Sieć PLC
CC-Link IE Controller

Ten kurs przeznaczony jest dla uczestników, którzy będą konfigurować po raz pierwszy sieć CC-Link IE Controller.
Wprowadzenie Cel kursu

Ten kurs przedstawia podstawy sieci CC-Link IE Controller Network i jest przeznaczony dla osób, które konfigurują po raz pierwszy sieć CC-Link IE Controller.

Biorąc udział w tym kursie, uczestnik pozna podstawowe funkcje CC-Link IE Controller, takie jak przesyłanie danych pomiędzy wieloma sterownikami programowalnymi połączonymi w pojedynczą sieć. Uczestnik pozna również formaty przesyłania danych, specyfikacje i ustawienia sieci oraz procedurę uruchamiania modułu.

Kurs ten wymaga podstawowej wiedzy w zakresie sieci FA, sterowników programowalnych, programów sekwencyjnych i oprogramowania GX Works2. Zaleca się ukończenie następujących kursów przed rozpoczęciem tego kursu.

1. Urządzenia FA dla początkujących (sieć przemysłowa)
2. Kurs Podstawy modelu MELSEC-Q lub Podstawy modelu MELSEC-L
3. Podstawowy kurs GX Works2
Kurs składa się z następujących części. Zalecamy rozpoczęcie kursu od rozdziału 1.

Rozdział 1 — Przegląd sieci CC-Link IE Controller
Wyjaśnienie podstaw sieci CC-Link IE Controller.

Rozdział 2 — Konfiguracja i specyfikacje urządzeń sieciowych CC-link IE Controller
Wyjaśnienie konfiguracji, specyfikacji i ustawień sieci CC-Link IE Controller.

Rozdział 3 — Uruchamianie sieci CC-link IE Controller
Wyjaśnienie procedur operacji sieciowej CC-Link IE Controller od uruchomienia do testów operacyjnych.

Rozdział 4 — Praca testowa systemu sieci CC-Link IE Controller
Wyjaśnienie procedur od stworzenia programu do kontroli działania. Ponadto opis podstawowej diagnostyki sieci i procedury rozwiązywania problemów za pomocą przykładowego systemu.

Test końcowy
Wynik pozytywny: 60% lub więcej.
<table>
<thead>
<tr>
<th>Przejdź do następnej strony</th>
<th>Przejdź do następnej strony.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wróć do poprzedniej strony</td>
<td>Wróć do poprzedniej strony.</td>
</tr>
<tr>
<td>Przejdź do żądanej strony</td>
<td>Wyświetli się „Spis treści”, umożliwiający przejście do żądanej strony.</td>
</tr>
<tr>
<td>Zakończ naukę</td>
<td>Zakończ naukę. Okna takie jak ekran „Zawartość” zostaną zamknięte i nauka zostanie zakończona.</td>
</tr>
</tbody>
</table>
Środki bezpieczeństwa

Jeśli uczysz się przy użyciu rzeczywistych produktów, przeczytaj dokładnie zalecenia dotyczące środków bezpieczeństwa znajdujące się w odpowiednim podręczniku.

Środki ostrożności dla tego kursu

- Wyświetlane ekranie aktualnie używanej wersji oprogramowania mogą się różnić od przedstawionych w tym kursie.

Ten kurs korzysta z następującej wersji oprogramowania:

- GX Works2 wersja 1.493P
Rozdział 1 Przegląd sieci CC-Link IE Controller

W rozdziale 1 opisano podstawy sieci CC-Link IE Controller, która jest siecią sterowników programowalnych dla modeli MELSEC-Q i MELSEC-L. Rozdział ten obejmuje również wymianę danych i przekazywanie danych w ramach sieci sterowników programowalnych oraz formaty przesyłania danych w sieci CC-Link IE Controller.

1.1 Do czego służy sieć sterowników programowalnych
1.2 Działanie sieci sterowników programowalnych
1.3 Struktura rodziny CC-Link
1.4 Typy CC-Link IE
1.5 Charakterystyki sieci CC-Link IE Controller
1.6 Procedura przesyłania danych
1.7 Procedura przypisania operandu sieciowego
1.8 Format przesyłania danych
1.9 Przesyłanie danych za pomocą transmisji cyklicznej
1.10 Podsumowanie
1.1 Do czego służy sieć sterowników programowalnych

Po co jest potrzebna sieć sterowników programowalnych?

Przed wprowadzeniem sieci sterowników programowalnych, maszyny były najczęściej obsługiwane niezależnie, czyli każdy sterownik programowalny zapewniał autonomiczne sterowanie dla określonej maszyny.

Moim zadaniem jest sterowanie maszyną. Inne maszyny mnie nie interesują.

Sąsiednia maszyna mnie nie obchodzi.

Wraz ze wzrostem automatyzacji urządzeń produkcyjnych, stała się konieczna wymiana danych pomiędzy maszynami w celu realizacji sterowania centralnego produkcją różnych maszyn.

Mogę wymieniać informacje z sąsiednią maszyną, która jest podłączona do sieci.

Maszyna A

Maszyna B
1.2 Działanie sieci sterowników programowalnych

Działanie sieci sterowników programowalnych można wyjaśnić za pomocą przykładowego systemu przedstawionego poniżej.

Kliknij przycisk [START], aby uwidocznić działanie maszyny.

Wielkość produkcji
- Produkcja maszyny A: 106
- Produkcja maszyny B: 106
- Produkcja maszyny C: 79

Cel na dzisiaj został osiągnięty. Zatrzymajmy produkcję.

Oto instrukcja zatrzymania działania. Zatrzymajmy działanie.

Oto instrukcja zatrzymania działania. Zatrzymajmy działanie.
Struktura rodziny CC-Link

Sieć systemu produkcyjnego zawierająca sterowniki programowalne składa się z różnych warstw sieci, w których ma miejsce dedykowana komunikacja. Wiele takich warstw jest łącznie określanych jako rodzina CC-Link. „Sieć CC-Link IE Controller” jest zintegrowaną siecią otwartą opartą o Ethernet, która zapewnia bezproblemową komunikację z warstwy IT do warstwy obiektowej. Urządzenia wytwarzane przez firmę Mitsubishi i jej partnerów mają możliwość podłączenia do sieci CC-Link IE i posiadają jej funkcjonalność i możliwości.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Sieć główna</th>
<th>Podsumowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poziom komputera</td>
<td>Przekazywanie informacji</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Poziom sterownika</td>
<td>Sterowanie międzymaszynowe</td>
<td>Sieć CC-Link IE Controller</td>
</tr>
<tr>
<td>Poziom urządzenia</td>
<td>Sterowanie we/wy Kontrola bezpieczeństwa Sterowanie ruchem</td>
<td>Sieć CC-Link IE Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-Link</td>
</tr>
</tbody>
</table>

![Diagram of CC-Link structure](image_url)

- **Duża** Ilość danych
- **Niska** Wydajność w czasie rzeczywistym
- **Mała** Wydajność w czasie rzeczywistym
- **Wysoka** Ilość danych
1.4 Typy CC-Link IE

Istnieją dwa typy sieci CC-Link IE: „Sieć CC-Link IE Controller” i „Sieć CC-Link IE Field”. Różnice pomiędzy nimi są przedstawione w poniższej tabeli.

<table>
<thead>
<tr>
<th></th>
<th>Sieć CC-Link IE Controller</th>
<th>Sieć CC-Link IE Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zastosowanie sterowania</td>
<td>Sterowanie rozproszone za pomocą sterowników</td>
<td>Sterowanie rozproszone za pomocą sterowników, zdalne sterowanie we/wy</td>
</tr>
<tr>
<td>Środek komunikacji</td>
<td>Kabel światłowodowy: duży koszt, wymaga wiedzy do instalacji, znakomita odporność na zakłócenia</td>
<td>Para skręconych przewodów: niski koszt, łatwość instalacji</td>
</tr>
<tr>
<td>Topologia</td>
<td>Pierścień: wysoka niezawodność zapewiana przez podwójną pętlę</td>
<td>Gwiazda, liniowa, pierścień: elastyczne okablowanie</td>
</tr>
<tr>
<td>Liczba punktów urządzenia / sieci</td>
<td>Słowa: 128 tys. punktów Bity: 32 tys. punktów</td>
<td>Słowa: 16 tys. punktów Bity: 32 tys. punktów</td>
</tr>
<tr>
<td>Niezawodność</td>
<td>Funkcja przełączania stacji sterowniczej: Jeśli stacja sterownicza ulegnie awarii, łącze danych jest podrzemywane poprzez zastąpienie stacji sterowniczej zwykłą stacją.</td>
<td>Funkcja sub-master: Jeśli stacja master ulegnie awarii, łącze danych jest podtrzymywane poprzez zastąpienie stacji master stacją sub-master.</td>
</tr>
<tr>
<td>Odległość kabla pomiędzy stacjami</td>
<td>550 m</td>
<td>100 m</td>
</tr>
<tr>
<td>Całkowita długość</td>
<td>550 (m) × 120 (maksymalna liczba połączonych stacji) = 66 (km)</td>
<td>Dla połączenia liniowego: 100 (m) × 120 (maksymalna liczba połączonych stacji) = 12 (km)</td>
</tr>
</tbody>
</table>

- **Wysoka niezawodność**
- **Wszechstronność**
- **Dowolne okablowanie**
- **Znakomita wydajność**
- **Duża odległość**
Charakterystyki sieci CC-Link IE Controller

W tym punkcie opisano zastosowania sieci CC-Link IE Controller i jej metody okablowania.

Zastosowanie

<table>
<thead>
<tr>
<th>Cel sieci</th>
<th>Opis</th>
</tr>
</thead>
</table>
| Wymiana informacji (transmisja cykliczna poprzez stację master i stacje lokalne) | Wymiana informacji zachodzi pomiędzy sterownikami programowalnymi. Sieć CC-Link IE Controller służy do podłączania różnego sprzętu (sterowników) do sieci. Zapewnia to większą elastyczność, możliwość rozbudowy sieci i naprawialność systemu automatyki. Zalety wymiany informacji:
 - Zwiększa wydajności sprzętu i linii.
 - Umożliwia pełne zarządzanie zakładem poprzez gromadzenie informacji w zakresie identyfikowalności.
 - Umożliwia szybkie wykrycie awarii linii komunikacyjnych i błędów jednostek. |

Metoda okablowania

<table>
<thead>
<tr>
<th>Metoda okablowania</th>
<th>Cechy pozytywne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Połączenie pierścieniowe: stacje są połączone w pętlę.</td>
<td></td>
</tr>
</tbody>
</table>
 - Brak masywnego okablowania.
 - Ponieważ stacje są wzajemnie połączone, pojedyncza rozłączona linia nie wpływa na funkcjonowanie całego systemu. |
1.6 Procedura przesyłania danych

Wymiana informacji
Aby sterowniki programowalne wymieniały informacje, sygnały i dane operacyjne pojedynczego sterownika programowego muszą być przesyłane do pozostałych sterowników programowalnych.

Jak pokazano na animacji poniżej, sterowniki programowalne wymieniają informacje za pomocą operandów „B” i „W”.

Kliknij przycisk [START], aby rozpocząć wyjaśnienie sieci sterowników programowalnych CC-Link IE Controller.

Program sekwencyjny stacji nr 1

Program sekwencyjny stacji nr 2

1. WŁĄCZ styk „X0” sterownika programowego stacji nr 1.
2. Styk „B0” sterownika programowego stacji nr 1 jest WŁĄCZONY.
3. Sygnał WŁ jest przekazywany do styku „B0” sterownika programowego stacji nr 2.
4. Styk „Y0” sterownika programowego stacji nr 2 jest WŁĄCZONY.
5. WŁĄCZ styk „X0” sterownika programowego stacji nr 2.
6. Wartość „20” jest zapisywana w rejestrze „W100” sterownika programowego stacji nr 2.
7. Wartość „20” jest przesyłana do rejestru „W100” sterownika programowego stacji nr 1.
8. Styk „Y0” sterownika programowego stacji nr 1 jest WŁĄCZONY.

Uwaga) W tym przykładzie stosowany jest znacznik sieciowy „B” i rejestr sieciowy „W”.

W sieci CC-Link IE Controller każdy sterownik programowalny rezerwuje operandy sieciowe w celu wymiany informacji.
1.6 Procedura przesyłania danych

Odpowiedniość pomiędzy obszarami operandów sieciowych i stacjami

W celu umożliwienia wymiany informacji pomiędzy sterownikami programowalnymi w sieci CC-Link IE Controller (stany sygnałów, dane numeryczne itp.), każdy sterownik programowalny rezerwuje określony obszar urządzenia do łączenia z pozostałymi sterownikami programowalnymi. Zachodzi periodyczna wymiana danych pomiędzy tymi obszarami.

Przykład takiego obszaru urządzenia w sieci CC-Link IE Controller jest przedstawiony poniżej, wraz z wymienianymi danymi. W tym przykładzie używany jest znacznik sieciowy „B”. (Szczegóły podane są na następnej stronie).

(1) Urządzenia B0 do BFF stacji nr 1 są ustawione na zakres wysyłania.

(2) Dane zapisane w urządzeniach B0 do BFF stacji nr 1 są automatycznie wysyłane do urządzeń B0 do BFF stacji nr 2.

(3) Urządzenia B100 do B1FF stacji nr 2 są ustawione na zakres wysyłania.

(4) Dane zapisane w urządzeniach B100 do B1FF stacji nr 2 są automatycznie wysyłane do urządzeń B100 do B1FF stacji nr 1.

Ważne informacje

Sygnał i dane sterownika programowalnego mogą być wysyłane do pozostałych sterowników programowalnych poprzez ustawienie tych danych w urządzeniach zakresu wysyłania jego własnej stacji (*1). W ten sam sposób sterownik programowalny strony odbierającej może odbierać informacje pochodzące z pozostałych sterowników programowalnych poprzez odwołanie do urządzenia zakresu odbioru ich własnych stacji, niezależnie od sieci.

*1: Sterowniki programowalne, które są podłączone do sieci, są identyfikowane poprzez numery stacji. „Własna stacja” oznacza sam sterownik programowalny, a „inna stacja” oznacza inne sterowniki programowalne.
1.6 Procedura przesyłania danych

Wymiana danych urządzenia

Dedykowane operandy sieciowe służą do wymiany informacji w ramach sieci CC-Link IE Controller. Takimi urządzeniami są znacznik sieciowy „B” (dane bitowe) i rejestr sieciowy „W” (dane w postaci 16-bitowych liczb całkowitych).

Poniższa animacja przedstawia przykład operacji, która rozpoczyna się włączeniem „B0” w stacji nr 1 i kończy się włączeniem „B0” w stacji nr 2.

Kliknij przycisk [START], aby uwidocznić objaśnienie.

Stacja nr 1
Moduł CPU
Moduł sieciowy

Stacja nr 2
Moduł sieciowy
Moduł CPU

Cewka „B0” jest WŁĄCZONA przez program sekwencyjny stacji nr 1.

Dzięki odświeżaniu sieci (2) informacja o Wł. „B0” jest przesyłana do modułu sieciowego z modułu CPU, a „LB0” zostaje WŁĄCZONY.

Dzięki transmisji cyklicznej (3) informacja o Wł. „B0” jest przesyłana do modułu sieciowego stacji nr 2, a „LB0” stacji nr 2 zostaje WŁĄCZONY.

Dzięki odświeżaniu sieci (2) informacja o Wł. „B0” jest przesyłana z modułu sieciowego do modułu CPU, a „B0” zostaje WŁĄCZONY.

Status Wł. „B0” można sprawdzić w programie sekwencyjnym stacji nr 2.

*1 „LB” i „LW” są operandami sieciowymi obsługiwanymi wewnątrznie za pomocą modułów sieciowych.

*2 „Odświeżanie sieci” oznacza przesyłanie danych urządzenia, które ma miejsce pomiędzy urządzeniami „B/W” modułu CPU i urządzeniami „LB/LW” modułu sieciowego.

*3 „Transmisja cykliczna” oznacza format przesyłania danych używany przez sieć CC-Link IE Controller. Dalsze szczegóły są podane w punkcie 1.8.
1.7 Procedura przypisania operandu sieciowego

Znacznik sieciowy (LB) i rejestru sieciowy (LW) mogą być ustawiane w dostępnym zakresie komunikacji urządzenia modułu CPU. Funkcji ustawiania parametrów sieciowych oprogramowania GX Works2 można używać do przypisania „zakresu wysyłania” w każdej stacji. Obszaru operandu sieciowego jednej stacji, który jest ustawiony jako „zakres wysyłania”, jest obsługiwany jako „zakres odbioru” w pozostałych stacjach.

Ustawienia zakresu wysyłania parametrów sieciowych:

- Stacja nr 1
 - Znacznik sieciowy (LB): LB0
 - Zakres wysyłania stacji nr 1
 - Zakres wysyłania stacji nr 2
 - Zakres wysyłania stacji nr 3
 - Obszar niewykorzystany: LB7FFF
 - Rejestru sieciowy (LW): LW0
 - Zakres wysyłania stacji nr 1
 - Zakres wysyłania stacji nr 2
 - Zakres wysyłania stacji nr 3
 - Obszar niewykorzystany: LW1FFF

- Stacja nr 2
 - Znacznik sieciowy (LB): LB0
 - Zakres wysyłania stacji nr 1
 - Zakres odbioru stacji nr 2
 - Zakres odbioru stacji nr 3
 - Obszar niewykorzystany: LB7FFF
 - Rejestru sieciowy (LW): LW0
 - Zakres wysyłania stacji nr 1
 - Zakres odbioru stacji nr 2
 - Zakres odbioru stacji nr 3
 - Obszar niewykorzystany: LW1FFF

- Stacja nr 3
 - Znacznik sieciowy (LB): LB0
 - Zakres odbioru stacji nr 3
 - Zakres wysyłania stacji nr 2
 - Zakres wysyłania stacji nr 3
 - Obszar niewykorzystany: LB7FFF
 - Rejestru sieciowy (LW): LW0
 - Zakres odbioru stacji nr 3
 - Zakres wysyłania stacji nr 2
 - Zakres wysyłania stacji nr 3
 - Obszar niewykorzystany: LW1FFF
1.7 Procedura przypisania operandu sieciowego

W poniższym przykładzie 512 punktów jest przypisanych zarówno do LB, jak i LW, które są obszarami operandów sieciowych modułów CPU stacji nr 1 do nr 3.

Zakres wysyłania stacji nr 1
- **LB0**
 - LB0 do LB1FF (512 punktów)
 - LB200 do LB3FF (512 punktów)
 - LB400 do LB5FF (512 punktów)
 - LB600 do LB7FFF
 - **LB7FFF**

Znacznik sieciowy
- **LB0**
 - LB0 do LB1FF (512 punktów)
 - LB200 do LB3FF (512 punktów)
 - LB400 do LB5FF (512 punktów)
 - LB600 do LB7FFF

Rejestr sieciowy
- **LW0**
 - LW0 do W1FF (512 punktów)
 - LW200 do LW3FF (512 punktów)
 - LW400 do LW5FF (512 punktów)
 - LW600 do W1FFF

Zakres wysyłania stacji nr 2
- **LB0**
 - LB0 do LB1FF (512 punktów)
 - LB200 do LB3FF (512 punktów)
 - LB400 do LB5FF (512 punktów)
 - LB600 do LB7FFF

Zakres wysyłania stacji nr 3
- **LB0**
 - LB0 do LB1FF (512 punktów)
 - LB200 do LB3FF (512 punktów)
 - LB400 do LB5FF (512 punktów)
 - LB600 do LB7FFF

Zakres wysyłania stacji nr 2
- **LW0**
 - LW0 do W1FF (512 punktów)
 - LW200 do LW3FF (512 punktów)
 - LW400 do LW5FF (512 punktów)
 - LW600 do W1FFF

Zakres wysyłania stacji nr 3
- **LW0**
 - LW0 do W1FF (512 punktów)
 - LW200 do LW3FF (512 punktów)
 - LW400 do LW5FF (512 punktów)
 - LW600 do W1FFF
1.8 Format przesyłania danych

Jak przedstawiono w poniższej tabeli, sieć CC-Link IE Controller korzysta z dwóch formatów przesyłania danych.

Poniższa tabela przedstawia różnice pomiędzy tymi formatami i zalety każdego z nich.

<table>
<thead>
<tr>
<th>Format</th>
<th>Przegląd przesyłania danych</th>
<th>Program do wysyłania/odbierania danych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmisja cykliczna</td>
<td>Dane w obszarze ustawionym wcześniej za pomocą parametrów sieciowych (*1) są okresowo i automatycznie wymieniane.</td>
<td>Nie wymaga zastosowania programu. (Komunikacja ma miejsce zgodnie z ustawieniami parametrów sieciowych).</td>
</tr>
<tr>
<td>Transmisja przejściowa</td>
<td>Dane są wymieniane pomiędzy sterownikami programowalnymi tylko w przypadku żądania. Transmisja/odbieranie ma miejsce pomiędzy transmisjami cyklicznymi.</td>
<td>Wymaga zastosowania programu. (Operacja wysyłania/odbierania jest wykonywana przez program zawierający dedykowane instrukcje).</td>
</tr>
</tbody>
</table>

*1: To ustawienie jest używane do sterowania siecią CC-Link IE Controller. Dalsze szczegóły są podane w punkcie 2.3.

Sieć CC-Link IE Controller może jednocześnie korzystać z transmisji cyklicznych i przejściowych.

W ramach tego kursu stosowana jest transmisja cykliczna, która jest główną metodą transmisji używaną w sieci CC-Link IE Controller.
1.9 Przesyłanie danych za pomocą transmisji cyklicznej

Periodyczne przesyłanie danych

W przypadku transmisji cyklicznej sterowniki programowalne wysyłają własne dane sekwencyjnie w określonych odstępach czasu. Dane są odbierane przez pozostałe stacje, które nie przesyłają danych w tym momencie.

Aby zapewnić pełną wymianę danych, nadrzędna funkcja transmisji zwana przekazywaniem znacznika po kolei przełącza sterowniki programowalne. Ponieważ transmisja odbywa się periodycznie, ten format określa się jako format „transmisji cyklicznej”. Jeden cykl przełączania nadrzędnej funkcji wysyłania (przekazywanie znacznika) określa się jako „cykl komunikacji sieciowej”. Każdemu sterownikowi programowalnemu jest przyznawana nadrzędna funkcja wysyłania jeden raz podczas każdego cyklu komunikacji sieciowej, co określone jest jako warunek „czasu włączenia”. Poniższy przykład przedstawia zależności czasowe pomiędzy sygnałami transmisji cyklicznej dla każdej stacji.

Cechy sieci sterującej opartej na sterownikach programowalnych

W transmisji cyklicznej jest możliwa bezkolizyjna transmisja danych pomiędzy wieloma stacjami połączonymi w sieć z wysoką częstotliwością transmisji. Jest tak dlatego, że stacje wykonują swoje transmisje sekwencyjnie, czyli tylko jedna transmisja ma miejsce w danym momencie.

Z tego powodu transmisja cykliczna, która oferuje niezawodną komunikację w czasie rzeczywistym, nadaje się do sterowania urządzeniami produkcyjnymi itp.

System rozproszonych funkcji, w którym funkcje są rozdzielone pomiędzy moduły CPU połączone w sieć, oferuje następujące korzyści dla poszczególnych systemów sterowanych przez kilka modułów CPU:

- Mniej obciążenia w zakresie przetwarzania danych dla każdego modułu CPU.
- Awaria w pojedynczej lokalizacji ma minimalny wpływ na inne lokalizacje.
1.9 Przesyłanie danych za pomocą transmisji cyklicznej

Aby dokonać szybkiej transmisji cyklicznej, dane operandu sieciowego są przesyłane pomiędzy stacjami z minimalnym opóźnieniem transmisji. Operandy sieciowe obszarów wysyłania pozostałych stacji są obsługiwane jako „urządzenia własnej stacji”. Poniższa animacja przestawia transmisję cykliczną.

Kliknij przełącznik sterownika programowego (WŁ/WYŁ.), aby zobaczyć, jak jego dane są przesyłane do innej stacji. Przycisk Wznów powoduje powrót ustawionych wartości do wartości domyślnych.

Sieć CC-Link IE Controller

Diagram przedstawia transmisję danych między stacjami w sieci CC-Link IE. Operandy B0 do BFF (256 punktów), L0 do LBFF (256 punktów), W0 do WFF (256 punktów) są przesyłane cyklicznie wokół sieci.
Podsumowanie

W tym rozdziale przekazano następujące informacje:

- Do czego służy sieć sterowników programowalnych
- Działanie sieci sterowników programowalnych
- Struktura rodziny CC-Link
- Typy CC-Link IE
- Charakterystyki sieci CC-Link IE Controller
- Procedura przesyłania danych
- Procedura przypisania operandu sieciowego
- Format przesyłania danych
- Przesyłanie danych za pomocą transmisji cyklicznej

Ważne informacje

| Do czego służy sieć sterowników programowalnych | Sieć sterowników programowalnych umożliwia wymianę informacji dotyczących sterowania dla maszyn produkcyjnych pomiędzy sterownikami programowalnymi, oferując następujące korzyści:
• Obciążenie jest rozdzielane pomiędzy wiele sterowników programowalnych (rozkład obciążenia).
• Awaria pojedynczego sterownika programowego ma minimalny wpływ na cały system (rozkład funkcji). |
|--|--|
| Procedura przesyłania danych | Sieci sterowników programowalnych zasadniczo korzystają z formatu transmisji cyklicznej.
• Format transmisji cyklicznej używa dedykowanych urządzeń sieciowych zwanych „operandami sieciowymi”.
• Operandy sieciowe działają jako wspólne urządzenia dla sterowników programowalnych w sieci.
• Obszar operandu sieciowego jednej stacji, który jest ustawiony jako zakres wysyłania, odpowiada zakresowi odbioru w pozostałych stacjach. |
| Typy operandów sieciowych | Operandami sieciowymi są znacznik sieciowy (B) i rejestr sieciowy (W).
• „B” jest operandem bitowym, a „W” jest pamięcią podzieloną na słowa danych. |
Rozdział 2 Konfiguracja i specyfikacje urządzeń sieciowych CC-link IE Controller

W rozdziale 2 opisano konfigurację, specyfikacje i ustawienia sieci CC-Link IE Controller. Ten rozdział dostarcza szerszego zrozumienia konfiguracji, specyfikacji i funkcji sieci, ustawień parametrów sieciowych itp.

2.1 Konfiguracja sieci
2.2 Specyfikacje sieci
2.3 Parametry sieciowe
2.4 Podsumowanie
2.1 Konfiguracja sieci

W tym punkcie opisano konfigurację sieci i moduły sieciowe.

2.1.1 Konfiguracja stacji sieciowych

Sieć CC-Link IE Controller składa się ze „stacji sterowniczej” i wielu „stacji zwykłych”. Każda stacja ma przypisany niepowtarzalny numer stacji. Stacja sterownicza różni się od stacji zwykłych ze względu na ustawienie parametrów sieciowych.

(1) Rola stacji sterowniczej

„Stacja sterownicza” steruje parametrami sieciowymi. W danej sieci może istnieć wyłącznie jedna stacja sterownicza. Użyj parametrów sieciowych stacji sterowniczej do przypisania operandów sieciowych pozostałych stacji sieciowych.

(2) Rola stacji zwykłej

Wszystkie stacje inne niż „stacja sterownicza” są nazywane „stacjami zwykłymi”. Takie stacje wysyłają dane znajdujące się w zakresie wysyłania ich własnych stacji zgodnie z ustawieniami parametrów ustawnionymi przez stację sterowniczą.

Jeśli stacja sterownicza ulegnie awarii, jedna ze stacji zwykłych przejmuję rolę stacji sterowniczej (zastępuje stację sterowniczą), umożliwiając dalsze działanie systemu. Określa się to jako „funkcję przełączania stacji sterowniczej”.

Sieć CC-Link IE Controller
Podział sieci przy użyciu numerów sieci

Sieć CC-Link IE Controller można skonfigurować na wiele sposobów, od „systemu pojedynczej sieci” do wielkoskalowego „systemu wielu sieci”. W systemie wielu sieci każdy system ma przypisany niepowtarzalny numer systemu, za pomocą którego jest sterowany. Numery sieci są określone za pomocą ustawień parametrów sieciowych.

(1) Przykład systemu pojedynczej sieci

![Diagram of a single network division](image-url)
Podział sieci przy użyciu numerów sieci

(2) Przykład systemu wielu sieci

Jak pokazano na powyższym rysunku, sieć CC-Link IE Controller może zostać podzielona na wiele sieci, które są identyfikowane za pomocą numerów sieci. Stacje, które przekazują informacje w różnych sieciach, muszą mieć zainstalowane dwa moduły sieciowe.

Zalety podziału sieci
- Minimalizuje ilość danych przesyłanych w danej pętli, co pozwala na przyspieszenie cyklu komunikacji sieciowej.
- Zapobiega wpływowi wadliwej sieci na pozostałe sieci.

Uwagi
- Numery stacji nie powinny się pokrywać w ramach jednej stacji.
- Numery stacji mogą się pokrywać z numerami stacji innych sieci.
2.2 Specyfikacje sieci

Potwierdzenie specyfikacji
Przed wybraniem sieci CC-Link IE Controller należy sprawdzić środowisko systemu pod kątem spełniania przez nie specyfikacji sieci.

<table>
<thead>
<tr>
<th>Elementy do sprawdzenia</th>
<th>Specyfikacje sieci CC-Link IE Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skala sieci i liczba łączonych stacji</td>
<td>• Maks. liczba sieci: 239</td>
</tr>
<tr>
<td></td>
<td>• Maksymalna liczba łączonych stacji w sieci: 120 *1</td>
</tr>
<tr>
<td>Format połączenia</td>
<td>Specyfikacje kabla: kabel światłowodowy (wielomodowy)</td>
</tr>
<tr>
<td>liczba operandów sieciowych</td>
<td>• Maks. liczba operandów sieciowych w sieci *1</td>
</tr>
<tr>
<td></td>
<td>• Maks. liczba operandów sieciowych w stacji *1</td>
</tr>
<tr>
<td>Odległość połączenia</td>
<td>• Całkowita odległość: 66 km (dla połączenia 120 stacji)</td>
</tr>
<tr>
<td></td>
<td>• Odległość pomiędzy stacjami: Maks. 550 m (rdzeń/warstwa = 50/125 (mm)) *2</td>
</tr>
<tr>
<td>Prędkość komunikacji</td>
<td>1 Gb/s</td>
</tr>
</tbody>
</table>

*1: Szczegółowe informacje można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.
*2: Odległość pomiędzy stacjami można zwiększyć do 15 km przy użyciu media konwertera.

Projektowanie konfiguracji sieci

(1) Rozkład funkcji
 Zbadaj cały system i określ miejsca, w których korzystnie jest podzielić system ze względu na funkcje.
 Każda stacja wymaga modułu CPU.
 Aby umieścić urządzenie we/wy w zdalnej lokalizacji, można użyć CC-Link lub CC-Link/LT.

(2) Rozkład obciążenia
 Zbadaj cały system w celu określenia, czy nadmiernie obciążenie jest skoncentrowane w pojedynczym module CPU. W takim przypadku należy rozważyć rozwiązanie obciążenia przy użyciu sieci CC-Link IE Controller.

(3) Zasilanie zewnętrzne
 Użyj go w celu podtrzymywania zasilania stacji w przypadku odcięcia zasilania dostarczanego poprzez sterowniki programowe.

(4) Inne
 Sprawdź, czy odległość pomiędzy stacjami, całkowita odległość i dane techniczne kabla odpowiadają zaprojektowanym specyfikacjom.
2.2.1 Opis specyfikacji

W tym punkcie opisano specyfikacje, które są szczególnie ważne dla zrozumienia działania sieci CC-Link IE Controller.

Topologia sieci

Topologia sieci CC-Link IE Controller jest topologią pętli światłowodowej. Każdy kabel światłowodowy posiada dwie pary ścieżek transmisji (łącznie z zapasową). Jeśli działanie danej stacji staje się nieprawidłowe, komunikacja jest kontynuowana między pozostałymi stacjami zwykłymi. Proces ten określa się jako sprzężenie zwrotne.

Przykład komunikacji prawidłowej

Przykład komunikacji ze sprzężeniem zwrotnym

Liczba łączonych stacji w sieci:

Można połączyć maksymalnie 120 stacji w ramach systemu pętli światłowodowej. Szczegółowe informacje można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.

Całkowita odległość

Maksymalna całkowita odległość kabla wynosi 66 km dla pojedynczej sieci.
Typy modułów i nazwy elementów sieci CC-Link IE Controller

Karty, które mogą być zainstalowane w komputerze osobistym lub komputerem serwerowym są również dostępne.

Nazwa

<table>
<thead>
<tr>
<th>Nazwa</th>
<th>Funkcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Wskaźnik diodowy</td>
<td>Wskazuje status modułu.</td>
</tr>
<tr>
<td>(2) Złącze kabla światłowodowego</td>
<td>Do podłączenia kabla światłowodowego łączącego złącze WEJŚCIOWYM innej stacji ze złączeniem WEJŚCIOWYM danej stacji. Kabel światłowodowy podłączony do złącza Wy danej stacji łączy się ze złączem WE innej stacji.</td>
</tr>
<tr>
<td>(3) Listwa zaciskowa zasilania zewnętrznego</td>
<td>Do dostarczania zasilania do modułu sieciowego osobno z zasilania dostarczanego z modułu zasilania. Zasilanie zewnętrzne (UPS, bateria itp.) zapobiega odłączeniu modułu od sieci, nawet gdy zostanie wyłączone zasilanie z modułu zasilania.</td>
</tr>
</tbody>
</table>
Specyfikacje kabla transmisyjnego

Specyfikacje kabla światłowodowego

<table>
<thead>
<tr>
<th>Specyfikacje</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nazwa</td>
<td>Kabel światłowodowy kompatybilny z 1000BASE-SX (MMF)</td>
</tr>
<tr>
<td>Norma</td>
<td>IEC 60793-2-10 typy A1a.1 (50/125μm wielomodowy)</td>
</tr>
<tr>
<td>Złącze</td>
<td>Złącze kabla 2-fiber LC</td>
</tr>
<tr>
<td>Odległość pomiędzy stacjami</td>
<td>550 m *1</td>
</tr>
</tbody>
</table>

*1: Odległość pomiędzy stacjami można zwiększyć do 15 km przy użyciu media konwertera firmy Mitsubishi Electric System & Service Co., Ltd.
2.2.4 Czas opóźnienia transmisji

"Czas opóźnienia transmisji" oznacza czas potrzebny do zastosowania zmiany programu strony wysyłającej w programie strony odbierającej.

Ten czas opóźnienia należy uwzględniać w systemie, w którym wymagana jest dokładna synchronizacja. Przed zaprojektowaniem systemu należy obliczyć przybliżoną wartość czasu opóźnienia transmisji w celu zaprojektowania odpowiedniego systemu.

Poniższy przykład przedstawia przepływ operacji, w którym dane znacznika sieciowego (B0) modułu CPU stacji nr 1 są przesyłane do modułu CPU stacji nr 2.

Kliknij przycisk [START], aby uwidocznić objaśnienie.

Program stacji nr 1

Stacja nr 1

Moduł CPU

Urządzenie

B

Skanowanie sekwencji

Stacja nr 2

Moduł sieciowy

Urządzenie

LB

Odświeżanie sieci

Cykl komunikacji sieciowej

Program stacji nr 2

Moduł sieciowy

Urządzenie

LB

Odświeżanie sieci

Skanowanie sekwencji

CEWKA "B0" jest włączona przez program sekwencyjny stacji nr 1.

Dzięki odświeżaniu sieci informacja B0 jest zapisana w urządzeniu (LB) modułu sieciowego.

Dzięki cyklu komunikacji sieciowej informacja B0 jest przekazywana do urządzenia (LB) modułu sieciowego strony odbierającej.

Dzięki odświeżaniu sieci informacja B0 jest zapisana w urządzeniu (B) modułu CPU.

Status WŁ. "B0" jest sprawdzany w programie sekwencyjnym stacji nr 2.
2.2.4 Czas opóźnienia transmisji

Elementy „czasu opóźnienia transmisji”

Następujące elementy wchodzą w skład czasu opóźnienia transmisji.

- Czas skanowania programów sekwencyjnych strony wysyłającej i strony odbierającej
- Czas odświeżania sieci strony wysyłającej i strony odbierającej
- Czas potrzebny do przejścia przez wszystkie stacje w sieci (czas cyklu komunikacji sieciowej)

Środki zaradcze dotyczące „czasu opóźnienia transmisji”

Jeśli obliczenie czasu opóźnienia transmisji wskazuje, że dane nie mogą być uzyskane w wymaganym czasie, można również zastosować następujące środki.

- Podzielić sieć na części
- Zamienić moduł CPU na szybszy typ
- Dostosować liczbę punktów odświeżania sieci
2.2.4 Czas opóźnienia transmisji

Czas opóźnienia transmisji przy transmisjach cyklicznych (wartości najgorszego przypadku)

Przy następujących warunkach czas transmisji danych (Taxa) może być obliczony w poniższy sposób:

- System pojedynczej sieci
- Nieredundantny moduł CPU jest stroną odbierającą
- ST > LS
- Dane blokowe pochodzące ze stacji

\[\text{Taxa (ms)} = (\text{ST} + \alphaT) + (\text{SR} + \alphaR + \text{LS}) \times 2 \]

Czas skanowania (ST, SR) można sprawdzić w opcji „scan time measurement“ (pomiary czasu skanowania) oprogramowania GX Works2.

Inne zmienne są wyrażone następującymi wzorami:

\[\alphaT, \alphaR = \text{KM1} + \text{KM2} \times \left\{ (\text{LB} + \text{LX} + \text{LY} + \text{SB}) / 16 + \text{LW} + \text{SW} \right\} + \alphaE + \alphaL \]

\[\alphaE = \text{KM3} \times \left\{ (\text{LB} + \text{LX} + \text{LY}) / 16 + \text{LW} \right\} \]

\[\alphaL = \text{KM4} + \text{KM5} \times (\text{LB} / 16 + \text{LW}) \]

\[\text{LS} = \left[\text{KB} + (n \times 116) + \left\{ \text{LB} + \text{LY} + (\text{LB} \times 16) \right\} / 8 \times 0,016 \right] / 1000 + 100 \]

ST: Czas skanowania sekwencji strony wysyłającej (bez czasu odświeżania sieci)
SR: Czas skanowania sekwencji strony odbierającej (bez czasu odświeżania sieci)
\(\alphaT \): Czas odświeżania sieci strony wysyłającej
\(\alphaR \): Czas odświeżania sieci strony odbierającej
LS: Czas cyklu komunikacji sieciowej
N: Całkowita liczba stacji

LB, LW, LY, SB: Liczba punktów przypisanych przez ustawienia parametrów sieciowych.

KB, KM1, 2, 3, 4, 5: Stałe, które zależą od modułu CPU.

Powyższe wzory obliczeniowe opisują najgorszy scenariusz.
Szczęsło wzorów można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.
2.3 Parametry sieciowe

W tym punkcie opisano ustawienia parametrów sieciowych wymaganych do użycia sieci CC-Link IE Controller.

Minimalne wymagane ustawienia

Poniższa tabela przedstawia elementy i punkty, które należy ustawić i skontrolować przed użyciem sieci CC-Link IE Controller.

<table>
<thead>
<tr>
<th>Ustawiana pozycja</th>
<th>Cel i funkcje ustawienia</th>
<th>Punkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ sieci</td>
<td>Ustawienie typu sieci i stacji dla każdego modułu sieciowego.</td>
<td>Ustawienie jest wymagane dla każdego modułu sieciowego.</td>
</tr>
<tr>
<td>Początkowy nr we/wy</td>
<td>Ustawienie ustawień sieci dla każdego modułu sieciowego.</td>
<td>Ustawienia są wymagane dla każdego modułu sieciowego.</td>
</tr>
<tr>
<td>Numer sieci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wszystkie stacje</td>
<td>Ustawienie ustawień sieci dla każdego modułu sieciowego.</td>
<td></td>
</tr>
<tr>
<td>Numer grupy</td>
<td>Pozycja „Wszystkie stacje” jest ustawiana tylko w stacji sterowniczjej.</td>
<td></td>
</tr>
<tr>
<td>Tryb</td>
<td>Ustawienie jest wymagane dla stacji sterowniczcej (nie są wymagane dla stacji zwykłych).</td>
<td></td>
</tr>
<tr>
<td>Przypisanie zakresu sieci</td>
<td>Ustawienie zakresów transmisji cyklicznej dla operandów sieciowych LB, LW, LX i LY, w których dane będą wymieniane pomiędzy stacjami w tej samej sieci.</td>
<td></td>
</tr>
<tr>
<td>Parametry odświeżania</td>
<td>Ustawienie zakresu wysyłania w operandach sieciowych (B/W) modułu CPU i w operandach sieciowych (LB/LW) modułu sieciowego. To ustawienie jest wymagane w systemach, gdzie wiele modułów sieciowych jest zainstalowanych z pojedynczym modułem CPU.</td>
<td>W systemie pojedynczej sieci można stosować domyślne ustawienie.</td>
</tr>
</tbody>
</table>
2.3.1 Okno ustawień GX Works2

Oprogramowania GX Works2 można użyć do konfiguracji ustawień parametrów modułu sieciowego.

Zakładka ustawień parametrów sieciowych GX Works2
Zakładka ustawień parametrów sieciowych dla sieci CC-Link IE Controller jest przedstawiona poniżej. Zapoznaj się z elementami ustawień.

<table>
<thead>
<tr>
<th>Network Type</th>
<th>CC-Link IE Control(Control Station)</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start I/O No.</td>
<td>0080</td>
<td>Module 1</td>
<td>Module 2</td>
</tr>
<tr>
<td>Network No.</td>
<td>1</td>
<td>Mode</td>
<td>Online</td>
</tr>
<tr>
<td>Total Stations</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group No.</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aby otworzyć zakładkę ustawień parametrów sieciowych, kliknij dwukrotnie "Ethernet / CC IE / MELSECNET" (Ethernet / CC IE / MELSECNET).

Wyświetlane są parametry sieciowe. Wprowadź ustawienia do obszaru ustawień po prawej stronie.

Odpowiada modułem sieciowym w systemie. Jeśli używanych jest wiele modułów, rozpocznij ustawienia od Module 1 (Moduł 1).

W osobnym oknie wprowadź wartości za pomocą rozwijalnego menu, wpisując bezpośrednio lub za pomocą przycisków wyboru.

Kolor czcionki zmienia się w celu wskazania elementów ustawień, które są ustawione w osobnym oknie.

Czerwony: Wymagane ustawienie nie zostało wprowadzone w osobnym oknie.

Niebieski: Wymagane ustawienie zostało wprowadzone w osobnym oknie.

Różowy: Opcjonalne ustawienie nie zostało wprowadzone w osobnym oknie.

Ciemnoniebieski: Opcjonalne ustawienie zostało wprowadzone w osobnym oknie.

Okno ustawień Network Parameters (parametrów sieciowych)
Typy sieci i ustawienia sieciowe

Ustawienie sieciowe dla stacji sterowniczej

Rysunek poniżej przedstawia typ sieci i inne ustawienia sieciowe.

<table>
<thead>
<tr>
<th>Moduł 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>CC IE Control (Control Station)</td>
<td>0080</td>
<td>1</td>
</tr>
<tr>
<td>Start I/O No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Stations</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td>Online</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Range Assignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Operation Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Użyj rozwijalnego menu, aby wybrać typy sieci i stacji. Dla potrzeb tego kursu wybrano „CC IE Control (Control Station)” (Sterowanie CC IE (stacja sterownicza)). Domyślnym ustawieniem jest „None” (Brak). Zawsze ustawiaj to pole.

Zawsze ustawiaj to pole. Musi znajdować się wewnątrz pozycji instalacyjnej modułu.

Określa numer sieci, do której stacja jest podłączona.

Dla potrzeb tego kursu określ całkowitą liczbę połączonych za pomocą sieci stacji sterowniczych + stacji zwykłych.

Określa nr grupy w podłączonej sieci. Dla potrzeb tego kursu stosowana jest wartość domyślna „0”.

Kliknij tutaj, aby otworzyć okno ustawień Network Range Assignment (Przypisanie zakresu sieci). Ustawienia są wymagane dla stacji sterowniczych.

Kliknij tutaj, aby otworzyć okno Refresh Parameters (Parametry odświeżania). Można stosować domyślne ustawienie lub można je zmienić.
2.3.2 Typy sieci i ustawienia sieciowe

Ustawienie sieciowe dla stacji zwykłej

Rysunek poniżej przedstawia typ sieci i inne ustawienia sieciowe.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>CC IE Control (Normal Station)</td>
</tr>
<tr>
<td>Start I/O No.</td>
<td>0080</td>
</tr>
<tr>
<td>Network No.</td>
<td>1</td>
</tr>
<tr>
<td>Total Stations</td>
<td></td>
</tr>
<tr>
<td>Group No.</td>
<td>0</td>
</tr>
<tr>
<td>Station No.</td>
<td>2</td>
</tr>
<tr>
<td>Mode</td>
<td>Online</td>
</tr>
</tbody>
</table>

Okno ustawień Network Parameters (parametrów sieciowych)
2.3.3 Ustawienie parametrów wspólnych

Zakładkę przypisania parametrów sieciowych (przypisanie LB/LW) można otworzyć, klikając przycisk „Network Range Assignment” (Przypisanie zakresu sieci).

Użyj rozwijalnego menu, aby wybrać urządzenie. Ustawieniem domyślnym jest „LB/LW settings (1)” (Ustawienia LB/LW (1)). W razie potrzeby wybierz „LX/LY Setting” (Ustawienie LX/LY).

Okróbil zakresy transmisji dla rejestru sieciowego (LW) każdej stacji.
Okróbil numery początkowe i końcowe LW dla każdej stacji. Pamiętaj, aby numery się nie pokrywały.
W tym przykładzie 256 punktów jest przypisanych do każdej stacji.

Okróbil zakresy transmisji dla znacznika sieciowego (LB) każdej stacji.
Okróbil numery początkowe i końcowe LB dla każdej stacji. Pamiętaj, aby numery się nie pokrywały. W tym przykładzie 256 punktów jest przypisanych do każdej stacji.

Użyj tej opcji, jeśli oczekujesz wzrostu liczby stacji w przyszłości. Uwzględnij liczbę zarezerwowanych stacji w opcji „Total Stations” (Wszystkie stacje). Ustaw szczegóły w oknie wyświetlonym po kliknięciu przycisku.

Okno Network Parameter Assignment (przypisania parametrów sieciowych)
2.3.4 Ustawienie parametrów odświeżania sieci

Poniższy rysunek przedstawia domyślne ustawienie parametrów odświeżania sieci.

Zakładka ustawień Network Parameter (parametrów sieciowych)

1. W domyślnym ustawieniu dane w pozycji „LB/LW0 do 1FFF” (8192 punktów) są ustawione do przekazywania do urządzeń „B/W0 do 1FFF” modułu CPU. O ile nie jest wymagane inne ustawienie, można używać ustawień domyślnych.

2. Jeśli rzeczywista liczba używanych urządzeń jest mniejsza niż 8192 punkty, czas odświeżania może zostać skrócony poprzez zmniejszenie liczby punktów.
2.3.4 Ustawienie parametrów odświeżania sieci

Zmniejszenie liczby odświeżanych punktów za pomocą ustawienia parametrów odświeżania sieci

Przy domyślnym ustawieniu, odświeżanie ma miejsce pomiędzy LB i B dla każdego zakresu. Jednak parametry odświeżania sieci można ustawić tak, aby określić minimalny wymagany zakres odświeżania w celu skrócenia czasu odświeżania. Takie ustawienie skraca czas cyklu komunikacji sieciowej, co pozwala na skrócenie czasu opóźnienia transmisji.

Poniższe przykłady przedstawiają operacje odświeżania dla ustawienia domyślnego zakresu i dla ustawienia zmniejszonego zakresu.

Domyślne ustawienie

Moduł CPU

Stacja nr 1

Stacja nr 2

Moduł sieciowy

8192 punktów LB jest odświeżanych.

Zmienione ustawienie (z mniejszą liczbą punktów odświeżania)

Moduł CPU

Stacja 1

Stacja 2

Moduł sieciowy

512 punktów LB jest odświeżanych.
2.4 Podsumowanie

W tym rozdziale przekazano następujące informacje:

- Konfiguracja sieci
- Specyfikacje sieci
- Parametry sieciowe

Ważne informacje

<table>
<thead>
<tr>
<th>Konfiguracja stacji sieciowych CC-Link IE Controller</th>
<th>Pojedyncza sieć składa się z jednej stacji sterowniczej i wielu stacji zwykłych. Ustawienia stacji sterowniczej i stacji zwykłych są konfigurowane w parametrach sieciowych.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas opóźnienia transmisji sieci CC-Link IE Controller</td>
<td>Czas opóźnienia transmisji jest określany przez czas skanowania sekwencji, czas odświeżania sieci i czas cyklu komunikacji sieciowej sterowników programowalnych strony wysyłającej/odbierającej.</td>
</tr>
<tr>
<td>Ustawienia parametrów sieciowych</td>
<td>Ustawienia typu sieci, początkowego numeru we/wy i numeru sieci są wymagane dla wszystkich modułów sieciowych w sieci. Oprócz tych ustawień stacja sterownicza wymaga ustawień (LB/LW) „Numer stacji”, „Parametr sieciowy” i „Przypisanie parametrów sieciowych”.</td>
</tr>
</tbody>
</table>
Rozdział 3 Uruchamianie sieci CC-link IE Controller

W rozdziale 3 opisano procedury począwszy od uruchamiania sieci CC-Link IE Controller, a skończywszy na kontroli jej działania. Ten rozdział zawiera wyjaśnienia dotyczące konfiguracji systemu, metody połączenia sieciowego i różnych operacji konfiguracyjnych oraz programów sekwencyjnych.

3.1 Konfiguracja systemu sieciowego
3.2 Ustawianie parametrów sieciowych
3.3 Kontrola operacji sieciowej
3.4 Kontrola działania za pomocą programu sekwencyjnego
3.5 Podsumowanie
3.1 Konfiguracja systemu sieciowego

W tym punkcie poznać procedurę konfiguracji prostego systemu sieciowego składającego się z dwóch stacji.

3.1.1 Konfiguracja systemu sieciowego

Opis podany w tym punkcie będzie się opierać na poniższym systemie sieciowym składającym się z dwóch stacji.

Maszyna A

Stacja nr 1 (stacja sterownicza)

Maszyna B

Stacja nr 2 (stacja zwykła)

Sieć CC-Link IE Controller
3.1.1 Konfiguracja systemu sieciowego

Specyfikacje przykładowego systemu są przedstawione poniżej.

<table>
<thead>
<tr>
<th>Topologia sieci</th>
<th>System pętli światłowodowej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduł sieciowy</td>
<td>QJ71GP21-SX</td>
</tr>
<tr>
<td>Całkowita liczba stacji</td>
<td>2 stacje (stacja nr 1: stacja sterownicza; stacja nr 2: stacja zwykła)</td>
</tr>
<tr>
<td>Numer sieci</td>
<td>1</td>
</tr>
<tr>
<td>Numer grupy</td>
<td>0</td>
</tr>
<tr>
<td>Operand sieciowy</td>
<td>Znacznik sieciowy (B/LB): 256 punktów/stację; rejestr sieciowy (W/LW): 256 punktów/stację</td>
</tr>
</tbody>
</table>

Konfiguracja modułu sterownika programowalnego

W tym przykładowym systemie stacje nr 1 (stacja sterownicza) i nr 2 (stacja zwykła) posiadają tę samą konfigurację modułu, jak przedstawiono poniżej.

![Diagram z główną jednostką bazową Q35B i przydziałami we/wy]

- Wejście: 64 punkty
- Wyjście: 64 punkty
- Inteligentne punkty: X/Y80 do 9F
- Punkty X3F do X7F
3.1.2 Podłączenie kabla światłowodowego

Moduły sieciowe są wyposażone w łącza „WE” i „WY” połączenia światłowodowego. Kabel światłowodowy łączy łącze „WY” modułu ze łączem „WE” następnej stacji. Pętla jest konfigurowana poprzez podłączenie modułów w kolejności „Stacja nr 1: WY” -> „Stacja nr 2: WE”, „Stacja nr 2: WY” -> „Stacja nr 1: WE".
3.1.2 Podłączanie kabla światłowodowego

Wskazówki dotyczące podłączenia kabla

- Zawsze przytrzymuj obszar złącza kabla podczas odłączania kabla.
- Podczas podłączania kabla wyrównaj wystającą część kabla z rowkiem wtyczki, a następnie wetknij kabel.
- Dobrze podłącz złącze kabla ze złączem po stronie modułu, aż będzie słyszalny dźwięk zatrzasknięcia (kliknięcie).

Obsługa kabla światłowodowego

- Pojedynczy kabel światłowodowy ma dwie linie ścieżek transmisji optycznej.
- Ponieważ kabel światłowodowy posiada rdzeń z włókna szklanego, jego promień ugięcia jest ograniczony. Z tego względu kabel musi być ostrożnie obsługiwany i należy go zainstalować w kanale itp. w celu ochrony.
- Olej z rąk i ciała obce, takie jak pył itp. mogą przylegać do światłowodu, zmniejszając jego zdolność transmisji i prowadząc do wystąpienia błędów. Po zainstalowaniu kabla światłowodowego jego rdzenie z włókna szklanego i obszary złącza modułu nie powinny być dotykane gołymi rękami. Obszary te należy również chronić przed pyłem itp.
3.2 Ustawianie parametrów sieciowych

W tym punkcie opisano procedury ustawień parametrów sieciowych.

3.2.1 Ustawianie parametrów stacji sterowniczej

Poniższe diagramy przedstawiają przypisanie urządzeń, które będzie ustawione przez parametry stacji sterowniczej.

Stacja nr 1

- Znacznik sieciowy:
 - LB0 do LBFF (256 punktów)

Stacja nr 2

- Znacznik sieciowy:
 - LB100 do LB1FF (256 punktów)

Stacja nr 1

- Rejestr sieciowy:
 - LW0 do LWFF (256 punktów)

Stacja nr 2

- Rejestr sieciowy:
 - LW100 do LW1FF (256 punktów)
3.2.1 Ustawianie parametrów stacji sterowniczej

Parametry sieciowe stacji sterowniczej są ustawiane za pomocą poniższej procedury.

1. **Wprowadź ustawienia sieciowe dla Module 1 (Moduł 1) (stacja sterownicza).**
 - **Typ sieci**
 - **Sterowanie CC IE (stacja sterownicza)**
 - **Początkowy nr we/wy:** 0080
 - **Numer sieci:** 1
 - **Wszystkie stacje:** 2
 - **Numer grupy:** 0
 - **Nr stacji:** 1

2. **Przypisz zakresy sieci.**
 - LB/LW stacji nr 1: Początkowy adres: 0; Końcowy adres: FF
 - LB/LW stacji nr 2: Początkowy adres: 100; Końcowy adres: 1FF

3. **Użyj domyślnych parametrów odświeżania sieci, jak pokazano poniżej.**

4. **Po ustawieniu opcji Network Range Assignment (Przypisanie zakresu sieci) i Refresh Parameters (Parametry odświeżania) zmieni się kolor czcionki.**

Zakładka ustawień Network Range Assignment (Przypisanie zakresu sieci)

Zakładka ustawień Refresh Parameter (Parametr odświeżania)
3.2.2 Ustawianie parametrów stacji zwykłej

Parametry sieciowe stacji zwykłej są ustawiane za pomocą poniższej procedury.

1. Wprowadź ustawienia sieciowe dla stacji nr 2 (stacja zwykła):
 - **Typ sieci**
 - **Początkowy nr we/wy**
 - **Numer sieci**
 - **Numer grupy**
 - **Nr stacji**

 - **Transfer SB**
 - **Transfer SW**
 - **Transfer 1**
 - **Transfer 2**
 - **Transfer 3**
 - **Transfer 4**
 - **Transfer 5**
 - **Transfer 6**
 - **Transfer 7**
 - **Transfer 8**

3. Po ustawieniu opcji **Refresh Parameters** (Parametry odświeżania) zmieni się kolor czcionki.

Zakładka ustawień Network parameter (parametrów sieciowych)

Zakładka ustawień Network refresh parameter (parametrów odświeżania sieci)
3.3 Kontrola operacji sieciowej

Po zapisaniu określonych parametrów sieciowych w module CPU należy sprawdzić operację sieciową.

3.3.1 Procedura rejestracji parametrów

Moduł CPU każdej stacji powinien być podłączony do komputera osobistego (GX Works2), tak aby można było zarejestrować parametry sieciowe, które zostały określone dla każdej stacji. W następnym punkcie wyjaśniono procedurę rejestracji parametrów. (Wyjaśnienie opiera się na domyślach ustawieniach parametrów sterownika PLC).

1. W oknie „Online Data Operation“ (Operacja na danych online) wybierz opcję „Parameters + Programs“ (Parametry + programy), a następnie kliknij przycisk [Execute] (Wykonaj), aby rozpocząć rejestrację parametrów i programów w module CPU.

2. Po zakończeniu rejestracji parametrów zresetuj moduł CPU, aby zastosować zmiany.
3.3.2 Kontrola wskazań diod modułu sieciowego

Jeśli parametry i inne ustawienia są prawidłowo skonfigurowane i zarejestrowane dla każdego modułu CPU, rozpoczyna się komunikacja sieciowa. Wskazania diod modułu sieciowego można użyć do sprawdzenia prawidłowej komunikacji sieciowej.

Wskazania diod podczas prawidłowej komunikacji:

- Stacja nr 1 (stacja sterownicza): „1”, które jest pierwszą cyfrą numeru stacji, jest WŁ; a PRM, które oznacza stację sterowniczą, jest WŁ.
- Stacja nr 2 (stacja zwykła): „2”, które jest pierwszą cyfrą numeru stacji, jest WŁ; a PRM, które oznacza stację sterowniczą, jest WYŁ.

![Stacja nr 1 i Stacja nr 2]

Wskaźniki diodowe

<table>
<thead>
<tr>
<th>Wskazówki</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run (Działanie)</td>
<td>Wskazuje status działania. WŁ podczas prawidłowej komunikacji.</td>
</tr>
<tr>
<td>Mode (Tryb)</td>
<td>Wskazuje tryb online, testowy lub autonomiczny. WŁ w trybie online.</td>
</tr>
<tr>
<td>Prm (Prm)</td>
<td>Wskazuje typ stacji. WŁ oznacza stację sterowniczą, a WYŁ oznacza stację zwykłą.</td>
</tr>
<tr>
<td>D.Link (Łączce D)</td>
<td>Wskazuje status łącza danych. WŁ podczas transmisji cyklicznej.</td>
</tr>
<tr>
<td>Sd (Wysyłanie Danych)</td>
<td>Wskazuje, że dane są wysyłane.</td>
</tr>
<tr>
<td>Rd (Odbieranie Danych)</td>
<td>Wskazuje, że dane są odbierane.</td>
</tr>
<tr>
<td>Err (Błąd)</td>
<td>Wskazuje wystąpienie błędu. WYŁ, jeśli nie występują błędy.</td>
</tr>
</tbody>
</table>

Procedura kontrolna dla nieprawidłowej komunikacji jest opisana w rozdziale 4.
3.4 Kontrola działania za pomocą programu sekwencyjnego

Można stworzyć program sekwencyjny do kontroli statusu komunikacji pomiędzy stacjami nr 1 i 2.

3.4.1 Program sekwencyjny

Program sekwencyjny dla stacji jest przedstawiony poniżej.

Program sekwencyjny stacji nr 1

- Jeśli sygnał wejściowy „X0” jest Wł., „B0” jest Wł.
- Jeśli sygnał „X10” jest Wł. (krawędź rosnąca), „20” jest dodawane do wartości zapisanej jako „W0”.
- Jeśli „B100” jest Wł., sygnał wyjściowy „Y40” jest Wł.
- Jeśli „Y40” jest Wł. (krawędź rosnąca), zapisana wartość „W100” jest przesyłana do „D0”.

Program sekwencyjny stacji nr 2

- Jeśli „B0” jest Wł., sygnał wyjściowy „Y41” jest Wł.
- Jeśli „Y41” jest Wł. (krawędź rosnąca), zapisana wartość „W0” jest przesyłana do „D10”.
- Jeśli „X1” jest Wł., sygnał wyjściowy „B100” jest Wł.
- Jeśli „X11” jest Wł. (krawędź rosnąca), zapisana wartość „D10” jest przesyłana do „W100”.
3.4.2 Procedura zapisywania programu sekwencyjnego

Program sekwencyjny każdej stacji musi być zapisany w odpowiednim module CPU. Skontroluj procedurę za pomocą poniższego przykładu.

1. W oknie „Online Data Operation” (Operacja na danych online) wybierz opcję „Program (Program File)” (Program (Plik programu)), a następnie kliknij przycisk „Execute” (Wykonaj), aby rozpocząć zapisywanie w module CPU.

(2) Gdy zapisywanie zostanie ukończone, zresetuj moduł CPU każdej stacji, aby zastosować zmiany.

(3) Ustaw status modułów CPU w tryb „RUN” (DZIAŁANIE) i wykonaj program.
3.4.3 Kontrola komunikacji za pomocą programu sekwencyjnego

Programy sekwencyjne, które zostały zapisane w module CPU, są wykonywane w celu sprawdzenia prawidłowej komunikacji sieciowej. Dla potrzeb tego kursu kontrolowane są następujące operacje.

![Program sekwencyjny stacji nr 1](image1)

![Program sekwencyjny stacji nr 2](image2)

(1) Za każdym razem, gdy przełącznik „X10” stacji nr 1 jest WŁĄCZONY, 20 jest dodawane do „W0”. Jednocześnie wartość „W0” stacji nr 2 zmienia się na tę samą wartość.

(2) Gdy przełącznik „X0” stacji nr 1 jest WŁĄCZONY/WYŁĄCZONY, cewka „B0” jest również WŁĄCZONA/WYŁĄCZONA. Jednocześnie styk „B0” stacji nr 2 jest WŁĄCZONY/WYŁĄCZONY.

(3) Gdy „B0” stacji nr 2 jest WŁĄCZONY/WYŁĄCZONY, cewka „Y41” jest również WŁĄCZONA/WYŁĄCZONA. Jeśli „Y41” jest WŁĄCZONY, wartość „W0” jest przesyłana do „D10”.

(4) Gdy przełącznik „X1” stacji nr 2 jest WŁĄCZONY/WYŁĄCZONY, cewka „B100” jest również WŁĄCZONA/WYŁĄCZONA. Jednocześnie styk „B100” stacji nr 1 jest WŁĄCZONY/WYŁĄCZONY. Gdy styk „B100” stacji nr 1 jest WŁĄCZONY/WYŁĄCZONY, cewka „Y40” jest również WŁĄCZONA/WYŁĄCZONA.

(5) Gdy przełącznik „X11” stacji nr 2 jest WŁĄCZONY/WYŁĄCZONY, powyższa wartość „D10” jest przesyłana do „W100”.

(6) Gdy przełącznik „Y40” stacji nr 1 jest WŁĄCZONY, wartość „W100” jest przesyłana do „D0”.

Przejdź do następnej strony i sprawdź status przesyłania danych poprzez uruchomienie przykładowych programów sekwencyjnych.
3.4.3 Kontrola komunikacji za pomocą programu sekwencyjnego

Symulacja działania programu sekwencyjnego

Wykonaj przykładowy program sekwencyjny przedstawiony poniżej, aby sprawdzić status przesyłania danych.

Kliknij przełączniki „X0” i „X10” stacji nr 1 i przełączniki „X1” i „X11” stacji nr 2, aby sprawdzić status działania przesyłania danych, który jest wskazywany przez wskaźniki diodowe, wyświetlacze danych i monitor drabinkowy. Przycisk Wznów powoduje powrót ustawionych wartości do wartości domyślnych.
3.5 Podsumowanie

W tym rozdziale przekazano następujące informacje:

- Procedury ustawiania modułu sieciowego
- Procedura podłączenia kabla światłowodowego
- Ustawianie parametrów sieciowych za pomocą oprogramowania GX Works2
- Procedury zapisywania parametrów i programu sekwencyjnego oraz procedura kontrolna operacji sieciowej

Ważne informacje

<table>
<thead>
<tr>
<th>Ustawienia parametrów sieciowych</th>
<th>Oprogramowania GX Works2 jest używane do ustawiania parametrów sieciowych. Ustawienia są wymagane dla każdego sterownika programowalnego, który jest podłączony do sieci.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrola działania systemu sieciowego</td>
<td>Działanie modułów sieciowych CC-Link IE Controller może zostać sprawdzone poprzez kontrolę wskaźników diodowych modułu sieciowego.</td>
</tr>
<tr>
<td>Kontrola za pomocą programu sekwencyjnego</td>
<td>Sygnały i dane do przesłania do innej stacji są ustawiane w operandzie sieciowym zakresu wysyłania własnej stacji. Sygnały i dane pochodzące z innej stacji są przechowywane w operandzie sieciowym zakresu odbioru własnej stacji (zakres wysyłania innej stacji).</td>
</tr>
</tbody>
</table>
Rozdział 4 Praca testowa systemu sieci CC-Link IE Controller

W rozdziale 4 opisano stworzenie programu do procedur kontroli działania, jak również podstawowych procedur diagnostyki sieci w celu wykrywania awarii, przy użyciu przykładowego systemu.

4.1 Konfiguracja i specyfikacje przykładowej konfiguracji systemu
4.2 Program sekwencyjny przykładowego systemu
4.3 Kontrola działania przykładowego systemu
4.4 Procedura kontrolna gdy sieć nie działa
4.5 Użycie oprogramowania GX Works2 do monitorowania programów innych stacji
4.6 Podsumowanie
4.1 Konfiguracja i specyfikacje przykładowej konfiguracji systemu

W tym punkcie zostaną wyjaśnione zagadnienia konfiguracji sieci przykładowego systemu, specyfikacji sterowania maszyną i wymiany sygnałów. Przed kontynuowaniem należy zapoznać się ze specyfikacjami przykładowego systemu.

4.1.1 Szczegóły dotyczące sterowania maszyną przykładowego systemu

W konfiguracji sieci przykładowego systemu sterowane są dwie maszyny.

- Wyświetla wielkość produkcji każdej maszyny
- Wskazuje stan działania/zatrzymania
- Wskazuje błąd

- Rozpoczęcie i zakończenie działania (maszyny A i B)
- Wielkość produkcji docelowej przesyłana do maszyny B
- Wielkość produkcji bieżącej dla własnej stacji
- Całkowita wielkość produkcji maszyn A i B
- Wskazanie wielkości produkcji (maszyny A i B)

- Rozpoczęcie i zakończenie działania
- Status działania przesyłany do maszyny A
- Wielkość produkcji bieżącej przesyłana do maszyny A
- Wielkość produkcji bieżącej przesyłana do maszyny A
4.1.2 Wymiany sygnałów przykładowego systemu

Poniższy rysunek przedstawia wymianę sygnałów pomiędzy maszynami i sterownikami programowalnymi w przykładowym systemie. Programy sekwencyjne zostaną stworzone na podstawie tych informacji.

Sygnały we/wy maszyny A

<table>
<thead>
<tr>
<th>Sygnał</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0</td>
<td>GOTOWOŚĆ ZAŁ.</td>
</tr>
<tr>
<td>X1</td>
<td>Błąd maszyny</td>
</tr>
<tr>
<td>X2</td>
<td>Rozpoczęcie działania maszyny A</td>
</tr>
<tr>
<td>X3</td>
<td>Maszyna A GOTOWA</td>
</tr>
<tr>
<td>X4</td>
<td>Rozpoczęcie działania maszyny B</td>
</tr>
<tr>
<td>X5</td>
<td>Wielkość produkcji maszyny A</td>
</tr>
</tbody>
</table>

Sygnały we/wy maszyny B

<table>
<thead>
<tr>
<th>Sygnał</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0</td>
<td>Błąd maszyny B</td>
</tr>
<tr>
<td>X1</td>
<td>Maszyna B GOTOWA</td>
</tr>
<tr>
<td>X2</td>
<td>Rozpoczęcie niezależnego działania maszyny B</td>
</tr>
<tr>
<td>X3</td>
<td>Wielkość produkcji maszyny B</td>
</tr>
<tr>
<td>Y70</td>
<td>Maszyna B GOTOWA</td>
</tr>
<tr>
<td>Y71</td>
<td>Rozpoczęcie działania maszyny B</td>
</tr>
</tbody>
</table>
4.2 **Program sekwencyjny przykładowego systemu**

W oparciu o szczegóły dotyczące sterowania podane w punkcie 4.1 tworzone są programy sekwencyjne do sterowania maszyną A (stacja nr 1) i maszyną B (stacja nr 2).

4.2.1 **Szczegóły dotyczące sterowania programami sekwencyjnymi**

Program sekwencyjny maszyny A (stacji nr 1)

1. Działanie maszyny A rozpoczyna się sygnałami GOTOWOŚĆ ZĄł. i rozpoczęcie działania maszyny A. Sygnał Maszyna B GOTOWA i sygnały rozpoczęcia działania maszyny B są również przesyłane do maszyny B.
2. Podczas działania, wielkość produkcji jest liczona przez sygnał wielkości produkcji maszyny A.

Program sekwencyjny maszyny B (stacji nr 2)

1. Działanie maszyny B rozpoczyna się sygnałami Maszyna B GOTOWA i rozpoczęcie działania maszyny A, wysłanymi z maszyny A.
2. Podczas działania, wielkość produkcji jest liczona przez sygnał wielkości produkcji maszyny B.
3. W czasie działania maszyny B przesyła ona w sposób ciągły wielkość produkcji do maszyny A.
4.2.2 Punkty stworzenia programu sekwencyjnego

1) Blokada ze statusem sieci
 Aby zapewnić prawidłowe działanie, programy sekwencyjne są zazwyczaj tworzone poprzez blokowanie statusu modułu CPU, wyników monitorowania sprzętu itp.
 W ten sam sposób, podczas tworzenia sieciowych programów sekwencyjnych, statusy sieci powinny być zablokowane.

2) Specjalne znaczniki sieciowe (SB) i specjalne rejestry sieciowe (SW)
 Specjalny znacznik sieciowy (SB) i specjalne rejestry sieciowe (SW) przechowują statusy sieci.
 Specjalny znacznik sieciowy (SB) przechowuje sygnały bitowe (WŁ./WYŁ.), a specjalny rejestr sieciowy (SW) przechowuje informacje o danych (16-bitowe).
 Dane przechowywane w tych znacznikach i rejestrowych są odświeżanie pomiędzy modułami sieciowymi i modułami CPU, a dane te mogą być użyte w programach sekwencyjnych do sprawdzenia statusów modułów sieciowych i w celu wykrywania błędów.
4.2.2 Punkty stworzenia programu sekwencyjnego

(3) Czas opóźnienia transmisji i zależności czasowe pomiędzy sygnałami odświeżania sieci
Sterowniki programowalne wymieniają bieżący stan we/wy i wartości danych numerycznych poprzez operandy sieciowe. Jednak w niektórych przypadkach odświeżanie statusu we/wy i wartości danych w całej sieci może być opóźnione ze względu na opóźnienie transmisji, zależności czasowe pomiędzy sygnałami odświeżania sieci itp. Aby przeciwdziałać tym możliwościami, należy przestrzegać następujących punktów.

(a) Instrukcje „SET” (USTAW) i „RST” (RESETUJ) do zabezpieczenia okresu WŁ./WYŁ.
Jeśli okres w./wyl. znacznika czasowego itp. jest zbyt długi, dane mogą nie zostać odebrane przez inną stację ze względu na opóźnienie transmisji. Aby temu zapobiec, można użyć instrukcji „SET” (USTAW) i „RST” (RESETUJ), aby zapewnić odpowiedni okres w./wyl.

Przykład programu wymiany sygnałów w./wyl.

(b) Funkcja zabezpieczenia danych 32-bitowych
Podczas wysyłania danych 32-bitowych (2 słowa), funkcja „zabezpieczenie danych 32-bitowych” może zostać użyta do zapewnienia integralności danych. Szczegółowe informacje dotyczące warunków, które umożliwiają to zabezpieczenie, można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.

(c) Funkcja danych blokowych pochodzących ze stacji
Podczas wysyłania danych o wielu słowach, które przekraczają 32 bity, „dane blokowe pochodzące ze stacji” mogą być użyte do zapewnienia zabezpieczenia danych o wielu słowach. Szczegółowe informacje można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.
Urządzenia używane do komunikacji są przedstawione w kolorze pomarańczowym.

Jeśli „X0” jest WŁĄCZONY, „Maszyna A GOTOWA (Y70)” jest również WŁĄCZONY (samopodtrzymanie).

Jeśli „B0” jest WŁĄCZONY, instrukcja „GOTOWOŚĆ” jest przesyłana do maszyny B.

Działanie maszyny A rozpoczyna się, gdy „GOTOWOŚĆ (X3)” i „Rozpoczęcie działania (X2)” są WŁĄCZONE.

Jeśli „B100” jest WŁĄCZONY, „Maszyna A GOTOWA (Y71)” jest również WŁĄCZONY.

Docelowa wielkość produkcji maszyny B jest przesyłana do „W0”.

Jeśli „X4” jest WŁĄCZONY, „B1” jest również WŁĄCZONY, a instrukcja „Rozpoczęcie działania” jest przesyłana do maszyny B.

Podczas rozpoczęcia działania, poprzednia wartość „Osiągnięta całkowita docelowa wielkość produkcji (B2)” jest resetowana.

Gdy „M0” jest WŁ., „Rozpoczęte działanie (Y72)” maszyny A jest WŁĄCZONE i rozpoczyna się działanie maszyny.

Przy przełączeniu „X5” ze stanu WYł. do Wł., wielkość produkcji maszyny A jest zapisywana w „D0”.

Podczas działania maszyny A, wielkość produkcyi maszyny A „D0” jest wyświetlana na panelu wielkości produkcji.

Suma wartości „Wielkość produkcji maszyny A (D0)” i „Wielkość produkcji maszyny B (W100)” jest obliczana w celu uzyskania całkowitej wielkości produkcji.

Po osiągnięciu całkowitej docelowej wielkości produkcji, wielkość produkcji „D0” zostaje wyczyszczena.

Wartość „Osiągnięta całkowita docelowa wielkość produkcji” jest zapisywana w „B2”, aby maszyna B została powiadomiona.

Po osiągnięciu całkowitej docelowej wielkości produkcji, „M1” jest WŁĄCZONY.

Przy „M1” WŁĄCZONYM lub „Y70” WYŁĄCZONYM, stan działania zostaje wyczyszczone, a jego działanie jest zatrzymywane.

Jeśli „B101” jest WŁĄCZONY, wartość „Maszyna B działa (Y73)” jest przekazywana.

Podczas działania maszyny B, „Wielkość produkcji maszyny B (W100)” jest wyświetlana na panelu wielkości produkcji.
Program sekwencyjny maszyny A (stacji nr 1)

Szczegóły dotyczące sygnałów zewnętrznych są przedstawione poniżej.

<table>
<thead>
<tr>
<th>X0</th>
<th>GOTOWOŚĆ ZAŁ.</th>
<th>Y70</th>
<th>Maszyna A GOTOWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Błąd maszyny A</td>
<td>Y71</td>
<td>Maszyna B GOTOWA</td>
</tr>
<tr>
<td>X2</td>
<td>Rozpoczęcie działania maszyny A</td>
<td>Y72</td>
<td>Rozpoczęte działania maszyny A (dział)</td>
</tr>
<tr>
<td>X3</td>
<td>Maszyna A GOTOWA</td>
<td>Y73</td>
<td>Maszyna B działa</td>
</tr>
<tr>
<td>X4</td>
<td>Rozpoczęcie działania maszyny B</td>
<td>Y40 do Y4F</td>
<td>Wielkość produkcji maszyny A</td>
</tr>
<tr>
<td>X5</td>
<td>Wielkość produkcji maszyny A</td>
<td>Y50 do Y5F</td>
<td>Wielkość produkcji maszyny B</td>
</tr>
<tr>
<td>B100</td>
<td>Maszyna B GOTOWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B101</td>
<td>Maszyna B działa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM1(*)</td>
<td>Błąd sterownika programowalnego maszyny A</td>
<td>SM400 (*3)</td>
<td>Sygnał Zawsze Wł.</td>
</tr>
<tr>
<td>SB20(*)</td>
<td>Status modułu sieciowego maszyny A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: SM1 jest specjalnym przekaźnikiem, który jest WŁĄCZONY, gdy zostaje wykryty błąd sterownika programowalnego.
*2: SB20 jest specjalnym znacznikiem sieciowym, który jest WŁĄCZONY, gdy pojawi się błąd w module sieciowym.
*3: SM400 jest specjalnym przekaźnikiem, który reprezentuje styk normalnie otwarty.
4.2.4 Program sekwencyjny maszyny B (stacji nr 2)

Urządzenia używane do komunikacji są przedstawione w kolorze pomarańczowym.

Jeśli „B0” jest WŁĄCZONY, „Maszyna B GÓTOWA (Y70)" jest również WŁĄCZONY (samopodtrzymanie).

Jeśli „B100” jest WŁĄCZONY, maszyna A jest powiadamiana o statusie GÓTOWOŚCI maszyny B.

Instrukcja „Rozpoczęcie działania maszyny B (M0)" jest WŁĄCZONA, gdy „GÓTOWOŚĆ (X1)" i „Rozpoczęcie działania (B1)" są WŁĄCZONE.

Gdy „M0” jest WŁ., „Rozpoczęcie działania maszyny B (Y71)” jest również WŁĄCZONE i rozpoczyna się działanie maszyny.

Przy przełączeniu „X3” ze stanu WŁ. do WŁ., wartość „Wielkość produkcji maszyny B” jest zapisywana w „D0”.

Wartość „Wielkość produkcji maszyny B (D0)” jest przesyłana do „W100”, a maszyna A jest powiadamiana o wielkości produkcji.

Wartość „Wielkość produkcji (D0)” zostaje wyczyszczona, gdy zostaje osiągnięta „Docelowa wielkość produkcji maszyny B” lub gdy „Osiągnięta całkowita docelowa wielkość produkcji (B2)” maszyny A jest WŁĄCZONA.

Wartość „M1” jest WŁĄCZONA, gdy zostaje osiągnięta „Docelowa wielkość produkcji maszyny B” lub gdy „Osiągnięta całkowita docelowa wielkość produkcji (B2)” maszyny A jest WŁĄCZONA.

Stan działania maszyny B zostaje wyczyszczony i działanie jest zatrzymane, gdy „M1” jest WŁĄCZONY lub gdy „Y70” jest WYŁĄCZYONY.

„Wielkość produkcji (W100)” zostaje wyczyszczona po upływie okresie ustawienia „licznika czasu (T0)” następującym po tym, jak „Osiągnięta docelowa wielkość produkcji (B2)” maszyny A została WŁĄCZONA.

Wartość „Maszyna B działa (B101)” jest WŁĄCZONA, a maszyna A jest powiadamiana, że maszyna B działa.
Program sekwencyjny maszyny B (stacji nr 2)

Szczegóły dotyczące sygnałów zewnętrznych są przedstawione poniżej.

<table>
<thead>
<tr>
<th>X0</th>
<th>Błąd maszyny B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Maszyna B GOTOWA</td>
</tr>
<tr>
<td>X2</td>
<td>Niezależnie uruchomienie maszyny B</td>
</tr>
<tr>
<td>X3</td>
<td>Wielkość produkcji maszyny B</td>
</tr>
<tr>
<td>B0</td>
<td>Maszyna B GOTOWA (instrukcja z maszyny A)</td>
</tr>
<tr>
<td>B1</td>
<td>Rozpoczęcie działania maszyny B (instrukcja z maszyny A)</td>
</tr>
<tr>
<td>B2</td>
<td>Osiągnięta całkowita docelowa wielkość produkcji (sygnał z maszyny A)</td>
</tr>
<tr>
<td>SM1</td>
<td>Błąd sterownika programowego maszyny B</td>
</tr>
<tr>
<td>SB20</td>
<td>Status modułu sieciowego maszyny B</td>
</tr>
<tr>
<td>Y70</td>
<td>Maszyna B GOTOWA</td>
</tr>
<tr>
<td>Y71</td>
<td>Rozpoczęcie działania maszyny B</td>
</tr>
</tbody>
</table>
4.3 Kontrola działania przykładowego systemu

W tym punkcie opisano procedurę kontroli dla prawidłowej komunikacji sieciowej.

4.3.1 Kontrola wskazań diod modułu sieciowego

Aby określić status komunikacji, należy sprawdzić wskaźniki diodowe modułu sieciowego podczas działania modułu CPU.

Jeśli sieć działa prawidłowo, wskaźniki diodowe modułu sieciowego powinny być wyświetlane w sposób przedstawiony poniżej.

![Stacja nr 1 i Stacja nr 2](image)

Szczegóły wyświetlacza diodowego

<table>
<thead>
<tr>
<th>RUN (DZIAŁANIE)</th>
<th>Wskazuje status działania. WŁ podczas prawidłowej komunikacji.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE (TRYB)</td>
<td>Wskazuje tryb online, testowy lub autonomiczny. WŁ w trybie online.</td>
</tr>
<tr>
<td>PRM (PRM)</td>
<td>Wskazuje typ stacji. WŁ oznacza stację sterowniczą, a WYŁ oznacza stację zwykłą.</td>
</tr>
<tr>
<td>D.LINK (ŁĄCZE D)</td>
<td>Wskazuje status łącza danych. WŁ podczas transmisji cyklicznej.</td>
</tr>
<tr>
<td>SD (WYSYLANIE DANYCH)</td>
<td>Wskazuje, że dane są wysyłane.</td>
</tr>
<tr>
<td>RD (ODBIERANIE DANYCH)</td>
<td>Wskazuje, że dane są odbierane.</td>
</tr>
<tr>
<td>ERR. (BŁĄD)</td>
<td>Wskazuje wystąpienie błędu. WŁ, jeśli nie występują błędy.</td>
</tr>
</tbody>
</table>

Procedura kontrolna w przypadku pojawienia się błędu (ERR. (BŁĄD) jest WŁ.) jest opisana w punkcie 4.4.
4.3.2 Kontrola działania systemu sieciowego

Symulacja działania przykładowego systemu jest przedstawiona na następnej stronie. Należy zapoznać się z poniższą procedurą działania przed przejściem do następnej strony.

1. Kliknij „GOTOWOŚĆ ZAł. (X0)”, aby przygotować maszyny A i B.

2. Kliknij „Rozpoczęcie działania maszyny A (X2)”, aby rozpocząć działanie maszyny A. Wartość liczona bieżącej produkcji będzie wyświetlana na panelu wielkości produkcji.
 Kliknij „Rozpoczęcie działania maszyny B (X4)”, aby rozpocząć działanie maszyny B. Wartość liczona bieżącej produkcji będzie wyświetlana na panelu wielkości produkcji.

3. Działanie programu można sprawdzić, klikając przycisk „Monitor drabinkowy” każdej maszyny. Kliknij ten przycisk i sprawdź, jak dane są wymieniane pomiędzy sterownikami programowalnymi.
 Aby zamknąć monitor drabinkowy, kliknij przycisk „Zatrzymanie monitora”.

4. Działanie zostaje zakończone, gdy całkowita wielkość produkcji maszyn A i B osiąga 120 sztuk.

5. Kliknij przycisk „Initial status (Status początkowy)”, aby powrócić do statusu początkowego (przed rozpoczęciem działania).
4.3.2 Kontrola działania systemu sieciowego

Należy przeprowadzić symulację, aby uwidocznić działanie przykładowego systemu.

Wielkość produkcji:
- Rozpoczęcie działania maszyny A: 61
- Rozpoczęcie działania maszyny B: 59

Gotowość:
- Maszyna A:
 - X0: OFF
 - X2: OFF
- Maszyna B:
 - X4: OFF

Rozpoczęcie działania maszyny A, rozpoczęcie działania maszyny B, zatrzymanie monitorowania.
4.4 Procedura kontrolna gdy sieć nie działa

W tym punkcie opisano podstawowe procedury diagnostyczne w przypadku awarii sieci przy uruchomieniu.

Procedura kontroli sieci

Przeprowadzaj kontrolę w następującej kolejności.

1. Sprawdź, czy dioda „RUN” (DZIAŁANIE) modułu CPU jest WŁ.
2. Sprawdź wskaźniki diodowe modułu sieciowego.

Jeśli wystąpi błąd (dioda WYŁ.), funkcja „PLC Diagnostics” (Diagnostyka PLC) oprogramowania GX Works2 może zostać wykorzystana do sprawdzenia szczegółowego opisu błędu.

Szczegóły dotyczące wskaźników diodowych można znaleźć w podpunkcie 4.4.1.

Sprawdź w oknie „CC IE Control Diagnostics” (Diagnostyka sterowania CC IE) przedstawionym w podpunkcie 4.4.2.
4.4.1 Kontrola statusu diod modułu sieciowego

Jeśli sieć działa nieprawidłowo, należy sprawdzić wskaźniki diodowe modułu sieciowego.

<table>
<thead>
<tr>
<th>RUN (DZIAŁANIE)</th>
<th>Zielona lampka WŁ.</th>
<th>Prawidłowe działanie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lampka WYŁ.</td>
<td>Błąd sprzętu lub błąd licznika czasu watchdog</td>
</tr>
<tr>
<td>MODE (TRYB)</td>
<td>Zielona lampka WŁ.</td>
<td>Tryb online</td>
</tr>
<tr>
<td></td>
<td>Zielona lampka miga</td>
<td>Tryb testowy</td>
</tr>
<tr>
<td></td>
<td>Lampka WYŁ.</td>
<td>Tryb autonomiczny</td>
</tr>
<tr>
<td>PRM (PRM)</td>
<td>Zielona lampka WŁ.</td>
<td>Działa jako stacja sterownicza</td>
</tr>
<tr>
<td></td>
<td>Lampka WYŁ.</td>
<td>Działa jako stacja zwykłka</td>
</tr>
<tr>
<td>D LINK (ŁĄCZE D)</td>
<td>Zielona lampka WŁ.</td>
<td>Łącze danych w toku (transmisja cykliczna w toku)</td>
</tr>
<tr>
<td></td>
<td>Zielona lampka miga</td>
<td>Łącze danych w toku (transmisja cykliczna zatrzymana)</td>
</tr>
<tr>
<td></td>
<td>Lampka WYŁ.</td>
<td>Brak łącza danych (rozłączone)</td>
</tr>
</tbody>
</table>
| ERR. (BŁĄD) | Czerwona lampka WŁ. | • Błędne odebrane dane (błąd ramki odbioru)
| | | • Błędy ramki pomiędzy stacjami przekraczają określony poziom.
| | | • Zdublowanie stacji sterowniczej lub zdublowanie numeru stacji
| | | • Odczynienie kabla lub nieprawidłowe połączenie WY/WE
| | | • Uszkodzone parametry sieciowe lub niezgodność ustawienia stacji sterowniczej i stacji zwykłej (zarezerwowana stacja, całkowita liczba stacji, numer sieci itp.). |
| Lampka WYŁ. | Status prawidłowy |
| SD (WYSYŁANIE DANYCH) | Zielona lampka WŁ. | Transmisja danych w toku |
| | Lampka WYŁ. | Brak transmisji danych |
| RD (ODBIERANIE DANYCH) | Zielona lampka WŁ. | Transmisja danych w toku |
| | Lampka WYŁ. | Brak transmisji danych |

![Image](image.png)
4.4.2 Diagnostyka sieci

W tym punkcie opisano procedurę diagnostyczną dla nieprawidłowej operacji sieciowej. Funkcje diagnostyki sieci oprogramowania GX Works2 można użyć do sprawdzenia statusu komunikacji.

Poniższy rysunek przedstawia dostępne funkcje diagnostyki sieci. W menu GX Works2 wybierz „diagnostics“ (diagnostyka) -> „CC IE Control diagnostics“ (Diagnostyka sterowania CC IE), aby otworzyć okno przedstawione poniżej.

- Tutaj są monitorowane konfiguracja sieci i status każdej stacji.
- Tutaj można uzyskać wyniki monitora błędu sieci i dzienników błędów.
- Tutaj można monitorować status modułu CPU wybranej stacji. Stąd można również wykonywać zdalną obsługę.

Okno CC IE Control Diagnostics (Diagnostyka sterowania CC IE)
4.4.3 Kontrola kodów błędu używanych do monitorowania systemu

Jeśli został wykryty błąd w module sieciowym, kod błędu jest zapisywany w specjalnym rejestrze sieciowym.

Aby sprawdzić kod błędu występujący w module docelowym w oprogramowaniu GX Works2, otwórz okno „System Monitor” (Monitor systemu), a następnie okno „Module’s Detailed Information” (Szczegółowe informacje o module).

Okno Module’s Detailed Information (Szczegółowe informacje o module)
Kontrola kodów błędu poprzez Device/Buffer Memory Batch Monitor

Kody błędu zapisane we wsadowych monitorach urządzeń można również kontrolować na monitorze wsadowym. W oprogramowaniu GX Works2 wybierz opcję „Device/Buffer Memory Batch Monitor -1” (Monitor grupy pamięci buforowych/urządzeń -1).

W powyższym przykładzie kod błędu „22H” został zapisany w specjalnym rejestrze sieciowym „SW64”. Kod błędu oznacza, że ścieżka transmisji własnej stacji jest odłączona.

Okno Device/Buffer Memory Batch Monitor -1 (monitoring) (Monitor grupy pamięci buforowych/urządzeń -1).
4.4.5 Kontrola kodów błędu używanych do testu pętli

Poniższy przykład przedstawia stan błędu, w którym ten sam nr stacji został określony dla obu stacji w sieci o 2 stacjach. Ponieważ status się zmienia w zależności od określonych ustawień, szczegółowe informacje można znaleźć w odpowiednim podręczniku modułu sieciowego CC-Link IE Controller.

Kliknij przycisk , aby uwidocznić sposób, w jaki wskaźniki diodowe pojawiają się w przypadku prawidłowego ustawienia stacji oraz w przypadku nieprawidłowego ustawienia stacji.

Wyświetlacz diodowy stacji sterowniczej (bez dublowania numeru stacji)

QJ71GP21-SX

<table>
<thead>
<tr>
<th>ST. NO.</th>
<th>RUN</th>
<th>PRM</th>
<th>MODE</th>
<th>D</th>
<th>LINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>x100 10 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zakończono z powodzeniem!
Wszystkie diody ST.NO. (NR STACJI) są WYŁĄCZONE.

Wyświetlacz diodowy stacji sterowniczej (ze dublowaniem numeru stacji)

QJ71GP21-SX

<table>
<thead>
<tr>
<th>ST. NO.</th>
<th>RUN</th>
<th>PRM</th>
<th>MODE</th>
<th>D</th>
<th>LINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wykryto awarię!
Podczas testu pętli dioda ST. NO. (NR STACJI) wskazuje stację, w której wystąpił błąd. W tym przykładzie został zdublowany numer stacji „2”. Szczegóły można znaleźć w podręczniku.
4.4.5 Kontrola kodów błędu używanych do testu pętli

Jeśli test pętli kończy się błędem, należy przeprowadzić diagnostykę sterowania CC IE w celu określenia przyczyny błędu, a następnie podjąć odpowiednie działania korygujące wskazane w punkcie dotyczącym rozwiązywania problemów. Po przeprowadzeniu działań korygujących należy przeprowadzić kolejny test pętli.

Poniżej przedstawiono okno CC IE Control Diagnostics (Diagnostyka sterowania CC IE).

(1) Wybierz wadliwą stację.
(2) Kliknij przycisk szczegółowego opisu błędu (Module Error itp.), aby otworzyć okno dialogowe „Error Details” (Szczegółowy opis błędu), a następnie podejmij odpowiednie działania korygujące wskazane w punkcie dotyczącym rozwiązywania problemów.
4.5 Użycie oprogramowania GX Works2 do monitorowania programów innych stacji

W tym punkcie opisano procedurę dostępu do innej stacji poprzez sieć. Oprogramowanie GX Works2 umożliwia użytkownikowi dostęp do pozostałych stacji w sieci w celu przesyłania programów i wykonania monitoringu itp.

Procedura dostępu do sterownika programowalnego maszyny B w przykładowym systemie jest przedstawiona poniżej. Ta procedura pozwala na wyświetlanie statusu modułu CPU odległego panelu sterowniczego w pobliskim panelu sterowniczym itp., dzięki czemu nie zachodzi potrzeba przechodzenia do wspomnianego odległego panelu sterowniczego.

Wielkość produkcji
- Produkcja maszyny A: 1228
- Produkcja maszyny B: 1255

Maszyna A (stacja sterownicza)
Maszyna B (stacja zwykła)

GX Works2
Sieć CC-Link IE Controller
4.5.1 Procedura działania w przypadku monitorowania pozostałych stacji

W celu uzyskania dostępu do innej stacji, należy wybrać opcję „CC IE Cont NET/10(H)” (CC IE Cont NET/10(H)) jako Network Communication Route (Trasa komunikacji sieciowej) w oknie Transfer Setup Connection (Połączenie konfiguracji transmisji) oprogramowania GX Works2.

Należy postępować według następującej procedury. (Poniższa procedura zakłada, że nie wykonano żadnego projektu w oprogramowaniu GX Works2).

1. Wybór menu odczytu sterownika PLC
 - W menu „Online” oprogramowania GX Works2 wybierz „Read from PLC” (Odczytaj z PLC).

2. Połączenie konfiguracji transmisji
 - W oknie „Transfer Setup Connection” (Połączenie konfiguracji transmisji) określ docelowy sterownik programowalny.

3. Odczyt z PLC
 - W oknie „Read from PLC” (Odczytaj z PLC) odczytaj program i parametry z docelowego sterownika programowalnego.

4. Monitorowanie
 - Kliknij ikonę „Monitor” (Monitor) i monitoruj program docelowego sterownika programowalnego.
Ustawienia podłączenia do maszyny B

W poniższym oknie przedstawiono ustawienia wymagane przez komputer osobisty (oprogramowanie GX Works2), który jest fizycznie połączony z maszyną A (stacja nr 1), do połączenia z maszyną B (stacja nr 2) poprzez sieć.

1. Wybierz [Other Station (Single Network)] (Inna stacja (pojedyncza sieć)).

2. Wybierz [CC IE Cont NET/10(H)] (CC IE Cont NET/10(H)).

3. Tutaj kliknij dwukrotnie.

4. Kliknij dwukrotnie opcję [CC IE Cont NET/10(H)] (CC IE Cont NET/10(H)), aby otworzyć okno Network Communication Route (Trasa komunikacji sieciowej). Wprowadź „2” w polu „Station No.” (Nr stacji).

5. Tutaj można wykonać test w celu sprawdzenia połączenia zwykłego.

6. Kliknij przycisk [OK] (OK), aby wrócić do okna „Read from PLC” (Odczytaj z PLC).

Okno Transfer Setup Connection1 (Połączenie konfiguracji transmisji 1)
4.6 Podsumowanie

W tym rozdziale przekazano następujące informacje:

- Przykłady programów sekwencyjnych, które używają operandów sieciowych
- Procedura kontroli działania systemu sieciowego
- Procedura diagnostyczna gdy sieć nie działa
- Użycie oprogramowania GX Works2 do monitorowania programów innych stacji

Ważne informacje

| Sterujący program sekwencyjny | • Danych w specjalnych znacznikach sieciowych i specjalnych rejestrach sieciowych można używać jako sygnałów blokady.
• Jeśli używane są sygnały we/wy, można użyć instrukcji „SET” (USTAW) i „RST” (RESETU), aby zapewnić odpowiedni okres wł./wył.
• Aby przesłać dane o wielu słowach w pojedynczej operacji, można użyć opcji „32-bit data assurance” (zabezpieczenie danych 32-bitowych) lub „station-based block data” (dane blokowe pochodzące ze stacji). |
| Kontrola działania systemu sieciowego | • Status komunikacji można sprawdzić za pomocą wskaźników diodowych modułu sieciowego.
• Status monitora drabinkowy oprogramowania GX Works2 można wykorzystać do sprawdzenia, czy dane są prawidłowo wymieniane poprzez sieć. |
| Działania podejmowane gdy sieć nie działa | • Jeśli sieć nie działa prawidłowo, sprawdź wskaźniki diodowe modułu CPU i szczegóły dotyczące wskaźników diodowych modułu sieciowego, aby zdiagnozować problem.
• Można skorzystać z diagnostyki PLC oprogramowania GX Works2, testu komunikacyjnego i funkcji testowych, aby sprawdzić szczegółowe opisy błędu. |
| Użycie oprogramowania GX Works2 do monitorowania pozostałych stacji | • Aby monitorować pozostałe stacje, należy wybrać opcję „Other Station” (Inna stacja) w oknie „Transfer Setup Connection” (Połączenie konfiguracji transmisji), a w oknie „Network Communication Route” (Trasa komunikacji sieciowej) należy ustawić wartości „Network No.” (Numer sieci) i „Station No.” (Nr stacji). |
Test końcowy

Po zakończeniu wszystkich etapów kursu Sieć CC-Link IE Controller PLC, możesz teraz przystąpić do testu końcowego. W razie niejasności w zakresie któregokolwiek z tematów, wykorzystaj tę możliwość do ponownego zapoznania się z tymi zagadnieniami. Test końcowy składa się z 12 pytań (58 elementów). Możesz zdawać test końcowy dowolną ilość razy.

Jak rozwiązywać test
Po wybraniu odpowiedzi upewnij się, że przycisk Odpowiedź został kliknięty. Twoja odpowiedź zostanie utraca, jeśli będziesz kontynuować bez kliknięcia przycisku Odpowiedź. (Zostanie potraktowana jako pytanie, na które nie udzielono odpowiedzi).

Punktacja końcowa
Liczba prawidłowych odpowiedzi, liczba pytań, procent prawidłowych odpowiedzi i wynik zaliczony/niezaliczony pojawią się na stronie wyniku.

<table>
<thead>
<tr>
<th>Prawidłowe odpowiedzi:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wszystkie pytania:</td>
<td>4</td>
</tr>
<tr>
<td>Procent prawidłowych odpowiedzi:</td>
<td>100%</td>
</tr>
</tbody>
</table>

Aby zaliczyć test musisz odpowiedzieć poprawnie na 60% pytań.

- Kliknij przycisk Kontynuuj, aby zakończyć test.
- Kliknij przycisk Przeglądaj, aby przeglądać test. (Sprawdzenie prawidłowych odpowiedzi).
- Kliknij przycisk Spróbuj ponownie, aby powtórzyć test.
Poniższe zdania wyjaśniają podstawowe działanie sieci sterowników programowalnych. Wybierz odpowiednią stację, aby uzupełnić zdania.

1. Styk „X0” sterownika programowego stacji nr 1 jest włączony.
2. Cewka „B0” (Q1) sterownika programowego jest włączona.
3. Status sygnału Wł. jest przesylany do styku „B0” (Q2) sterownika programowego.
4. Styk „Y0” sterownika programowego stacji nr 2 jest włączony.
5. Styk „X0” sterownika programowego stacji nr 2 jest włączony.
6. Wartość „20” jest zapisywana w rejestrze „W100” (Q3) sterownika programowego.
7. Wartość „20” jest przesyłana do rejestru „W100” (Q4) sterownika programowego.
8. Styk „Y0” sterownika programowego stacji nr 1 jest włączony.
W następnym punkcie wyjaśniono, jak dane operandu sieciowego są wymieniane pomiędzy modułem sieciowym CC-Link IE Controller i modułem CPU. Wybierz odpowiednie określenia, aby uzupełnić zdania.

Wśród operandów sieciowych modułu CPU używanych w programach sekwencyjnych, operand sieciowy jest określany jako --Select-- i reprezentowany przez symbol --Select--.

Wśród operandów sieciowych modułu CPU używanych w programach sekwencyjnych, pamięć podzielona na słowa danych dla danych 16-bitowych jest określana jako --Select-- i reprezentowana przez symbol --Select--.

Za pomocą --Select--, dane w operandach sieciowych (B/W) modułu CPU są wymieniane z operandami bitowymi (--Select--) i pamięciami podzielonymi na słowa danych (--Select--) operandów sieciowych modułu sieciowego.
Związek pomiędzy zakresem wysyłania i zakresem odbioru jest przedstawiony poniżej. Zakłada się, że zakres wysyłania jest ustawiony w poniższy sposób za pomocą parametrów sieciowych. Wybierz odpowiednie obszary urządzeń dla każdej stacji.
Poniższe zdania wyjaśniają transmisję cykliczną i przejściową. Wybierz odpowiednią metodę transmisji dla każdego zdania.

<table>
<thead>
<tr>
<th>Zdanie</th>
<th>Wybór</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nie jest wymagane użycie programu do przesyłania danych.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Okresowa i automatyczna wymiana danych w obszarze określonym przez parametry sieciowe.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Dane są wymieniane pomiędzy sterownikami programowalnymi podłączonymi w tej samej sieci tylko w przypadku żądania.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Przesyłanie programu wymaga programów zawierających dedykowane instrukcje.</td>
<td>--Select--</td>
</tr>
<tr>
<td>Komunikacja ma miejsce automatycznie tylko poprzez ustawienie parametrów sieciowych.</td>
<td>--Select--</td>
</tr>
</tbody>
</table>
Poniższe zdania wyjaśniają konfigurację sieci CC-Link IE Controller.
Wybierz odpowiednie określenia, aby uzupełnić zdania.

Każdej sieci CC-Link IE Controller przypisany jest \[\text{--Select--}\].

Każdy z modułów sieciowych podłączonych do tej samej sieci posiada przypisany \[\text{--Select--}\] w celu identyfikacji.

Jeden z modułów sieciowych musi zawsze być używany jak \[\text{--Select--}\], a pozostałe sterowniki programowalne są ustawione jako \[\text{--Select--}\].
Okno ustawień parametrów sieciowych jest przedstawione poniżej. Wybierz odpowiednią pozycję dla każdego opisu.

Q1 --Select--
Wyświetla numery stacji. Wyświetlane numery odpowiadają pozycji „Total Stations” (Wszystkie stacje) ustawionej w oknie ustawień parametrów sieciowych dla stacji sterowniczej.

Q2 --Select--
Zakres wysyłania rejestrów sieciowych (LW) dla każdej stacji. Nr początkowy i ostatni nr LW są ustawione dla każdej stacji. Ustawienia nie powinny się pokrywać pomiędzy stacjami.

Q3 --Select--
Docelowe urządzenia kontrolne są wyświetlane w liście rozwijanej. W przypadku użycia LX/LY, wybierz je tutaj.

Q4 --Select--
Zakres wysyłania znaczników sieciowych (LB) dla każdej stacji. Nr początkowy i ostatni nr LB są ustawione dla każdej stacji. Ustawienia nie powinny się pokrywać pomiędzy stacjami.
Poniższy opis dotyczy parametrów odświeżania sieci. Wybierz odpowiednie określenia dla każdego zdania.

Parametry odświeżania sieci określają zakres wysyłania dla operandów sieciowych modułu sieciowego (Select). Dane w tych urządzeniach są wysyłane do operandów sieciowych modułu CPU (Select) w celu wykorzystania w programach sekwencyjnych.

W domyślnym ustawieniu każdemu operandowi sieciowemu jest przypisanych 8192 punktów.

Można stosować domyślne ustawienie, jeśli nie jest wymagane wprowadzenie zmian.
Rysunek poniżej przedstawia przykład podłączenia kabla światłowodowego. Stacje nr 1 do nr 3 mają być połączone sekwencyjnie w celu utworzenia systemu pętli światłowodowej. Korzystając z poniższego rysunku, wybierz najbardziej odpowiednie złącze po stronie modułu (A, B lub C) dla każdego złącza po stronie kabla (1, 2 lub 3).
Test końcowy 9

Ustawienia parametrów końcowych są konieczne dla następujących modułów sieciowych CC-Link IE Controller.

Odnosząc się do konfiguracji systemu przedstawionej poniżej, wybierz prawidłową wartość ustawień dla każdego parametu.

![Diagram](image_url)

<table>
<thead>
<tr>
<th>Typ sieci</th>
<th>Stacja nr 1 (stacja sterownicza)</th>
<th>Stacja nr 2 (stacja zwykła)</th>
<th>Stacja nr 3 (stacja zwykła)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Początkowy nr we/wy</td>
<td>--Select--</td>
<td>--Select--</td>
<td>--Select--</td>
</tr>
<tr>
<td>Numer sieci</td>
<td>--Select--</td>
<td>--Select--</td>
<td>--Select--</td>
</tr>
<tr>
<td>Wszystkie stacje</td>
<td>--Select--</td>
<td>--Select--</td>
<td>--Select--</td>
</tr>
<tr>
<td>Numer grupy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Numer stacji</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Odpowiedź Wstecz
Test końcowy 10

W następnym punkcie wyjaśniono wskazania diod na module sieciowym.
Dla stacji nr 1 i nr 2 wybierz wyświetlacz wskaźników diodowych, przedstawiający prawidłową komunikację.

Station No.1 (control station): Q1 --Select--
Station No.2 (normal station): Q2 --Select--

1

QJ71GP21-SX

2

QJ71GP21-SX

3

QJ71GP21-SX

4

QJ71GP21-SX

5

QJ71GP21-SX

6

QJ71GP21-SX

Odpowiedź Wstecz
Poniższy opis dotyczy metody stworzenia programu sekwencyjnego, unikalnej dla operacji sieciowej. Poniższy diagram jest częścią programów sekwencyjnych sieci CC-Link IE Controller. Wybierz odpowiednie określenia, aby uzupełnić opis dotyczący blokad.

Program sekwencyjny wykorzystuje różne kombinacje sygnałów statusu modułu jednostki centralnej sterownika programowego, maszyny, --Select-- ▼, itp. do operacji blokowania. Niektóre z przykładów uwzględniają sygnał statusu jednostki centralnej sterownika programowego zapisany w specjalnym przekaźniku (--Select-- ▼) oraz sygnał statusu sieci zapisany w specjalnym znaczniku sieciowym (--Select-- ▼) stosowane w sieci CC-Link IE Controller.
Poniższe zdania wyjaśniają zagadnienia związane z kodami błędów. Wybierz odpowiednie określenie, aby uzupełnić zdania.

Jeśli został wykryty błąd w module sieciowym CC-Link IE Controller, treści błędów są zapisywane jako

--Select--

w odpowiednim specjalnym rejestrze sieciowym.

Kod błędu można sprawdzić, określając numer specjalnego registru sieciowego w oknie „Module's Detailed Information” (Szczegółowe informacje o module) otwieranego z okna

--Select--
lub w oknie --Select-- oprogramowania GX Works2.
Test końcowy został zakończony. Twoje wyniki są przedstawione poniżej. Aby zakończyć test końcowy, przejdź do następnej strony.

Prawidłowe odpowiedzi: 12
Wszystkie pytania: 12
Procent prawidłowych odpowiedzi: 100%

Kontynuuj Przeglądaj

Gratulacje. Test został zaliczony.
Kurs Sieć CC-Link IE Controller PLC został ukończony.

Dziękujemy za wzięcie udziału w kursie.

Mamy nadzieję, że poruszone tematy były interesujące, a informacje uzyskane w trakcie tego kursu będą przydatne w przyszłości.

Możesz przeglądać kurs dowolną ilość razy.

Przeglądaj Zamknij