Kl 1-G¥_Works2 Basics na00125 en g-A

RN
EL

'SUBISHI
=CTRIC

Changes for the Better

PLC
GX Works2 Basics

This training course (e-learning) is designed for
those using the GX Works2 software for the first
time to create sequence programs.

Copyright ©2014 Mitsubishi Electric Corporation. All Rights Reserved.

L(MNAJODI25ENG-A

Kl 1-G¥_Works2 Basics na00125 en g-A

Lol)

b
Purpose of the Course

) oo

This course provides basic knowledge of using the GX Works2 software for programming, debugging, and checking
the operation of a programmable controller (PLC). The course is intended for those who create sequence programs
for the MELSEC-Q series, MELSEC-L series, and MELSEC-F series controllers.

k& PLC_GX_ Works2_Basics ENG = e

>m Course Structure) Lt

The contents of this course are as follows.
We recommend that you start from Chapter 1.

Chapter 1 - PLC System Control Method

The programming language and software used for programming are introduced here.
Chapter 2 - Program Design

You will learn how to design a program based on control items and hardware configuration.
Chapter 3 - Programming

You will learn how to program using the dedicated software GX Works2.
Chapter 4 - Debugging

You will learn how to write sequence programs to the CPU module and debug them.

Chapter 5 - Final Test

Passing grade: 60% or higher.

kil PLC_GX_Works2_Basics_ENG —

> How to Use This e-Learning Tool) 006

Go to the next page Go to the next page.

Back to the previous page.

Back to the previous page

"Table of Contents” will be displayed, enabling you to navigate to

Move to the desired page the desired page.

Exit the learning.
Window such as "Contents"” screen and the learning will be closed.

Exit the leaming

& 1-GX_Works2_Basics_na00125_eng-A S

>
LIS Cautions for Use) 000

Safety precautions

When you learn by using actual products, please carefully read the safety precautions in the corresponding manuals.

Precautions in this course

- The displayed screens of the software version that you use may differ from those in this course.

kKl 1-GX¥ Works2 Basics na00125 en g-A

>m PLC System Control Method) <] v Jroc]

This course is intended for persons who work with engineering software. It covers some of the fundamental concepts of
managing MELSEC-Q, L, and F series systems.

GX Works 2 (GXW2) uses Internationally standardized programming languages including Sequential Function Chart (SFC)
language, Instruction List (IL)*1, Ladder Logic, Function Block Diagram (FBD)*2 and Structured Text (ST).

Programs are developed using a personal computer running “engineering software,” GX works2, and it is usually written to
the programmable controller CPU via a USB, Ethernet*3 cable or Serial cable. The CPU module may be reprogrammed as
many times is necessary to adapt to any required change in the desired control.

*1 Future plan for GX works2.
*2 Currently called Structured Ladder in GX works2, IEC compliance planned.
*3 Ethernet is a registered trademark of Xerox Corp.

ogramming softwa Automobile manufacturing line
(programming software) PLC system g

Program writing Control

A -

P
USB, Ethernet*3, or Serial cable

Multiple programs for
different
manufacturing line
control processes

In this course, ladder logic (one of the most popular PLC programming languages) is used in the example program.
Although the example uses an L Series PLC, the contents of this course apply equally well to Q Series systems.

The basic control method is the same also for MELSEC-F series, but some of the operations and functions are different.

kil PLC_GX¥_Works2_Basics_ENG —
> PLC System Construction Procedure) [«) v Jroc

This e-learning course covers the software design steps (shown in green) necessary for implementing a programmable
controller system.

Hardware design

(1) System design v MELSEC-Q/MELSEC-L Basics Course
(2) Product selection " * MELSEC-Q/MELSEC-L Basics Course
(3) Advance preparation * » MELSEC-Q/MELSEC-L Basics Course
(4) Installation and wiring " - MELSEC-Q/MELSEC-L Basics Course
[(5) Wiring check ‘ « MELSEC-Q/MELSEC-L Basics Course ~
Software design ’
[(6) Program design ‘ Chapter 2
= e ’ Chapter 3 Scﬂ::u':: ethis
(8) Debugging = sresssssssssssassssssssssesess Chapter 4
. 4
(9) Operation

kil PLC_GX_Works2_Basics_ENG —

»m Requirements for Programming) 006

In this course, the focus is on how to use the programmable controller engineering software GX Works2 to develop the
example system program.

A few major functions of GX Works2 are listed below.

I LS00 T Saries X Warksd (Unset Braject] - [[FRG] MAH]

+ Memory and file management

Dfeemeid [W ErdReplee (gl e (pie Do) Degwetis ool mndee e -
* Developing programmable controller programs ﬂﬂﬂ{:‘wﬁiﬁ"jd S —— i
« Managing program documentation (comments, etc.) ﬁm '5'3 -_:. o L
+ Reading writing data (especially programs) from/to the | ¢ Semiren e "
CPU module L o
« Verifying program operation : 'ﬁéﬁﬁ"”" -

« Software simulation of PLC hardware

T,
i
[]

* Force I/O on or off

« Monitor I/O and memory address status | =1
+ Perform maintenance and troubleshooting duties p—_—

PLC_GX_Works2_Basics ENG

b}m GX Works2 Screen Configuration

The GX Works2 screen configuration is shown below.

Place the mouse cursor in a red frame to display the respective function.

[T MELSOFT Series GX Works? ...sVEN93632Wy Documentsie_LearningWobot_Control

Kl 1-GX_Works2_Basics_nal0125_eng-A

»m Sequence Program Creation Procedure

) oo

Create a sequence program according to the following procedure.

[(1) Program Design ~ ===+==== cEssccocooosooccoccoss Chapter 2]
\ 4
[(2) Creating Projects ====ss==ssssssssmasusssnnnnns Section 3.1]
2
[(3) Programming s=srssssassesssanrsassanrnanss Section 3.2 J
\ 4
(4) Converting Programs =ssssssssssssssssnnnnnnas Section 3.4

@

(5) Writing to the CPU Module ======srsssrmmnenan. Section 4.2

@

[(6) Resetting and Executing the CPU Module -+ -- Section 4.3, 4.4]

@

(i BEMIEETE 9959090 90505305000 905353050005 Section 4.5]

k& PLC_GX_Works2_ Basics ENG S

>m Program Design) 00c

In Chapter 2, you will learn how to design programs, including defining the contents of control and converting them into a
program.

| Program Design

Learning steps in Chapter 2

2.1 Hardware Configuration of Example
System Used for Learning

[Programming

2.2 Defining Control Items

2.3 Creating a Correspondence Table of /O
Devices and Device Numbers

[Debugging

2.4 Designing a Program

kil PLC_GX_Works2_Basics_ENG —

Hardware Configuration of Example System Used for Learning) 00c

In this course, you will construct a PLC system (called "example system" hereafter), which starts the robot according
to a procedure.

A diagram of the hardware configuration of the example system is shown below with a list of hardware components.

IIE
Robot start signal

100 VAC “

Start switch

.'E! :]I

Power supply cpu EMD
module module cover

DIM rail

I~
L
|

'] Operation lamp
! ; . Ground
Door open sensor] it 9 @

a7

Personal computer

ga USB cable

Stop lamp

4

Ground

External power supply

Item Component Model Description

Power supply module | LE1P Supplies power to modules including the CPU module and I/0 module.
CPU module Loz2CPu Controls the PLC system.

PLC systarn END cover L&EC Attached to the right side of the system block.
USB cable MR-J3USBCBL3M ln:-ic;ndnuelzl-s the personal computer, in which GX Works2 is installed, to the CPU
Personal computer = Runs with GX Works2 installed.

External power supply — — Supplies power to external I/O devices.
Switch — Set to ON to start control.
Sensor — Detects whether the door is open or closed.

External IO equipment -
Robot — Operates in accordance with control signals.
Two lamps — Light according to the operation status.

Kl PLC_GX Works2_ Basics ENG

{ mm) (R et

@I Defining Control Items) BoE

The first step of designing a program is to identify the devices to be controlled and the 1/0O devices necessary for the
desired control. In the example system, control of the starting and stopping operation of a robot is performed. The robot
will be prevented from starting if the door to the safety fence is open, and stopped if the door is opened during operation.
See the animation below for a better understanding of how the example system will operate.

Example system operation Click inside the red circle

Robot contral panel

switch (8>
Operation lamp{Y13
Stop lamp{y 2

When you setthe start switch O<B) to OFF, the robot
start signal (00 turns off to stop robot operation.
Simultaneously, the operation lamp 0713 on the
contral panel turns off, and the stop lamp (02 turns
an.

|' Replay |

Q Previous

b

kil PLC_GX_Works2_Basics_ENG

{ mm) (R et

m Creating a Correspondence Table of 1/0 Devices and Device Numbers

) oo

1/O device name

Device No.

It is a good idea to create a table that includes all I/O devices and registers used in a PLC and their corresponding
information for any program that is created. It reduces the chance mistakes will be made during the design and

programming process and serves to increase programming efficiency. If a correspondence table already exists for the
system, such as one created by the person who configured the hardware, make use of it.

The table below is a correspondence table for the example system used in this course

Description

Start switch X6 Input Bit This switch starts or stops robot operation.
This sensor checks whether the door of the safety fence of
Door open sensor xT Input Bit the robot is open. When the door opens, the sensor turns
on. When the door closes, the sensor turns off.
Robot start signal Y0 Output Bit When this signal turns on, the robot starts operation.
Operation lamp Y1 Output Bit This lamp lights while the robot is operating.
Stop lamp Y2 Output Bit This lamp lights while the robot is stopped.

* If word data is used, the initial value, setting range (upper and lower limits), data type (signed, real, etc), and
comment should be included in the table.
This information will be useful for designing and modifying programs.

kil PLC_GX_Works2_Basics_ENG

{ mm) (R et

»m Designing Programs

) oo

Design a program using the Ladder logic language based on the control items and the I/O correspondence table.
The ladder program and I/O correspondence table designed for the example system is shown below.

Ladder program

X7

8y T— (o

0
n i A S

I/0 correspondence table

/O device name Type Device No.

Start switch Input x6
Door open sensor Input X7
Robot start signal Cutput Y0
Operation lamp Cutput ¥l
Stop lamp Cutput Y2

k& PLC_GX_Works2_ Basics ENG S

>m Programming) 00c

In Chapter 3, you will learn how to program the designed program using GX Works2.

[Program Design

| Programming

Learning steps in Chapter 3
[Debugging 3.1 Creating Projects

3.2 Creating Programs

3.3 Making Programs Easy to Understand
3.4 Converting Programs into Executable Form
3.5 Saving Projects

k& PLC_GX_Works2_ Basics ENG S

> Creating Projects) e

The first step to writing a program is to create a project.
The project is a collection of data GX Works2 uses to manage programs.
The following table lists the major components of a project.

Data type Description

Program The source code and compiled code for CPU sequence operations.
A fd tation displayed inside th .
Comment type c-_ -::cun:en Imn isplayed inside the pmgranl ,
See Section 3.3 "Making Programs Easy to Understand” for details.
Parameter Contains most of or all of the setting and configuration information for a system.
T The connection route information necessary for establishing communications between the system running GX Works2
ransfer setup
and the CPU module.

Ladder program

GX Works2 allows you to select the following two project types.
The example program in this course uses the “simple project” type.

Project type Description

This project type is backwards compatible with GX Developer projects. Simple projects may be converted into

Simple project Structured projects later, but not the other way around.

These projects are capable of using an additional programming language called Structured Ladder. Additionally,
programs can be separated into many small parts and the frequently used pieces of code can easily be
modularized and reused using a user library. Labels can similarly be modularized for easy re-use. This can improwve
programming and debugging efficiency, especially for very large projects.

Structured project

Labels

Labels are user created names that become aliases for device addresses. They can be used globally, locally, or
system-wide when implemented in conjunction with MELSOFT Navigator. Simple projects may be created with or
without the ability to use labels. For the example project, labels will not be used.

Kl PLC_GX Works2_ Basics ENG —

> Creating Projects) 000

To begin creating the example project, make the following settings.
Before creating a project, the programmable controller series and model name, as well as the project type to be
used, should be known.

Proiect The project type determines what features are available when writing programs.

roject type For this example, please choose "simple project.”
Use label If the ability to write programs using labels is required, check this item.

s€ The example program does not use labels. Therefore, leave this box unchecked.
PLC series The PLC series determines the models available for selection in the PLC type drop-down list.

For this example, please choose “LCPU."
PLC type The PLC type determines how the compiler converts user programs into machine code,
P Choose the PLC model that will be programmed, in this case, "L02."
; The programming language determines the type of program of the first automatically created program (MAIM).

rmgrammmg Additional programs using different languages may be added later.
anguage For this example, please choose “Ladder.”

Please review the next page, where the processes of creating a new project is simulated.

PLC_GX_Works2_Basics_ENG

B MELSOFT Series GX Works2

! Project Edt Find/Replace Complle View Online Debug Diagnostics Tool Window Help

e =R B g, BN AN X e o T B
i Mavigation a x

Project

r

Mew Project

Project Type:

'E-irnple Project - I

™ Use Label
PLC Series:

LIZ:F'LI - I

PLE Type:

oz -|

Language:

Laddar - I

Mow a new project is created.
Click @) to proceed.

kil PLC_GX_Works2_Basics_ENG —

»m Creating Programs) 000

After creating a project, let's create a program.
Create the following program and learn the basic operations (instruction input, change, delete, copy & paste, and
ruled-line input/delete).

The program designed for the example system in Chapter 2 is shown below.
Program for example system

w7

Wb
o—| W (w0

On the next page, try creating this program using the simulated window.

Kl PLC_GX Works2_ Basics ENG

»m Creating Programs

! Project Edt Find/Replace Compile

[BF MELSOFT Series GX Works2 {Unset Project) - [[PRG] MalN]
Yiew Online

Debug Diagnostics

Tool ‘Window Help

NE{eEi et b EiXE P R SRR E A8 S Sk

'

i Mavigation o x
Project

4] [PRGIMAIN |

(F 22 By 2| A i

7
Wi

+-{&% Parameter
| =} Inteligent Function Module
Global Device Comment

+ figm Program Setting va

-9 pou —F

Al

- _‘:} Program

4] MAIN
) Local Device Comment

+ Device Memory
Device Initial Yalue

l Project

'_ User Library

Connection Destination

»
-

Mow the Ladder circuit program is completed.
Click n to proceed.

IUnlabeled

Loz Host Skation 0f15ken

kil PLC_GX_Works2_Basics_ENG —

;:‘*m Making Programs Easy to Understand) < Jrec

In its current state, the visual representation of the program only contains devices, instructions, lines, and step numbers.
When looking at a complex program, it can be difficult to determine what the program is doing.

* Hard to find programming mistakes such as incorrect device numbers or instructions.

* Overall, difficult to perform operational analysis, debugging, and program expansion.

« If the original program developer can no longer maintain the program, the task of learning how the program operates
for anyone else can be daunting and perhaps impossible.

Countermeasures

Include documentation in the program, to allow anyone to quickly understand how the program works.
As a matter of good practice, all programmers should add detailed comments their programs to allow themselves and
others to better understand the program.

X5 xJ pii] xJ
o —H (Y0 H O— ("o H
Start Door Robot start signal
switch open
—(H Add comments. sensor — _
Operation
Y0 YO lamp
4 S A S
Robot start signal Stop lamp
§ {80 H 6 [el0 H

GX Works2 allows for three different types of comments to be used.
For more details, refer to the GX Works2 Simple Projects manual.

Comment type Scope of comment

Device comment Input up to 32 characters to be displayed under the selected device (I/O or other memory address.)
S Input up to 64 characters per statement to be added at the top of the selected ladder block (above the step
tatement .
number). Each ladder block may have multiple statements.
Mote Input up to 32 characters to be displayed above the selected coil or application instruction.

The next page simulates the process of adding device comments to the example program.

bl PLC_GX_Works2_Basics _ENG

»“ Making Programs Easy to Understand

IBF MELSOFT Series GX Works2 {Unset Project) - [[PRG] HAIN]

i Project Edt Find/Replace Compile Yiew Online Debug Dlagnostics Tool \Window Help

MBS et s EiMEn [T CRERER| B 30 5 5 08 5

: MNawigaktion

o x

++] [PRG] MAIN

E?—'Ei ._}Ehgll‘%

[+-13% Parameter
g Intelligent Function Madule
A ¥ Global Device Commert
[+ S5 Program Setting
=59 poU
- _‘3 Program
48] MaIN
) Local Device Comment
Device Memory
Device Initial ¥ahue

x l

m
Il

7
|4
rl

St wer
ich

Ooarap=

N ==meear

‘t Pm]'ecl-'..m

L_‘.' User Library

w Connection Destination

¥
-

Device comment input is completed.

Click m to proceed.

IUnlabeled

Huost Skation

kil PLC_GX_Works2_Basics_ENG —

>“ Converting Programs into Executable Form) oo

After completing the program, you need to convert it into a form that can be executed in the CPU module.
Unconverted programs cannot be executed or saved.

The background color of unconverted programs is gray as shown below.

- [PRG] MAIN q»
x5 x7
o —— (o K
(v H
]
| (n)
L {erD H

‘ Convert

After conversion, the background color changes to white as shown below.

« [PRG] MAIN q0p
5 X7
o —M4 (o N
(m N
"0
‘M (» N
& {erD H

On the next page, try converting the program using the simulated window.

Kl PLC_GX Works2_ Basics ENG —

>}m Converting Programs into Executable Form) i o]

[EF MELSOFT Series GX Works2 (Unset Project) - [[PRG] MAIN] =13
i Project Edlt Find/Replace Compile Yew Online Debug Dlagnostics Tool Window Help
NGB s ar ot Lt BiNES T e o SHERE sy R | 2 et S S e L

i Mavigation X ¢ [PRG]MAIN | * l
‘Project - x
]]l | ¥ 7
[2a = Ga [2)] 80 Starizw Daar ape Rabat =t
= Pararneker fih nesm ﬂ:"s'g"
Intelligent Function Madule :
Global Device Commant
[+ E Program Setting
E 5 pol o
= _‘3 Program Dparatia
rlﬁ MAIN - nlamp
i . When the program is converted, the background color changes from gray
() Local Device Commant o white
Device Memory .
Device Initial ¥ahue
Yo
4 t 2
Rabam Skap lam
o sigs]
al
] [Ene
l Project
' user Library The program is converted.
< Connection Destination Click m o proceed.
"

IUnlabeled Loz Host Skation SiFSken

k& PLC_GX_Works2_ Basics ENG S

»m Saving Projects) 00c

After program conversion is finished, save the project including the programs. If GX Works2 is terminated without saving
the project, the associated programs will be discarded, so you should save your project regularly.

When saving a new project, specify the following types of project information. (This is not required for overwrite-saving.)
You should include information which makes it easy for others to understand the contents of control of the program, the
system name, etc.

Item Required Description
Save destination path v Specify the folder to which a workspace is to be allocated.
Workspace/project If one or more workspaces already exist in the folder specified at "Save destination path,” the existing
list workspaces are listed.
Workspace name v Specify a workspace name with up to 128 characters.
Project name v Specify a project name with up to 128 characters.
Title Specify a project title with up to 128 characters.

This parameter is useful when you want to assign a long name that does not fit in "Project name.”

The workspace is a folder to manage multiple projects.
An example of using a workspace is shown below. (Projects are managed for each vehicle type in the automobile
manufacturing line.)

Workspace name

Type-A manufacturing line | Mormal operation program for controlling the type-A manufacturing line

Automobile

manufacturing line Type-B manufacturing line Mormal operation program for controlling the type-B manufacturing line

Type-C manufacturing line Mormal operation program for controlling the type-C manufacturing line

Motes:

+ If a project containing an unconverted program is saved, only the unconverted program is discarded. Before saving a
project, perform program conversion as you learned in Section 3.4.

« Specify the save destination path, workspace name, and project name so that the total number of characters does not
exceed 150.

On the next page, try saving the project using the simulated window.

kil PLC_GX_Works2_Basics_ENG —

»ﬂ Saving Projects) 000

IB- MELSOFT Series GX Works2 C: :\SequenceProgramie_LearningtRobot_Control - [[PRG] MAIN] |:|@E|
E Eroiatt Edt FEind/Replace Compile Mew Online Debug Diagnostics Tool Window Help
Bl o ar) o 1 o BN B e o | BB R | W AR R W B8) S ek S BB EL b)) LG L

Hilngatmn a x 4] [PRG]IMAIN |* l
T R = =
] I 1 | Ay
[2a = Ga [2)] 80 StartSw Dmr/n{:l’plek Babat=t
= Pararneker fish nEamE ﬂ:"sig"
A a
Intelligent Function Madule
Global Device Commant
[+ S5 Program Setting
= 5 pay £
= _‘:’| Program Dparatia
rﬁ MATN LELT

) Local Device Comment
= Device Memory
£ Device Initizl Yalus

¥

Y (2
Rabam Stap lam
an =g]
al

i EHD

,‘ Prnj;ect
 Userlibrary The project is saved.
<& Connection Destination Click [{fJ to proceed.

IUnlabeled Loz Host Skation B FSken

k& PLC_GX_Works2_ Basics ENG S

[Chapter 4 Debugging) 000

In Chapter 4, you will learn how to write sequence programs to the CPU module and debug them.

{ ng ram Design ------------------------- Cha pz]
ngramming ------------------------- Chapra]
Debugglng Chap4

Learning steps in Chapter 4
4.1 Debugging

4.1.1 Debugging a Program without Using
the CPU Module

4.1.2 Changing the Status of an I/O Device
4.1.3 Monitoring the Device Status

4.2 Writing Programs to the CPU Module

4.3 Enabling Written Programs

4.4 Running Programs

4.5 Debugging Programs

4.6 Checking PLC System Operation

4.7 Operating the PLC System

k& PLC_GX_Works2_ Basics ENG S

> What is Debugging?) 00c

Once a program or program segment has been written, it is necessary to test the code to ensure that it operates as
expected.

Software defects (when code that is written does not perform as intended) are called "bugs”, and the process of finding
the cause of the unintended behavior and correcting it is known as "debugging.”

Testing and debugging are essential steps in creating programs.

Particularly in programmable controllers because if bugs are present they could cause the system to stop, equipment to
be damaged, or other accidents.

The following table lists a few of the functions in GX Works2 that can help the debugging process.

Function name Description

This function is used to simulate program execution even without a CPU module.
This function can be used for debugging in an environment in which a CPU module is not available.

Simulator

This function enables monitoring the execution status and the status of each device during execution of the CPU module.

Monitor Multiple monitor functions are available depending on the application, such as monitoring on the ladder, monitoring only
registered devices, and monitoring all devices in a batch.

This function can forcibly change the device status (bit; ON « OFF, word: current value) during execution of the CFU
Change current value module.

This function is useful for changing the current value of a word device or the status of an internal relay.

Forced input output This function can forcibly change the status (ON «— OFF) of a registered 1/O device during execution of the CPU module.
registration/cancellation | For debugging or operation verification with a CPU module alone, this function can be used as a substitute for a switch.

These functions are explained in more detail with regards to the debugging process throughout the rest of this chapter.

MNotes on debugging

Do not perform debugging tasks while the programmable controller is connected to physical I/O devices.
Bugs in the program, forced I/O devices, or word value changes could result in damage to external equipment or worse.
If a disconnected PLC system is unavailable, use the simulator function.

kil PLC_GX_Works2_Basics_ENG —

> Debugging a Program without Using the CPU Module) e

If a CPU module is not available for debugging, use the simulator function.
A program can run on a virtual CPU module provided by the software without using an actual CPU module.

» | G¥ Sanulatord [:L_ I % Itemn State Description
RUN Runs the virtual CPU module.
Switch Switch | STOP Stops the virtual CPU module.
r " sTOP = RUN RESET Resets the virtual CPU module. (Enabled only in the STOP state)

MODE Indicates the MODE status of the virtual CPU.

Indicates the run status of the virtual CPL.

RUM *On: RUN state
+Off: STOP state

LED
Indicates the error status of the virtual CPU module.
ERR) . .
If an error is present, the LED with turn on or blink.
USER Indicates whether a user error has occurred in the virtual CPLU.

Turns on or blinks when an error occurs.

Notes on using the simulator function

« Debugging using the simulator function does not guarantee that the sequence program will operate correctly after
debugging.

* The simulator function executes input/output of data with I/O modules using simulation memaory.
The function does not support some instructions, functions, and device memory. Therefore, the results of operation with
the simulator function may differ from those with the actual CPU module.

On the next page, try using the simulator function with the simulated window.

kil PLC_GX_Works2_Basics_ENG —

@EEW pebugging a Program without Using the CPU Module) O8E

IB- MELSOFT Series GX Works2 C: :ASequenceProgramie_Learning\Robot_Control - [[PRG] MAIN] |:|@g|
E Eroiatt Edt FEind/Replace Compile Mew Online Debug Diagnostics Tool Window Help
BB s oar) w6 BB [P o ERERER) x0T M 0)) e s [i e

H Hmngal:mn X ¢ [PRG]MAIN | * l
Project b %
] I 1 | Ay
[2a = Ga [2)] 80 StartSw Dmr/n{:l’plek Babat=t
= Pararneker fish nEamE ﬂ:"sig"
a
Intelligent Function Madule
Global Device Commant
+ fiom Program Setting
E 5 pay £
= _‘3 Program Dparatia
HK] MAIN LELT
() Local Device Commant
Device Memory
Device Initial ¥ahue
Yo
oy (v
Rabam Stap lam
an =g]
al
] [END
L
l Projeckt
' User Library Mow you leamed how to use the simulation feature.
< Connection Destination Click n to proceed.

¥
-

IUnlabeled Loz Host Skation B FSken

W 1-GX_Works2_Basics_nal0125_eng-A

> Changing the Status of an I/0 Device) 006

When debugging a sequence program with a CPU module to which no I/O device is connected or using the simulator
function, use the Forced Input Output Registration/Cancellation function to change the ON/OFF state of an I/O device.
The status of the registered I/O devices can be forcibly changed to ON or OFF with the software.

(MELSEC-Q and MELSEC-L series): From "Forced Input Output Registration/Cancellation” screen
(MELSEC-F series): From "Modify Value" screen

Farced lnput Outpul RegietrationCancellation I Modify Value n

nmumm| Cancel Respatration | DevicefLabed | puutfer Memary |

™ Ragster FORCE OFF | o
e [o

ONgOFF . Deins ONJOFF
Ol
OFF

31 R R P e

[

i

Updste Stathee | Bstch CancelPagetration | Cose | Refect ts Input Colurm | [~ Beleeis) |

Forced Input Output Registration/Cancellation Modify Value screen (MELSEC-F series)
screen (MELSEC-Q and MELSEC-L series)

To change the states of other devices

To change the current device of a word device or the ON/OFF state of an internal relay, use the current value change
function.

For details, refer to the manual.

k& PLC_GX_Works2_Basics ENG —
Monitoring the Device Status) oo

When simulation is started, monitoring automatically begins. To enter monitoring mode when connected to an
actual programmable controller CPU, simply click Online, Monitor, and then Start Monitoring. Or use the keyboard
short-cut, F3.

During monitor mode the values and status of all devices used in the program can be seen overlaying the program
code. This allows the user to see values changing including the effects of using the "forced input output
registration/cancellation" function.

Additionally, the Monitor Status bar appears and includes basic information to determine the CPU or virtual CPU
status. Refer to the table below to for an understanding of the information provided by the Monitor Status bar.

When connected to the CPU module When using the simulator function
Monibor Status Manitor Status
2w h e | 00, 000ms Local Device rot Exmeuted . =L | 100, poedms Local Device not Exeouted = | md
icon/indication
Connection %% When connected to GPU madule Displays the status of the connection with the CPU module or simulator
status m When using the simulator function function.
B RUN .
s L L Displays the run status of the CPU (RUN or STOP).
status B STOP
4 ERRE. off
ERR. status & ERR.on Displays the error status of the CPU module.
& < M ERRblinking
©® USER off
USER status © USERon Displays the user error status of the CPU module.
% < @ USER blinking
Scan time 0000ms Displays the maximum scan time of the CPU module being monitored.
Unsupported » Unsupported . . . : .
instru?}?ion = instrupc?ion exists. Displays whether an unsupported instruction exists when the simulator
presence/abse . . function is executed.
nce status = L»'”5'-1F33F33‘13'ﬂﬁf:j instruction || clicking the icon opens the Unsupported Instruction/Device window.
does not exist.

Kl PLC_GX Works2_ Basics ENG —

> Monitoring the Device Status) 000

During monitoring mode, the current status of all devices in the program become visible.
Bit device status display (ON/OFF)
The ON/OFF status is displayed during monitoring as shown below.

OFfstatus - |- 4}~ —C)— {4}
ONstatus i} —JF —"— 1

+ This kind of display applies to only SET, RST, PLS, PLF, SFT, 5FTP, MC, and contact type comparison instructions.
Mote that for the RST instruction, only the ON/OFF status is displayed.

Current value display of word device (decimal/hexadecimal number display)
The current value during monitoring is displayed as shown below.

K50
—f o

ﬁ [Current value of TO (in the case of decimal number display}]

Meonitoring only specific devices
When monitoring a very large or complex program, it may be beneficial to only monitor certain devices of
interest. To accomplish this, GX Works2 includes watch windows that allow the user to easily add the devices

they are interested in, see their current status, and modify their values during monitoring. for details, refer to the
GX Works2 Operation Manual (Common).

| Watch 1

Deveedsbel | Cument Vakio [Dala Type [Class [Dovce | Comment
bt (i) b Dicstn Gpesry isrid
hii B L] Floksot kit smgnaal
1 B b g e shicen lamp
Tl Ba W Foked eat sl

W2 Ba 2 Slop kg
b i} W Pkt it gl

kil PLC_GX_Works2_Basics_ENG —

>m Writing Programs to the CPU Module) 00

Before performing any debugging using an actual CPU module, place the CPU in STOP mode, ensure a connection
to the CPU has been established, and write the programs and parameters to program memary.

As seen in the screenshot below, the main functions of the Write to PLC window allow the user to select the desired
files to be written, choose their location, and confirm the memory capacity of the CPU. The three buttons above the
file list allow the user to quickly select the desired files to be written. The most common, which is used in the
following simulation, is “Parameter+Program.”

i A ek | Exmcufrr Target Datal a1
T
= L1 rrets et ST M | Caod 8 Seeoors
= i ot "~ fim Twget Deal lefChwor TwpmMeery Ses)
-
Bl Progria Hamaie D
e ————— B
Fakatat = SRR (5 I I I Bener
" . | - prwamte -
FIlE Ilst '%_,‘_mﬁ.me=¢wa’-i:'ﬂ1na - ORES FRT I I Penes
| " ot D e
[y B gt | OGS T3-SR
[0 ol
B A, LT

Memory capacity

On the next page, try writing to the CPU module using the simulated window.

kil PLC_GX_Works2_Basics_ENG —

¢ r 14] v Joc)
m Writing Programs to the CPU Module)
IB- MELSOFT Series GX Works2 C: :ASequenceProgramie_Learning\Robot_Control - [[PRG] MAIN] |:|@E|
3 Eroiatt Edt FEind/Replace Compile Mew Online Debug Diagnostics Tool Window Help
R R AN e e B e L I BN AR =IO e I
H Hi:rngatmn X ¢ [PRG]MAIN | * l
Project ' - X
] 1 | /¥
? —'é T=h I% @ | h ;ISMI Dmr/u{:l’plek kﬁub\:nsl
= Pararneker fish nEamE ﬂ:"sig"
=% Inteligent Function Module ?
Global Device Comment
[+ S5 Program Setting
= £55 pou £
= _‘3 Program E,nm'u
rlﬁ MAIN nlamp
) Local Device Comment
Device Memory
Device Initial Yalue
¥
4 {ve
Enbmﬁ' Stap lam
an =g]
al
-] EHD
,‘ Project
-'J User Library The program is now written to the PLC module.
<& Connection Destination Click () to proceed.
IUnlabeled Loz Host Skation B FSken

w 1-GX¥_Works2_Basics_na00125_eng-A

»m Enabling Written Programs

(MELSEC-F series): The following operation is not necessary.

(MELSEC-Q and MELSEC-L series): The following operation is necessary.
After writing a program to the CPU module, reset the CPU module.
Written programs are not enabled unless the CPU module is reset.

* This operation is not required if the simulator function is used for debugging.

Reset the CPU module as follows: (1) Press and hold the RESET/STOP/RUN switch on the front panel of the CPU module to
the RESET position (for 1 second or more).
[Resetting in progress]

L;‘;:: . MODE : On in green Press g‘:’w” for 1
: - second or more.
RUN HOERR. [Hine off
BAT. | USER ERR. : Blinking —
L

RESET n{-nuu
STOP

(2) Release the switch after the lit MODE LED and blinking ERR. LED both turn off.
[Resetting complete]

s MODE : On in green

MODE®™ ERR.
RUN :Off
RESET/STOP/ el bl £RR - Off

RUN switch S

v

(3) The switch returns to the STOP position to complete resetting.

Kl 1-G¥_Works2 Basics na00125 en g-A

»m Running Pragrams

) oo

MELSEC-Q and MELSEC-L series
After resetting is completed, run the program.
Put the CPU module in the RUN status as follows to run the program.

* This operation is not required if the simulator function is used for debugging.

LED display in STOP status

l,:;:;: =l MODE : On in green e

T T RUN c Off
-
RESET 0{‘“
SToP

BAT, USER

hd

LED display in RUN status
:22.;:: =" Sl WIODE : On in green

::: "mﬂEER“- RUN :Oningreen

(1)Turn the RESET/STOP/RUN switch on the front panel of the CPU module to the RUN position.

(2) If the RUN LED lights in green, the program is running normally.

MELSEC-F series

After writing a program into the main unit, switch the main unit to
the RUN status as follows to run the program. (Reset operation is
not necessary.)

(1) Turn the RUN/STOP switch on the front
panel of the main unit to the RUN position.

LED display in STOP status

(2) If the RUN LED lights, the
program is running normally.

LED display in RUN status

1-G¥_Works2_Basics_na00125_eng-A _l_!I: =

@ pebugging Programs) 906

After running the CPU module, use the forced input output registration/cancellation function to change the status of each
device and monitor the result (output) on the ladder.

(Screen example of MELSEC-Q and MELSEC-L series)

o MELSOF T Series GX Worka ? C. Sequencefrogram’s_Lesarning'Wobo!_Conirel [ll'"l~"1. IMHJ
Comple Yew Qrine Defug Dagrstcs [od edow e

AR 5 i 0 XD oxSMNErRASE x4 88 P
s L] ’ Lot Do rtt Lopoted| -

L]
=
L e E e e e el B B

P Lo L gt S atar] L |

On the next page, try program debugging using the simulated window.

kil PLC_GX_Works2_Basics_ENG —

»ﬂ Debugging Programs) e
e

IB- MELSOFT Series GX Works2 C: :ASequenceProgramie_Learning\Robot_Control - [[PRG] MAIN]

E Eroiatt Edit Find/Replace Compile Miew Online Debwug Diagnostics Tool Window Help - X
i o= b BB e o BERER S S A A) o e 2 m e e e
e 4 o | 1.000ms Local Device not Executed -
i Mavigation R x] [PRG]MAIN | l 4 b -
Project] 3 A
- a _I 1 /'E" 7 b =
[5 0 Fe 2 80 ') -
i+ (D8 Parameter e Do :::;:'
Intelligent Function Madule "
A% Global Device Comment
+-fm Program Setting
=% poOU (o)
.___’_‘| Prograrn
Ak MAIN Oiperaiia
:‘3 Local Device Corment namp
Device Memory
Device Initial Yalue
]
—HF (s D)
Raobai = Swap bm
an=ign]
al
& EHD
,‘ Project
-'J User Library Debugging of the program is completed.
<" Connection Destination Click o proceed.
i Connect ™ 0
»
- L

LUnlabeled Loz Host Skation Bf7Skep BL 5

Kl PLC_GX Works2_ Basics ENG

{ mm) (R et

hﬂ Checking PLC System Operation

) oo

After program debugging is completed, write the program to the actual PLC system to finally check the operation.
Operate the actual I/O equipment to confirm that it works as designed.

Even when cperating the I/O equipment, the status of each device can be checked using the monitor function of GX
Works2.

Example system operation Click inside the red circle

Robot contral panel

art switch {6
Operation lamp{Y13
Stop lamp{y2

The robot stops.

When yvou setthe start switch C<B) to OFF, the rokbot x %
start signal Or0) turns off to stop robot operation. o— | r 3 {v H
Simultaneously, the operation larmp (Y1) on the Start Door _F‘_Ct“ e
cantral panel turns off, and the stap lamp &2 turns switch open (i'f”" -
on. Operation
(1 i) lamp
| Replay | —H v H
Robot start Stop lamp
signal
a—— { END H
O FPresdous

kil PLC_GX_Works2_Basics_ENG

{ mm) (R et

> Operating the PLC System) 000

After operation verification is completed, run the PLC system to start operation.

If the program needs to be modified in the running system
Program modification such as bug correction or system expansion may be required after system operation is started.
Normally, the system (CPU module) needs to be stopped to write a modified program, but this is not always

possible. To solve this problem, GX Works provides an online change function, which is used to write programs
without stopping the running CPU module.

Example: 24-hour running automobile manufacturing line

In this case, use the
online change
function and modify
the program without
stopping the
manufacturing line.

GX Works2

Online change of program

Although a program
has been modified,
the manufacturing
line cannot be
stopped during
operation.

USB cable

Personal computer

On the next page, try the online change function using the simulated window.

kil PLC_GX_Works2_Basics_ENG —

> Operating the PLC System) 00c

IB- MELSOFT Series GX Works2 C: :ASequenceProgramie_Learning\Robot_Control - [[PRG] MAIN]

3 Eroiatt Edt FEind/Replace Compile Mew Online Debug Diagnostics Tool Window Help - 8 X
Pl H R o m b DIXED oo RERER WA EF NI 8 S A L
sl | 1.000ms Local Device not Execuked -
i Mavigation R x] [PRG]MAIN | l 4 b -
Project] *A A
- a _I 1 /'E" 7 } =
[f =3 = Ba 2)] &0 ') -
[+ (@ Parameter :"5“ :::;:'
Intelligent Function Madule "
A% Global Device Comment
+-fm Program Setting
=% poOU (i b
.___’_‘| Prograrn
Ak MAIN Oiperaiia
:‘3 Local Device Corment namp
Device Memory
Device Initial Yalue
Wi
T (e D)
Raobai = Swap bm
an=ign]
al
& [EnD]
,‘ Project
-'J User Library Online change of the modified program has completed.
<& Connection Destination Click n to proceed.
= W

LUnlabeled Loz Host Skation 2[7Skep BL 5

Kl PLC_GX Works2_ Basics ENG

>
@I conciusion

In this course you have learned:

The required elements for programming a PLC system

Some basic guidelines for program design including the use of comments
How to use GX works2 to perform the basic tasks of PC programming
A few techniques used for debugging PLC programs

This completes the basic explanation of programmable controller software design.

kil PLC_GX_Works2_Basics_ENG

{ mm) (R et

Final Test

) oo

Now that you have completed all of the lessons of the PLC GX Works2 Basics Course, you are ready to take the
final test. If you are unclear on any of the topics covered, please take this opportunity to review those topics.
There are a total of 5 questions (15 items) in this Final Test.

You can take the final test as many times as you like.

How to score the test
After selecting the answer, make sure to click the Answer button. Your answer will be lost if you proceed without
clicking the Answer button. (Regarded as unanswered question.)

Score results
The number of correct answers, the number of questions, the percentage of correct answers, and the
pass/fail result will appear on the score page.

Correct Answers : 2
Total Questions - 9 To pass the test, you have to
answer 60% of the questions
correct.
Percentage : 22%
Proceed Review Retry

» Click the Proceed button to exit the test.
» Click the Review button to review the test. (Correct answer check)
« Click the Retry button to retake the test again.

k& PLC_GX_Works2_ Basics ENG S

> Final Test 1) 0o

The program you were in charge of was taken over by another person, who found it difficult to understand the
control items for the program. What is the proper countermeasure to prevent this problem?

~ Using the comment function of GX Works2, give the program an appropriate title and explanation.
~ Orally explain the control items to the new person.

~ Avoid taking over a complex, large program.

~ Transfer the correspondence table for IO devices and device numbers together with the program.

Answer] I Back]

k& PLC_GX_Works2_ Basics ENG S

> Final Test 2) 00c

Complete the correct programming procedure.

Step 1 Program design

Step 2 (Q1| --Select-- ¥))

Step 3 (Q2| --Select-- v))

Step 4 Converting programs

Step 5 Saving projects

Step 6 (Q3! --Select--)

Step 7 (Q4| --Select-- ¥))

Step 8 Running the CPU module (RUN)

Step 9 (Q5| --Select-- v))

Step 10 Checking PLC System Operation

Answer] I Back]

Kl PLC_GX Works2_ Basics ENG

> Final Test 3

Fill in the blanks to complete the explanation of what needs to be done after a program is completed.

Once a program has been written, it must be tested to ensure that it operates as expected.

Al --Select-- ¥) (when code is written that does not perform as intended) is called

a (_--Select-- ¥) and the process of finding the cause and correcting it is called

(| --Select- |¥)).

This process is an essential step in creating programs.

Answer] I Back]

kil PLC_GX_Works2_Basics_ENG

> Final Test 4

Select the appropriate application of each GX Works2 function.

Function Application

Simulation

—-Select-- A
Forced input output registration/cancellation -—Select-- v |
Change current value --Select-- v|
Ladder monitor -—Select-- v |
Watch --Select-- v |

Answer] I Back]

k& PLC_GX_Works2_ Basics ENG S

> Final Test 5) 0o

Select the correct description of the online change function.

The function automatically stops the CPU, writes a program to the CPU, and then automatically runs the CPU.
The function compares the program in the running CPU module with the program opened by GX Works2.

~ The function can write a program to the CPU module after stopping the running CPU module safely.

The function can write a program to the running CPU module without stopping it.

Answer] I Back]

kil PLC_GX_Works2_Basics_ENG —

> Test Score) 00c

You have completed the Final Test. You results area as follows.
To end the Final Test, proceed to the next page.

Correct answers : 0
Total questions : 3
Percentage: 0%
Proceed | ‘ Review ‘ ‘ Retry ‘

You failed the test.

Kl PLC_GX Works2_ Basics ENG

b

You have completed the PLC GX Works2 Basics Course.

Thank you for taking this course.

We hope you enjoyed the lessons and the information you acquired in
this course will be useful in the future.

You can review the course as many times as you want.

Review‘ ‘ Close ‘

