, a životnost dílů je možné zobrazit ve snadno pochopitelném tvaru.
4.2 Tvorba nových projektů

V této sekci vytvoříme nový projekt.
Spusťte MR Configurator2 a vyberte [Project] -> [New].
Zobrazí se dialogové okno [Create New]. Proveďte nastavení pro komunikaci se servozesilovačem.
V tomto kurzu provedete nastavení pro komunikaci se servozesilovačem MR-J4-B pomocí připojení USB.

<table>
<thead>
<tr>
<th>Položka nastavení</th>
<th>Nastavený obsah</th>
<th>Nastavení v tomto kurzu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nastavení modelu</td>
<td>Použijte k výběru modelu servozesilovače, jenž má být připojen.</td>
<td>MR-J4-B</td>
</tr>
<tr>
<td>Provozní režim</td>
<td>Použijte k výběru provozního režimu.</td>
<td>Standardní</td>
</tr>
<tr>
<td>Cíl připojení</td>
<td>Použijte k výběru připojení, s nímž se má komunikovat.</td>
<td>USB-připojení servozesilovače</td>
</tr>
</tbody>
</table>
4.3 Připojení servozesilovače k počítači PC

Připojte servozesilovač k počítači pomocí kabelu USB. Jako kabel USB použijte „MR-J3USBCBL3M“ (délka: 3 m).

Opatření při zapojování kabelu USB

Při prvním připojení servozesilovače k počítači PC se systémem Windows XP se zobrazí Průvodce přidáním nového hardwaru.
Na počítači PC se systémem Windows Vista a Windows 7 bude servozesilovač zjištěn automaticky. Nicméně na počítačích PC se systémem Windows 2000 a Windows XP musí být nainstalován ovladač pro každý jednotlivý port USB. Při prvním připojení servozesilovače k jinému portu USB se zobrazí obrazovka instalace jednotky.
Podrobnosti o instalaci ovladače USB viz příslušná příručka.
4.4 Vysvětlení obrazovky MR Configurator2 a Servo Assistant

Zde probereme názvy dílů a funkci na obrazovce MR Configurator2.

MR Configurator2 má funkci „Servo Assistant“, která umožňuje dokončit nastavení servozesilovače pouhým sledováním pokynů na obrazovce. Od následujících stránek a dále bude k nastavení servozesilovače tento servoaasistent používán.

Řádek nabídek
Slouží k výběru položek, jež mají být provedeny na MR Configurator2.

Panel nástrojů
Často používané funkce jsou zde seskupeny jako tlačítko. Klepnutím na tlačítko proveďte přiřazenou funkci.

Strom projektu
Ve tvaru stromu jsou zobrazena nastavení systému, parametry, nastavení zařízení a seznam povelů bodové tabulky.

Servo Assistant
MR Configurator2 má funkci „Servo Assistant“, která umožňuje dokončit nastavení servozesilovače pouhým sledováním pokynů na obrazovce.

Stavový řádek
Tento řádek zobrazuje stav oken, informace o cíli připojení a stavy kláves. Jde o tyto stavy kláves:
(1) OVR: Označuje stisknutí klávesy Insert.
(2) CAPS: Označuje stisknutí klávesy Caps Lock.
(3) NUM: Označuje stisknutí klávesy Num Lock.
(4) SCRL: Označuje stisknutí klávesy Scroll Lock.
4.4.1 1. krok Nastavení zesilovače - Nastavení parametrů (Operation mode)

Vyberte provozní režim.

<table>
<thead>
<tr>
<th>Položka parametru</th>
<th>Vysvětlení funkce</th>
<th>Úvodní hodnoty</th>
<th>Nastavení pro ukázkový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode selection</td>
<td>Vyberte provozní režim.</td>
<td>Standard control mode</td>
<td>Standard control mode</td>
</tr>
</tbody>
</table>
1. krok Nastavení zesilovače - Nastavení parametrů (Basic)

Proveďte základní nastavení.
<table>
<thead>
<tr>
<th>Položka parametru</th>
<th>Vysvětlení funkce</th>
<th>Úvodní hodnoty</th>
<th>Nastavení pro ukázkový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation direction selection</td>
<td>Tuto volbu použijte k nastavení směru otáčení servomotoru, když se jím pohybuje pomocí příkazů otáčení vpřed. Směr otáčení je proti směru hodinových ručiček (CCW) nebo ve směru hodinových ručiček (CW), jak je vidět ze strany zátěže (strana upevnění ke stroji).</td>
<td>CCW for forward rotation command, CW for reverse command</td>
<td>CCW for forward rotation command, CW for reverse command</td>
</tr>
<tr>
<td>Servo forced stop selection</td>
<td>Zapnutím této volby zákouříte použití vstupního signálu nuceného zastavení (EM2 či EM1). Z bezpečnostních důvodů je úvodní hodnota nastavena na [Enabled]. V ukázkovém systému je signál nuceného zastavení řadičem používán a signál nuceného zastavení serva nikoli. Proto nastavte tuto volbu na [Disabled].</td>
<td>Enabled (Either forced stop input EM2 or EM1 is used.)</td>
<td>Disabled (Neither forced stop input EM2 nor EM1 is used.)</td>
</tr>
</tbody>
</table>
4.4.3 1. krok Nastavení zesilovače - Nastavení parametrů (Component parts)

Nastavte komponenty.

<table>
<thead>
<tr>
<th>Položka parametru</th>
<th>Vysvětlení funkce</th>
<th>Úvodní hodnoty</th>
<th>Nastavení pro ukázkový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder cable communication method selection</td>
<td>Nastavte podle komunikační metody kabelu enkodéru.</td>
<td>Two-wire type</td>
<td>Two-wire type</td>
</tr>
<tr>
<td>Selection of Absolute position detection system</td>
<td>Je-li tato volba aktivována, po opětovném zapnutí napájení již není potřeba návrat do výchozí polohy, protože data polohy stroje jsou ukládána a držena v servozesilovači.</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Zkontrolujte konfiguraci systému.
V části Servo Assistant vyberte [Test Run] -> [System Configuration] a ověřte model motoru atd.
4.5.2 2. krok Zkušební běh - Kontrola systému (I/O Monitor)

Na zobrazení monitoru I/O lze sledovat přířazení signálů I/O a stav ON/OFF.

Na další obrazovce zkusíme zobrazení monitoru I/O otevřít.
2. krok Zkušební běh - Kontrola systému (I/O Monitor)

Tím je ověření zobrazení monitoru I/O dokončeno.

Kliknutím na přejdete k další obrazovce.
4.5.3 Režim zkušebního provozu

<table>
<thead>
<tr>
<th>Název režimu</th>
<th>Funkce/role</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO (výstupního signálu) Forced Output</td>
<td>Výstupní signály lze nuceně změnit na ON/OFF bez ohledu na stav servomotoru. Tento režim je vhodný ke kontrole zapojení signálů.</td>
</tr>
<tr>
<td>JOG Mode</td>
<td>Servomotor lze provozovat směrem vpřed či zpět při požadované rychlosti otáčení. Tento režim je vhodný ke kontrole směru otáčení a provozu servomotoru.</td>
</tr>
<tr>
<td>Positioning Mode</td>
<td>Servomotor se otáčí na zadané vzdálenosti posunu s požadovanou rychlostí otáčení a pak se zastaví. Tento režim je vhodný ke kontrole provozu a přesnosti zastavení při řízení polohy.</td>
</tr>
</tbody>
</table>

Postup použití režimu zkušebního provozu

1. Vypněte napájení.
2. Nastavte přepínač zkušebního provozu (SW2-1) na „ON (nahoru)“.

![Nastavte SW2-1 na „ON (nahoru)“.](image)

* Nastavení SW2-1 na „ON (nahoru)“ při zapnutí napájení nespustí režim zkušebního provozu.*
4.5.3 Režim zkušebního provozu

(3) Zapněte napájení servozesilovače.

![Display showing 8.81]
Desetinná tečka bliká.

Když při zkušebním provozu dojde k alarmu či varování

![Display showing 18.1]
Desetinná tečka bliká.
2. krok Zkušební běh - Kontrola systému (DO Forced Output)

Výstupní signály lze nuceně změnit na ON/OFF pomocí DO Forced Output bez ohledu na stav serva. To slouží např. ke kontrole zapojení výstupního signálu.

Na další obrazovce zkusíme DO Forced Output zadat.
2. krok Zkušební běh - Kontrola systému (DO Forced Output)

Tím je změna signálu na ON/OFF pomocí DO Forced Output dokončena.

Kliknutím na přejdete k další obrazovce.
4.5.5 2. krok Zkušební běh - Zkušební režimy (JOG Mode)

Po ověření, že v zapojení nejsou žádné problémy, zkontrolujte provoz (otáčení vpřed/otáčení zpět) servosystému v „JOG Mode“.

Otáčením vpřed se servomotor otáčí proti směru hodinových ručiček a otáčením zpět se otáčí ve směru hodinových ručiček.

* Směr otáčení se určí pohledem ze strany hřídele servomotoru.

V režimu JOG nastavte tyto položky.

<table>
<thead>
<tr>
<th>Položka nastavení</th>
<th>Nastavený obsah</th>
<th>Hodnoty nastavení v tomto kurzu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor speed</td>
<td>Zadejte rychlost otáčení servomotoru.</td>
<td>50 r/min</td>
</tr>
<tr>
<td></td>
<td>Při zadávání začněte s malou rychlostí, dokud nelze ověřit normální provoz.</td>
<td></td>
</tr>
<tr>
<td>Acceleration/deceleration time constant</td>
<td>Zadejte dobu zrychlení ze stacionárního stavu až do jmenovité rychlosti otáčení,</td>
<td>1000 ms</td>
</tr>
<tr>
<td></td>
<td>až do zpomalení ze jmenovité rychlosti otáčení až do zastavení.</td>
<td></td>
</tr>
</tbody>
</table>

Na další obrazovce zkúsim „JOG Mode“ provést.
2. krok Zkušební běh - Zkušební režimy (JOG Mode)

JOG Mode

Use the JOG Mode to verify that the motor rotates.

- Forward CCW
- Reverse CW
- Stop
- Forced Stop

Setting

Motor speed
Accel./decel. time constant

Stroke end is automatically turned ON.
Rotation only while the CCW or CW button is being pushed.
The SHIFT key can be used for forced stop.
Torque limit from controller is ignored at the test operation.

Operace Jog je nyní dokončena.
Kliknutím na přejdete k další obrazovce.
4.5.6 2. krok Zkušební běh - Zkušební režimy (Positioning Mode)

Dále ověřte provoz pomocí „Positioning Mode“.
Pomocí „Positioning Mode“ lze ověřit, je-li operace prováděna správně při zadané rychlosti a vzdálenosti posunu.

<table>
<thead>
<tr>
<th>Položka nastavení</th>
<th>Nastavený obsah</th>
<th>Hodnoty nastavení v tomto kurzu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor speed</td>
<td>Zadejte rychlost otáčení servomotoru.</td>
<td>1000 r/min</td>
</tr>
<tr>
<td></td>
<td>Při zadávání začněte s malou rychlostí, dokud nelze ověřit normální provoz.</td>
<td></td>
</tr>
<tr>
<td>Acceleration/deceleration time</td>
<td>Zadejte dobu zrychlení ze zastavení až do jmenovité rychlosti otáčení, a dobu</td>
<td>1000 ms</td>
</tr>
<tr>
<td>constant</td>
<td>zpomalení ze jmenovité rychlosti otáčení až do zastavení.</td>
<td></td>
</tr>
<tr>
<td>Move distance</td>
<td>Zadejte vzdálenost posunu servomotoru.</td>
<td>4194304 pulse</td>
</tr>
</tbody>
</table>

Na další obrazovce zkusíme „Positioning Mode“ provést.
2. krok Zkušební běh - Zkušební režimy (Positioning Mode)

Positioning Mode:

Motor speed: 1000 r/min (1-6900)
Accel./decel. time constant: 1000 ms (0-50000)
Move distance (Encoder pulse unit): 4194304 pulse (0-2147483647)

Stroke end is automatically turned ON.
Z-phase signal movement
Move distance unit selection:
- Command pulse unit (Electronic gear valid)
- Encoder pulse unit (Electronic gear invalid)

Operating status: Stop
Operation count: times

Options:
- Make the aging function valid
- Forced Stop

Note:
The SHIFT key can be used for forced stop.
Torque limit from controller is ignored at the test operation.

Operace polohování je nyní dokončena.
Kliknutím na přejdete k další obrazovce.
4.5.7 Řešení problémů zjištěných ve zkušebním provozu

Následující text uvádí opravné prostředky, jsou-li ve zkušebním provozu zjištěny problémy.

Problémy v zapojení

- Zkontrolujte chybné zapojení či závady vodičů.
- Zapojte nebo znovu připojte všechny odpojené či uvolněné konektory.
- Vyměňte všechny zkorodované či poškozené kabely za nové.
- Dojde-li ke zkratování zapojení, proveďte zapojení a izolaci znovu.

Problémy v provozu

- Ověřte, že jsou napájecí zdroj hlavního obvodu a napájecí zdroj řídícího obvodu ve stavu ON.
- Je-li spínač vstupu nuceného zastavení stisknutý (EM1 není vodivý), uvolněte spínač (nastavte EM1 do vodivého stavu).
- Neotáčí-li se motor pomocí operace JOG, ověřte příčinu pomocí funkce „Reason for not operating“ v položce „Diagnosis“ a přijměte vhodné nápravné opatření.

Další informace

Je-li operace JOG prováděna ve stavu OFF hlavního napájecího zdroje, servomotor se neotáčí, ale nemusí být zobrazen ve funkci „Reason for not rotating“. Navíc servosystém v tomto případě ukončí JOG Mode včetně varování. Nicméně protože nejde o alarm, nedojde k uložení do historie alarmů.
4.6 Ukládání projektů

Nastavení je nyní dokončeno.
Kliknutím na ikonu „Save“ uložte soubor projektu.
Provede-li ukončení bez uložení nastavení, při přístím spuštění servosystému nelze nastavení načíst.

Chcete-li uložit nový projekt, zadejte název souboru.
Doporučueme vybrat název, který může sloužit k identifikaci obsahu projektu (pomocí podrobností řízení, názvu systému či jiného snadno určitelného textu).
Soubory se ukládají s příponou „.mrc2“. (*Ver.1.19V a vyšší)

![Save As Project dialog box]

- **Cesta ke složce uložení**
 Zadejte složku, kde chcete vytvořit projekt.

- **Seznam souborů**
 Existuje-li jeden či více souborů ve stejné složce, zobrazí se jejich seznam.

- **Název souboru**
 Zadejte název souboru.

- **Nadpis**
 Zadejte nadpis.
 To je užitečné v případě názvu, který se nevejde do názvu souboru. (Není-li nadpis potřeba, můžete jej vynechat.)
4.7 Ukončení režimu zkušebního provozu

Ukončete režim zkušebního provozu.
Režim zkušebního provozu ukončíte následujícím postupem.

Postup ukončení režimu zkušebního provozu
(1) Nastavte napájení servozesilovače na OFF.
(2) Nastavte přepínač zkušebního provozu (SW2-1) na „OFF (dolů)“.

(3) Nastavte napájení znovu na ON.
4.8 Zapnutí napájení kontroléru

Po dokončení nastavení a spuštění servozesilovače připojte servozesilovač k řídicí kartě a zapněte napájení řídicí karty. Spusťte komunikaci SSCNET III/H mezi kontrolérem a servozesilovačem příkazem inicializovat komunikaci. Skončí-li příkaz Inicializovat komunikaci normálně, zobrazí se stav „b#“ (připraven VYP., servo VYP.).

![Diagram shows a control system with connected devices.]

ZAP. napájení → QD77MS

MR-J4-10B → Poros 1
HG-KR053

MR-J4-10B → Poros 2
HG-KR053

Pro realizaci ukázkového systému vytvořte program řízení polohy pro kontrolér servosystému. Způsob použití kontroléru servosystému se lze naučit pomocí následujících kurzů e-štěkání:

- kurz „MODUL JEDNODUCHÉHO POHYBU“,
- kurz „ZÁKLADY KONTROLÉRU POHYBU SERVA (HARDWARU)“,
- kurz „ZÁKLADY KONTROLÉRU POHYBU SERVA (REÁLNÝ REŽIM: SFC)“,
- kurz „POUŽITÍ KONTROLÉRU POHYBU SERVA (VIRTUÁLNÍ REŽIM)“.
4.9 Provoz bez motoru

Před instalací kontroléru servosystému ve skutečném systému ověřte, zda běží program řízení polohování normálně. Zkontrolujte funkci programu řízení polohování pomocí provozu bez motoru.
Ačkoli není servomotor připojen, v provozu bez motoru lze generovat výstupní signály v závislosti na příkazech z kontroléru servosystému a zobrazovat stav, jako kdyby servomotor běžel.

Postup provozu bez motoru
(1) Uveďte servozesilovač do stavu servo vyp.
(2) Zaškrtněte políčko „Enable motor-less operation“ v sekci nastavení parametrů serva pro řadič servosystému a opět napájení zapněte.
(Při nastavování modulu jednoduchého pohybu použijte MELSOFT GX Works2.)

(3) Zobrazí se následující obrazovka.
(3) Zobrazí se následující obrazovka.

![Image](http://example.com/image.png)

Desetinná tečka bliká.
4.10 Souhrn

V této kapitole jste se naučili:

- Nastavení servozesilovače
- Tvorba nových projektů
- Připojení servozesilovače k počítači PC
- Nastavení zesilovače - Nastavení parametrů
- Zkušební běh - Kontrola systému
- Zkušební běh - Zkušební provoz
- Řešení problémů zjištěných ve zkušebním provozu
- Ukládání projektů
- Připojení kontroléru k servozesilovači

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumávejte a zajistěte, abyste se seznámili s jejich obsahem.

<table>
<thead>
<tr>
<th>Nastavení servozesilovače</th>
<th>V MR Configurator2 lze nastavovat parametry, zkušební provoz, rozšířené funkce, diagnostiku, monitorovací a alarmové funkce pomocí obrazovky GUI na počítači PC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Připojení servozesilovače k počítači PC</td>
<td>Připojte servozesilovač k počítači PC pomocí kabelu USB. Jako kabel USB použijte „MR-J3USBCBL3M“ (délka: 3 m).</td>
</tr>
<tr>
<td>Řešení problémů zjištěných ve zkušebním provozu</td>
<td>Při zjištění problémů ve zkušebním provozu ověřte zapojení a napájecí zdroj, a při výskytu alarma ověřte podrobnosti uvedené alarmem včetně toho, jak odstranit alarm v příručce, a proveďte příslušné nápravné opatření.</td>
</tr>
<tr>
<td>Připojení řadiče k servozesilovači</td>
<td>Před instalací ve skutečném systému zjistěte problémy v programu pomocí provozu bez motoru se servozesilovačem v kombinaci s kontrolérem. Použijte provoz bez motoru včetně uvolněného nuceného zastavení.</td>
</tr>
</tbody>
</table>
V této kapitle se dozvíté, jak řídit provoz v ukázkovém systému s nainstalovanými servomotory.
5.1 Seřízení serva

Pro provoz servosystému v optimálním stavu musí být zisk seřízen tak, aby odpovídal charakteristice stroje (poměru zatížení momentem setrvačnosti), a odezva servosystému musí být udržována na příslušné úrovni. Není-li zisk optimální, vyskytující se následující problémy. Kliknutím na tlačítko si ověřte provoz.

Seřízení serva optimální

Odezva příliš nízká (zisk je malý):
Charakteristika serva (agilnost) je ztracena

Odezva příliš vysoká (zisk je velký):
Dochází k vibrace, divnému hluku a přeběhu
5.1.1 Úvod do jednodotykového seřízení

Funkce rozšířeného ladění jedním dotykem (dále jen „jednodotykové ladění“) umožňuje snadné seřizování serv. Pomocí jednodotykového ladění lze automaticky seřídit parametry pro zisk.

Jednodotykové ladění je k dispozici ve třech režimech v závislosti na tuhosti stroje.
Výchozím režimem odezvy je „Basic Mode (AT.)“. Nejprve provedte úpravy v režimu Basic Mode (AT.).
Nelze-li docílit uspokojivé výsledky v Basic Mode (AT.), nastavte Vysoký či Nízký režim tak, aby odpovídal odezvě a tuhosti stroje.
Níže uvedená tabulka ukazuje vhodnou odezvu a tuhost stroje pro každý režim.

<table>
<thead>
<tr>
<th>Režim odezvy</th>
<th>Vysvětlení</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mode</td>
<td>Pro stroje s velkou tuhostí</td>
</tr>
<tr>
<td>Basic mode</td>
<td>Pro standardní stroje</td>
</tr>
<tr>
<td>Low mode</td>
<td>Pro stroje s malou tuhostí</td>
</tr>
</tbody>
</table>

Po seřízení lze jeho výsledek ověřit pomocí doby ustálení nebo hodnoty přejetí.
Není-li výsledek seřízení jednodotykovým seřízením uspokojivý, lze seřízení provést také ručně pomocí funkcí ladění.

Co je „Doba ustálení“?
Doba ustálení je časový interval od okamžiku ukončení výstupního příkazu do okamžiku zapnutí signálu v poloze (INP) poté, co servozesilovač vygeneruje impulsy.
Čím kratší je doba ustálení, tím výšší je odezva servosystému.

Upozornění
(1) Jednodotykové ladění není k dispozici v režimu řízení točivého momentu.
(2) Jednodotykové ladění není k dispozici během alarmu či varování, které neumožňuje pokračování v provozu.
(3) Jednodotykové ladění není k dispozici během následujících režimů zkušebního provozu:
 (a) nucený výstup (DO) výstupního signálu.
 (b) provoz bez motoru.
5.1.2 Jednodotykové ladění na ukázkovém systému

Provedte jednodotykové ladění na ukázkovém systému.

Na další obrazovce zkusíme provést jednodotykové ladění ukázkového systému.

![Image of MELSOFT Series MR Configurator2 New project interface with One-touch Tuning tool open.](image-url)
5.1.2 Jednodotykové ladění na ukázkovém systému

Start to operate before pressing "Start" button.
The one-touch tuning cannot be performed if the servo motor is not operating.

Response mode
- High mode: Execute the response mode for machines with high rigidity
- Basic mode: Response mode for standard machines
- Low mode: Execute the response mode for machines with low rigidity

Error code
Status: 0000

Adjustment result
Settling time: 1 ms
Overshoot amount: 597 pulse

To further improve performance
Fine-adjust the model loop gain

Jednodotykové seřízení je nyní dokončeno.
Po dokončení jednodotykového seřízení se zobrazí "0000" ve stavu kódu chyby. Ve výsledku seřízení se také zobrazí doba ustálení a hodnota přepážky.

Kliknutím na přejdete k další obrazovce.
5.2 Funkce grafu

Funkce grafu umožňuje snadné měření průběhů analogových a digitálních dat serva. Funkce grafu softwaru MR Configurator2 má tyto vlastnosti:

- kanály měření lze rozšířit na 7 analogových a 8 digitálních kanálů;
- „Select History“ k zobrazení historie minulých dat ve tvaru grafu;
- „Overwrite“ data grafu;
- diagram charakteristiky točivého momentu (charakteristika ST);
- zobrazení FFT/diagram rozptylu atd.
5.2.1 Vysvětlení obrazovky funkce grafu

Následující text popisuje různé prvky obrazovky funkce grafu.

- Zde lze vybrat cílovou osu.
- Zde lze vybrat typ grafu k zobrazení.
- Spustí/zastaví měření.
- Zobrazuje barvy průběhů grafu.
- Slouží k nastavení grafu.
- Zobrazuje graf.
5.2.2 Funkce grafu v ukázkovém systému

Funkce grafu slouží k provádění měření v ukázkovém systému. Měřeny jsou následující položky.

Položka měření

<table>
<thead>
<tr>
<th>Times</th>
<th>Setting method</th>
<th>Div automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement time</td>
<td>2000 ms</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>Data</td>
<td>Command pulse frequency (by speed)</td>
</tr>
<tr>
<td>Analog 1</td>
<td>Command pulse frequency (by speed)</td>
<td></td>
</tr>
<tr>
<td>Analog 2</td>
<td>Motor speed</td>
<td></td>
</tr>
<tr>
<td>Analog 3</td>
<td>Current command</td>
<td></td>
</tr>
<tr>
<td>Analog 4</td>
<td>Torque</td>
<td></td>
</tr>
<tr>
<td>Analog 5</td>
<td>Droop pulses (by 1 pulse)</td>
<td></td>
</tr>
</tbody>
</table>

Na další obrazovce zkusíme funkce grafu provést.
5.2.2 Funkce grafu v ukázkovém systému

Graph Assistant

Servo Assistant

Tip:
Set the motor speed, droop pulses, etc. for the trigger conditions and measured waveform.
Press the "Start" button and perform acceleration/deceleration operations to start measuring.

Ready [Station 00] MR-J4-B Standard Servo amplifier connection: USB

Display waveform — Target axis: Axis1

Pressed waveform — Target axis: Axis1

Graph window:
- Analog 1: Command pulse freq.
- Analog 2: Motor speed
- Analog 3: Current command
- Analog 4: Torque
- Analog 5: Droop pulses (by...)
- Analog 6: Not selected
- Analog 7: Not selected
- Digital 1: INP
- Digital 2: Not selected
- Digital 3: Not selected
- Digital 4: Not selected
- Digital 5: Not selected

Graph display:
- Axes: X: 0-750, Y: -35,000 to 35,000
- Waveform data

Zobrazení grafu je nyní dokončeno.
Kliknutím na přejdete k další obrazovce.
5.3 Odstraňování problémů - Zobrazení alarmu

V řadě MR-J4 jsou alarmany serva zobrazeny 3 číslicemi. Odstraňování problémů při výskytu alarmu je snadné.

Při výskytu alarmu se zobrazují střídavě číslo alarmu (dvě číslice) a detail alarmu (jedna číslice) a zobrazení stavu.

Č. alarmu Detail
(2 číslice) alarmu (1 číslice)

Po příklad okna alarmu

U alarmu podpětí je údaj, zda došlo k alarmu v hlavním či řídícím obvodu, identifikován pomocí č. alarmu.
5.4 Odstraňování problémů - Paměť s velkou kapacitou

Při výskytu chyb lze jejich příčinu rychle a spolehlivě zjistit paměť s velkou kapacitou.
Paměť s velkou kapacitou ukládá data serv (např. proud motoru, příkazy polohy) před a po vzniku alarmu do energeticky nezávislé paměti na servozesilovači.
Při obnovení z alarmu lze data použít pro analýzu příčiny alarmu pomocí načtení dat do softwaru MR Configurator2.
Zkontrolujte průběh ((analogový 16 bitů × 7 kanálů + digitální 8 kanálů) × 256 bodů) 16 alarmů v historii alarmů, a hodnotu monitoru.

Data jsou uložena v energeticky nezávislé paměti při vzniku alarmu.

V softwaru MR Configurator2 se zobrazí č. alarmu, křivka a hodnota monitoru při výskytu alarmu.

Data za určité časové období jsou uložena v paměti.

Zobrazení průběhu

Zobrazení hodnoty monitoru

Snížené napětí sběrnice
Je zjištěno, že je vypnuté napájení hlavního obvodu.
5.5 Funkce robustního pohonu

Funkce robustního pohonu detekuje fluktuace v provozním prostředí pro automatické seřízení stavu řízení serv tak, aby byly sníženy ztráty způsobené zastavením linky. Funkce robustního pohonu má dva režimy: „Robustní pohon při náhlém výpadku napájení“ a „Robustní pohon při vibrací“.

Robustní pohon při náhlém výpadku napájení
Možnost alarmu podpětí je snížena omezením točivého momentu, když je v napájecím zdroji hlavního obvodu zjištěn náhlý výпадek proudu. (Při náhlém výpadku napájení je využita energie nabitého kondenzátoru v hlavním obvodu.)

Robustní pohon při vibrací
Je-li proudovým příkazem uvnitř servozesilovače zjištěna vibrace způsobená změnou rezonanční frekvence stroje, dojde k přenastavení filtru pro potlačení rezonancí stroje. Tím se snižují ztráty z prostopá stojí stroje v důsledku degradace stárnutím.

Potlačuje vibrace přenastavením filtru pro potlačení rezonancí stroje.
Funkce robustního pohonu

Potlačuje vibrace přenastavením filtru pro potlačení rezonancí stroje.
5.6 Údržba

Funkce diagnózy softwaru MR Configurator2 umožňují provádění údržby v rané fázi. K dispozici jsou „Life Diagnosis“ a „Machine Diagnosis“.

Funkce diagnózy životnosti
Ověřte kumulativní dobu provozu a doby on/off rázového relé. Tato funkce poskytuje indikaci doby výměny pro díly servozesilovače, jako jsou kondenzátor a relé.

- U kondenzátoru a ventilátoru se jako vodičko pro výměnu zobrazuje doba napájení.
- U relé se jako vodičko pro výměnu zobrazuje počet ON/OFF.

Diagnóza stroje
Z interních dat v servozesilovači jsou analyzovány tření zařízení, moment setrvačnosti zátěže, nevyvážený točivý moment a změny ve vibračních komponentách, takže lze zjistit změny v dílech stroje (např. kuličkové šrouby, vodítka, ložiska, pásky). To usnadňuje včasnou údržbu jednotek.
Porovnání dat prvního provozu a po letech provozu pomáhá zjistit degeneraci stroje stárnutím a je také přínosem pro preventivní údržbu. Tato funkce odhaduje a zobrazuje tření a vibrace stroje v běžném provozu bez jakéhokoli zvláštního měření.
Předem zabraňte poruše stroje pomocí pokročilé preventivní údržby.
5.7 Souhrn

V této kapitole jste se naučili:

- Seřízení serva
- Jednodotykové seřízení
- Funkce grafu
- Odstraňování problémů
- Funkce robustního pohonu
- Údržba

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumávejte a zajistěte, abyste se seznámili s jejich obsahem.

<table>
<thead>
<tr>
<th>Jednodotykové seřízení</th>
<th>Serva lze snadno seřídit ve třech režimech odezvy: „High mode“, „Basic mode“ a „Low mode“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkce grafu</td>
<td>Provoz serva lze ověřit správou historie, přepisem, diagramem charakteristiky točivého momentu (charakteristikou ST), zobrazením FFT, diagramem rozptylu a dalšími funkcemi.</td>
</tr>
<tr>
<td>Odstraňování problémů</td>
<td>Příčinu alarmů lze rychle a spolehlivě vyšetřit, když k nim dojde, a zobrazení alarmu serva ve formě třech číslic zjednodušuje řešení problémů při výskytu alarmu.</td>
</tr>
</tbody>
</table>
| Funkce robustního pohonu | Fluktuace v provozním prostředí jsou detekovány pro automatické seřízení stavu řízení serva.
 | Jsou sníženy ztráty kvůli přerušení provozu linky. |
6. kapitola Funkce zajištění bezpečnosti a úspora energie

Řada MR-J4 je vybavena funkcemi zajištění bezpečnosti. Zároveň minimalizuje spotřebu energie, prostor pro instalaci a kabeláž.

6.1 Kompatibilita STO/SS1

Řada MR-J4 podporuje STO (Safe torque off) a SS1*1 (Safe stop 1) jako normu, která u zařízení umožňuje snadnou konfiguraci bezpečnostního systému. (SIL 2)

- Protože napájení servozesilovače nemusí být OFF, lze zkrátit dobu opětovného spuštění.
- Navíc není nutný další návrat do výchozího bodu. Není potřeba magnetický stykač pro prevenci neočekávaného spuštění motoru.*2

![Diagram STO/SS1](image_url)
6. kapitola Funkce zajištění bezpečnosti a úspora energie

1. Je potřeba bezpečnostní zařízení (MR-J3-D05 atd.).
2. STO není funkce ochrany elektrické bezpečnosti, ale funkce k vypnutí výstupního točivého momentu pomocí vypnutí napájecího zdroje v servozesilovači. Pro servozesilovač řady MR-J4 nemůže magnetický stykače splňovat požadavky STO. Nicméně magnetický stykač nainstalujte, aby nedošlo ke zkratu servozesilovače nebo úrazu elektrickým proudem.
Kombinace s kontrolérem pohybu Q17nDSCPU je v souladu s následujícími funkcemi definovanými jako „funkce systému strojního pohonu“ v normě IEC/EN 61800-5-2.

<table>
<thead>
<tr>
<th>Funkce IEC/EN 61800-5-2:2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO (Safe torque off)</td>
</tr>
<tr>
<td>ST1 (Safe stop 1)</td>
</tr>
<tr>
<td>ST2 (Safe stop 2)</td>
</tr>
<tr>
<td>SOS (Safe operating stop)</td>
</tr>
<tr>
<td>SLS (Safely-limited speed)</td>
</tr>
<tr>
<td>SBC (Safe brake control)</td>
</tr>
<tr>
<td>SSM (Safe speed monitor)</td>
</tr>
</tbody>
</table>

Funkce monitoru bezpečnostního signálu

Kontrolér pohybu kompatibilní s SSCNET III/H

Magnetický stykač (MC)

MR–J4–B
MR–J4W–B

Servomotor

Světelná clona

Ochranný vypínač
6.3 Víceosý servozesilovač

6.3.1 Víceosý servozesilovač - úspora místa

Pomocí servozesilovače 2osého či 3osého typu lze zajistit úsporu energie, zmenšení rozměrů zařízení a snížení nákladů. Servozesilovač MR-J4W2-B 2osého typu má montážní půdorys o 26 % menší než při použití dvou jednotek MR-J4-B. Servozesilovač MR-J4W3-B 3osého typu má montážní půdorys o 30 % menší než při použití tří jednotek MR-J4-B.

[Instalační prostor]

MR-J4W3-B
(3osý typ)

168 (6.61) mm

(Hloubka 195 (7.68) mm)

255 (10.04) mm = 85 (3.35) mm (šířka jednotky) × 3

Instalační prostor zředkován o 30 %

MR-J4W2-B
(2osý typ)

168 (6.61) mm

(Hloubka 195 (7.68) mm)

265 (10.43) mm = 60 (2.36) mm (šířka jednotky) × 3 + 85 (3.35) mm (šířka jednotky) × 1

Instalační prostor zředkován o 26 %
6.3 Víceosý servozesilovač

MR-J4-B

(168 (6.61) mm

Hloubka 135 (5,31) mm, 170 (6,69) mm, 185 (7,28) mm)

40

100W 100W 200W 200W 400W 400W 750W 750W

60

Jednotka: mm ("")

360 (14,17) mm = 40 (1,57) mm (šířka jednotky) × 6 + 60 (2,36) mm (šířka jednotky) × 2
6.3.2 Víceosý servozesilovač – úspora kabeláže

V 3osém servozesilovači MR-J4W3-B používají tři osy stejné připojení pro napájení hlavního a řídícího obvodu, periferní zařízení, vodič signálů řízení atd. Tím je výrazně zredukován počet kabelů a spojů.

Srovnání počtu kabeláže

MR-J4-B × 3 jednotky

<table>
<thead>
<tr>
<th>Počet kabeláže</th>
<th>Kontrolér</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCNET III/H</td>
<td>× 3 (počet jednotek)</td>
</tr>
<tr>
<td>Napájecí zdroj hlavního obvodu</td>
<td>× 3 (počet jednotek)</td>
</tr>
<tr>
<td>Napájecí zdroj řídícího obvodu</td>
<td>× 3 (počet jednotek)</td>
</tr>
<tr>
<td>Připojení magnetického stykače</td>
<td>× 3 (počet jednotek)</td>
</tr>
<tr>
<td>Řízení magnetického stykače</td>
<td>× 3 (počet jednotek)</td>
</tr>
<tr>
<td>Enkodér</td>
<td>× 3 (počet os)</td>
</tr>
<tr>
<td>Vstup napájení motoru</td>
<td>× 3 (počet os)</td>
</tr>
<tr>
<td>Celkem</td>
<td>21</td>
</tr>
</tbody>
</table>

MR-J4W3-B (3osý typ) × 1 jednotka

<table>
<thead>
<tr>
<th>Počet kabeláže</th>
<th>Kontrolér</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCNET III/H</td>
<td>× 1</td>
</tr>
<tr>
<td>Napájecí zdroj hlavního obvodu</td>
<td>× 1</td>
</tr>
<tr>
<td>Napájecí zdroj řídícího obvodu</td>
<td>× 1</td>
</tr>
<tr>
<td>Připojení magnetického stykače</td>
<td>× 1</td>
</tr>
<tr>
<td>Řízení magnetického stykače</td>
<td>× 1</td>
</tr>
<tr>
<td>Enkodér</td>
<td>× 3</td>
</tr>
<tr>
<td>Vstup napájení motoru</td>
<td>× 3</td>
</tr>
<tr>
<td>Celkem</td>
<td>11</td>
</tr>
</tbody>
</table>

Kabeláž zredukována o 50%
6.3.3 Vícesý servozesilovač – zlepšená úspora energie

Servozesilovače vícesého typu dokážou využívat rekuperační energii určené osy jako hnací energii motoru pro ostatní osy, což pomáhá šetřit spotřebovanou energii.
Ve srovnání s předchozím modelem je u MR-J4W opětovně použitelná rekuperační energie uložená v kondenzátoru. Rekuperační volba již není potřeba.

Rekuperační energie je dočasně uložena a slouží jako energie hnací síly.

<table>
<thead>
<tr>
<th>Znovu využitelná energie</th>
<th>MR-J4W3</th>
<th>MR-J3</th>
</tr>
</thead>
<tbody>
<tr>
<td>200W</td>
<td>21 J</td>
<td>9 J</td>
</tr>
<tr>
<td>400W</td>
<td>30 J</td>
<td>11 J</td>
</tr>
</tbody>
</table>

V závislosti na podmínkách nemusí být potřeba rekuperační rezistor.
6.4 Monitorování napájení

Funkce monitoru napájení, kterou disponuje řada MR-J4, vypočítává energii hnací síly a rekuperační energii z rychlosti, proudu a dalších dat, která jsou držena v rámci servozesilovače. Spotřebu energie apod. lze monitorovat na MR Configurator2.

V systému SSCNET III/H jdou data odesílána do kontroléru pohybu, aby mohla být spotřeba energie analyzována nebo zobrazena na HMI.
6.5 Souhrn

V této kapitole jste se naučili:
- Kompatibilita STO/SS1
- Víceosý servozesilovač
- Monitorování napájení

Důležité body

Následující body jsou velmi důležité. Proto je znovu přezkoumejte a zajistěte, abyste se seznámili s jejich obsahem.

| Kompatibilita STO/SS1 | • Standardně jsou podporovány funkce IEC/EN 61800-5-2.
 | • Úroveň bezpečnosti lze zlepšit pomocí kombinace s kontrolérem pohybu. |
|-----------------------------|--|
| Víceosý servozesilovač | • Servozesilovač MR-J4W3-B 3osého typu má montážní půdorys o 30 % menší a přibližně o 50% méně kabeláže než při použití tří 1osých servozesilovačů.
 | • Ke zvýšení úspor energie zařízení je využívána rekuperační energie. |
| Monitorování napájení | • Standardně dodávaná funkce monitoru napájení vypočítává energii hnací síly a rekuperační energii z rychlosti, proudu a dalších dat, která jsou držena v rámci servozesilovače, aby mohla být spotřeba energie analyzována nebo zobrazena na HMI. |
TEST
SOUHORBÝ TEST

Nyní, když jste dokončili všechny lekce kurzu ZÁKLADY SERVA MELSERVO (MR-J4), jste připraveni absolvovat závěrečný test.
V případě nejasností u jakéhokoli témat využijte této příležitosti k jejich zopakování.
Tento závěrečný test obsahuje celkem 5 otázek (13 položek).
Závěrečný test můžete absolvovat třeba několikrát.

Výpočet skóre testu
Po výběru odpovědi nezapomeňte stisknout tlačítko Odpověď. Budete-li pokračovat bez stisknutí tlačítka Odpověď, dojde ke ztrátě odpovědi. (Považuje se za nezodpovězenou otázku.)

Výsledky skóre
Na straně skóre se zobrazí počet správných odpovědí, počet otázek, procento správných odpovědí a úspěšný/neúspěšný výsledek.

<table>
<thead>
<tr>
<th>Počet správných odpovědí:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celkový počet otázek:</td>
<td>5</td>
</tr>
<tr>
<td>Hodnota v procentech:</td>
<td>100%</td>
</tr>
</tbody>
</table>

Pro úspěšné složení testu je potřeba 60% správných odpovědí.

- Stisknutím tlačítka Pokračovat test ukončíte.
- Stisknutím tlačítka Revidovat test zrevizujete. (Kontrola správných odpovědí)
- Stisknutím tlačítka Opakovat test zopakujete.
Z následujících možností vyberte systém, který umí zjistit a uložit polohu otáčení do paměti, když je napájení vypnuto, a dokáže obnovit provoz bez nutnosti provádět návrat do výchozí polohy, pokud byla výchozí poloha nastavena při úvodní operaci.

- Systém detekce absolutní polohy
- Přírůstkový systém
Vyberte správné názvy pro díly komponent servozesilovače níže:

Termíny k výběru
1. Konektor komunikace USB
2. Konektor enkodéru
3. Konektor napájecího zdroje hlavního obvodu
4. Napájecí konektor servomotoru
5. Konektor signálů I/O
6. Konektor napájecího zdroje řídícího obvodu
Vyberte správnou větu ohledně instalace baterie pro systém detekce absolutní polohy.

Když je instalována baterie pro systém detekce absolutní polohy, přepněte napájecí zdroj hlavního obvodu takto:

- [Q1] --Select--

O 15 minut později ověřte zhasnutí indikátoru nabíjení a před připojením baterie ověřte napětí mezi konektory P(+) a N(-) pomocí zkoušečky napětí nebo jiného nástroje.

- [Q2] --Select--
Odpovězte na níže uvedené otázky ohledně provozu servosystému.

- Ověřte provoz (otáčení vpřed/otáčení zpět) servosystému pomocí „operace Jog“. Když se servomotor otáčí vpřed, kterým směrem se otáčí, jak je to vidět ze strany hřídele servomotoru?

 01 --Select--

- Jakou rychlost byste měli zadat pro motor, dokud nebude potvrzen normální provoz?

 02 --Select--

Odpověď Zpět
Odpovězte na níže uvedené otázky ohledně jednodotykového seřízení pomocí MR Configurator2.

- Vyberte vhodný režim odezvy pro zařízení, které má vysokou tuhost stroje.

 01 --Select--

- Vyberte režim zkušebního provozu, který nepodporuje seřízení jedním dotykem.

 02 --Select--

Počet správných odpovědí: 5

Celkový počet otázek: 5

Hodnota v procentech: 100%

Gratulujeme. Váš test byl úspěšný.
Právě jste absolvovali kurz ZÁKLADY SERVA MELSERVO (MR-J4).

Děkujeme za absolvování tohoto kurzu.

Doufáme, že zkonstruujete lepší systém úplným využitím poznatků získaných v tomto kurzu, a že prohloubíte své porozumění vyhledáním informací v příručkách výrobků.

Tento kurz můžete pro osvěžení paměti opakovat, kolikrát budete chtít.

Na shledanou příště.

Revidovat Zavřít