

PLC

PLC MELSEC Process Control System Basics

Welcome to the Basic Course on MELSEC Process Control System. This is a tutorial for beginners of the MELSEC process control system.

Copyright ©2014 Mitsubishi Electric Corporation. All Rights Reserved.

L(NA)00122ENG

X

>I TOC

>>

Introduction Purpose of the Course

This training course is designed for those who wish to build MELSEC process control systems for the first time. You will learn the features of the MELSEC modules and PX Developer and how to use them.

х

Introduction Course Structure

The contents of this course are as follows. We recommend that you start from Chapter 1.

Chapter 1 - What is the MELSEC Process Control System?

You will learn about the features of the modules and software of the MELSEC process control system.

Chapter 2 - System Configuration

You will learn about the configuration of the process control system on which the course is based.

Chapter 3 - FBD Programming

You will learn about FBD programming using the PX Developer programming tools, with exercises including FBD programming, parameter setting, and writing to programmable controller CPUs.

Chapter 4 - Program Monitoring and Tuning

You will learn about program monitoring and tuning using the PX Developer programming and monitoring tools.

Chapter 5 - Final Test

Passing grade: 60% or higher.

X

>>

Introduction How to Use This e-Learning Tool

Go to the next page	O to the next page.		
Back to the previous page	Ξ	Back to the previous page.	
Move to the desired page	TOC	"Table of Contents" will be displayed, enabling you to navigate to the desired page.	
Exit the learning	×	Exit the learning. Window such as "Contents" window and the learning will be closed.	

х

Introduction Cautions for Use

Safety precautions

>>

Before using the physical hardware please read the Safety Precautions in the corresponding manuals and follow the relevant safety information contained therein.

>>

Chapter 1 What is the MELSEC Process Control System?

In this chapter, you will learn the features of key modules and software of a MELSEC process control system.

х

TOC 14

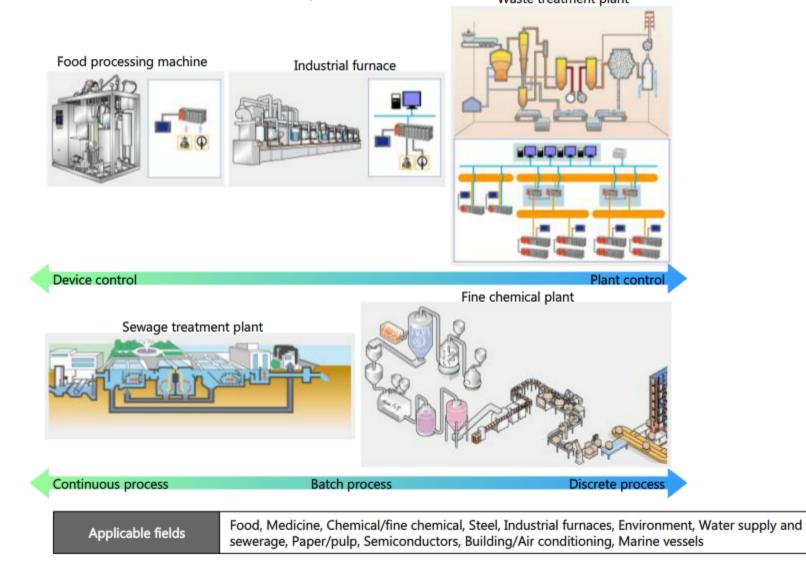
1.1

Outline of MELSEC Process Control System

A MELSEC process control system is designed for process control applications (control of temperature, flow rate, pressure, level, etc.), and consists primarily of the following MELSEC-Q Series modules and software.

- Process CPU for high-speed loop and sequence control
- Analog module with isolated channels that can be directly connected to sensor, control valve or other input/outputs

X

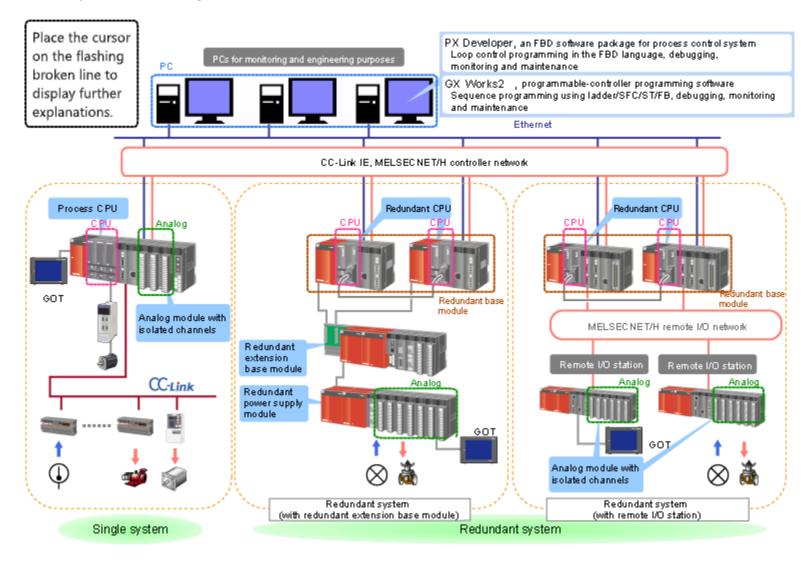

- PX Developer, an FBD software package for process control system
 - Programming tool, with which even complex loop control can be programmed easily
 - Monitoring tool, with which loop control monitoring and tuning can be performed easily
- Redundant CPUs to ensure uninterrupted system operation in the event of a sudden failure

1.2 Range of Application of MELSEC Process Control Systems

X

TOC

MELSEC process control systems are used in a wide range of fields and applications, from device to plant control, and from continuous to batch to discrete processes. Waste treatment plant



1.3

System Components and Features

MELSEC process control systems can be configured to meet various individual needs, as a single system, as a redundant system or as a network of single/dual subsystems. The following figures show typical examples of MELSEC process control systems.

X

>>

1.4

MELSEC Process Control System Lineup

1.4.1 Process CPU

A range of process CPUs are available that all offer high-speed loop (400 µs/PID loop) and sequence control. Simply choose the most suitable one for your specific application, devices and plant environment.

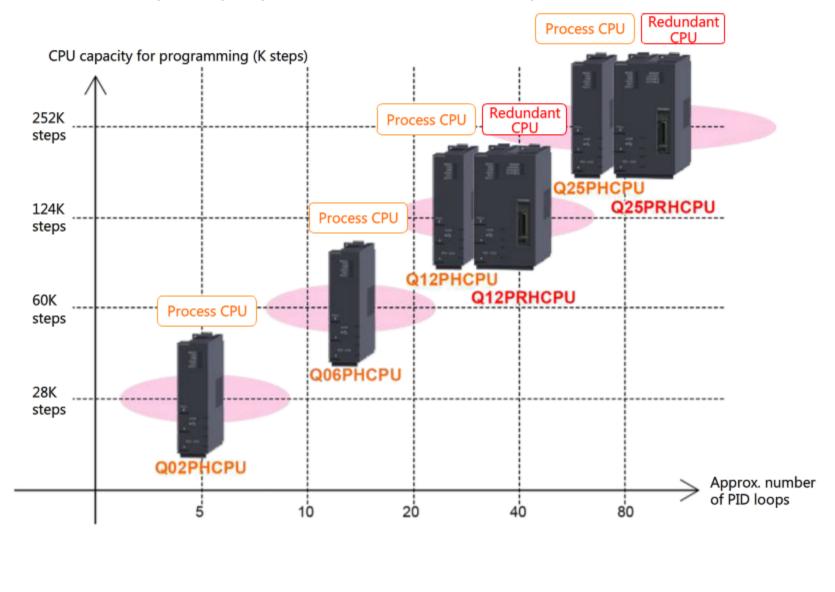
23

I II TOC

Model	Q02PHCPU	Q06PHCPU	Q12PHCPU	Q25PHCPU
Process CPU				
Capacity for programming	28K steps	60K steps	124K steps	252K steps
Applicable fields		Svste		Plant

>>

1.4.2 Redundant CPU

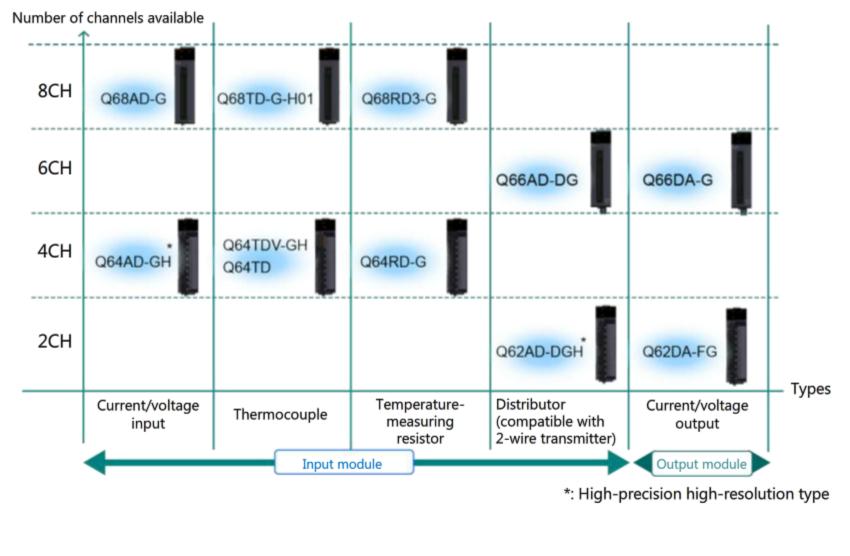

A redundant system offers highly reliable high-speed loop and sequence control by means of redundant CPUs, networks and power supplies. Choose the extension base module type or the remote I/O station type to suit your specific needs.

х

	Model	Q12PRHCPU	Q25PRHCPU	
Redundant CPU				
Capacit	ty for programming	124K steps	252K steps	
Sy	stem structure	Extension base module type	Remote I/O station type	
Application	[Extension base module type] Recommended where high-speed response is required. [Remote I/O station type] Recommended where multiple remote stations are installed in the system.	Control system redundant CPU Tracking Extension cable Extension cable Extension base module for redundant CPUs and power supply Extension base module for redundant power supply	Control system Standby system redundant CPU Standby system Tracking cable Tracking cable MELSECNET/H remote I/O network Standby system Remote station Remote station	

1.4.3 CPU Lineup for Systems of Any Size

From among the CPU lineup, you can select the right one for the size of your system, whether it is for device process control with several loops or for plant process control with several dozen loops.

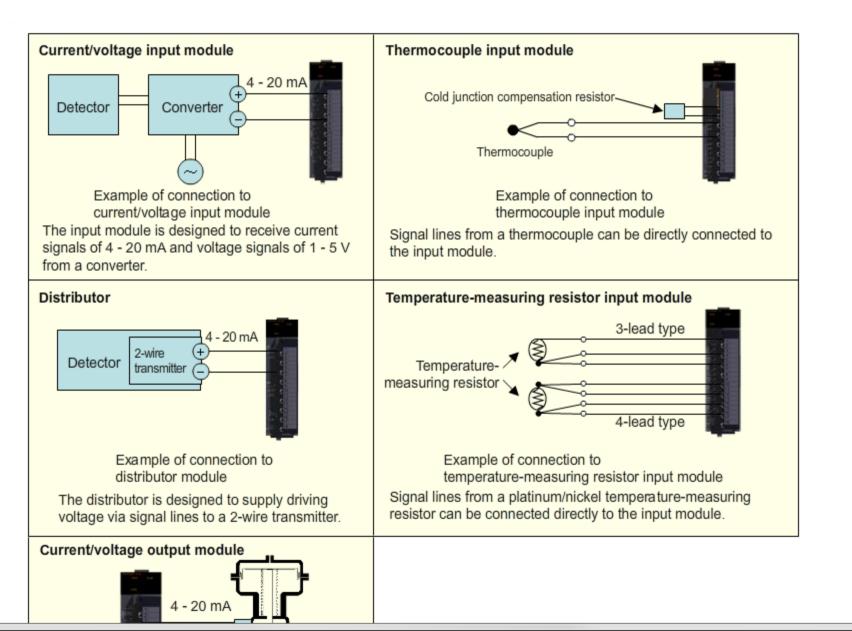

х

MELSEC Process Control System Basics ENG

>>

1.4.4 Analog Module with Isolated Channels

Every analog module is equipped with channels that are isolated from each other. Besides saving space, these modules are available in a variety of specifications including high-precision high-resolution models and multichannel (6 and 8 channels) versions.

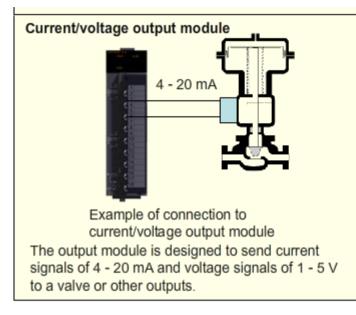

X

1.4.4 Additional Information - Analog Module with Isolated Channels

х

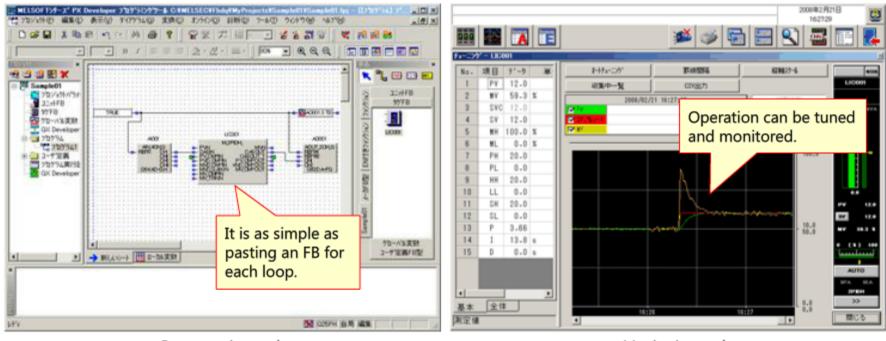
1/2

The following is additional information on analog input modules with isolated channels.


>>

1.4.4 Additional Information - Analog Module with Isolated Channels

2/2


х

M TOC

1.4.5 PX Developer Software Package for Process Control System

- With PX Developer's programming tool, which meets the IEC61131-3 standard, loop control can be programmed easily, simply by pasting FBs and connecting wires. This reduces the time taken to build a process control system.
- The monitoring tool comes as standard with frequently-used features such as tuning, control panel, trend graph and a warning list. Once programming is complete, you can immediately move on to adjustment, startup and operation.

Programming tool

Monitoring tool

X

>I TOC

1.4.6 Process Control System Monitoring

The MELSEC process control system offers a range of monitoring solutions to suit all possible system sizes, whether it is just one device or a whole plant.

X

TOC

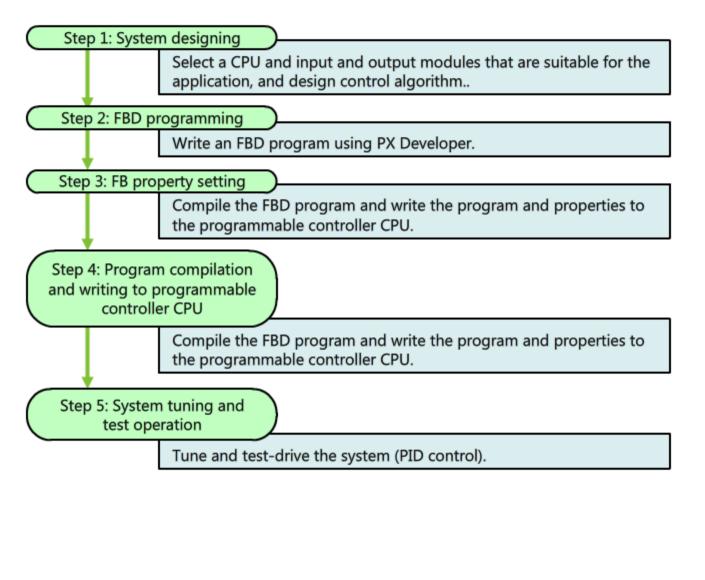
K

	Туре	Device/site monitoring solution	Facility/plant monitoring solution	Plant monitoring solution
		GOT imaging function Coordinated indicator monitoring	PC monitoring by coordination between PX Developer monitoring tool and SoftGOT1000	PC monitoring by coordination between PX Developer monitoring tool and off-the-shelf SCADA
	Structure		PC SoftGOT1000	PC Off-the-shelf SCADA
			Process CPU Redundant CPU	Process CPU
Ŧ	Graphic screen image	GOT1000 drawing so	ftware [GT Designer2]	Off-the-shelf SCADA
Function	Standard screen image	Automatically generated by GOT imaging function	Generated by PX Developer monitoring tool	Available using ActiveX faceplate components on the off-the-shelf SCADA

- *1 Faceplates, tuning screen and other images of the PX Developer monitoring tool are automatically converted into GT Designer2 image data. This data can then be used for GOT without further processing.
- *2 Images are available by pasting ActiveX faceplate components onto SCADA graphic screen images.

>>

Chapter 2 System Configuration


In this chapter, you will look at a process control system that controls the water level of a tank, and explore the required configuration and software of the programmable controller.

>>

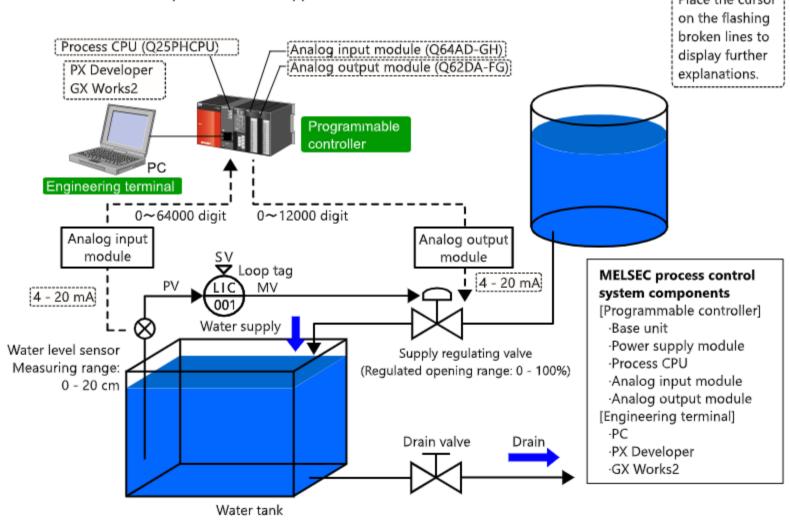
2.1 System Building Procedures

In this example we will build a process control system that maintains the water level in a tank.

- - X

>I TOC

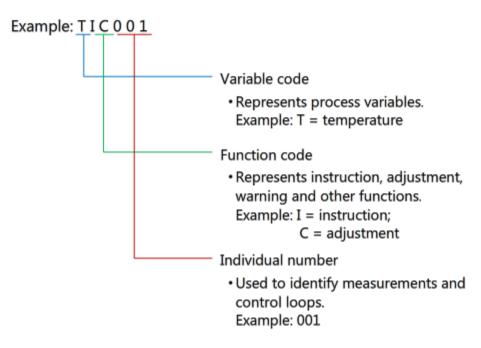
2.2

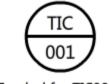

System Structure

You will build the MELSEC process control system shown below to keep the water level of a tank at a predetermined level. When the water level in the tank drops due to the drain valve being activated the drop in the water level is detected by a water level sensor. The PID control program responds by activating the supply regulating valve. The structure of this MELSEC process control application is as follows.

-

х


TOC


2.3

Additional Information - Loop Control Tag Number

Tags are allocated to the components and functions of the process control system to identify control loop process characteristics. These tags are called loop control tag numbers.

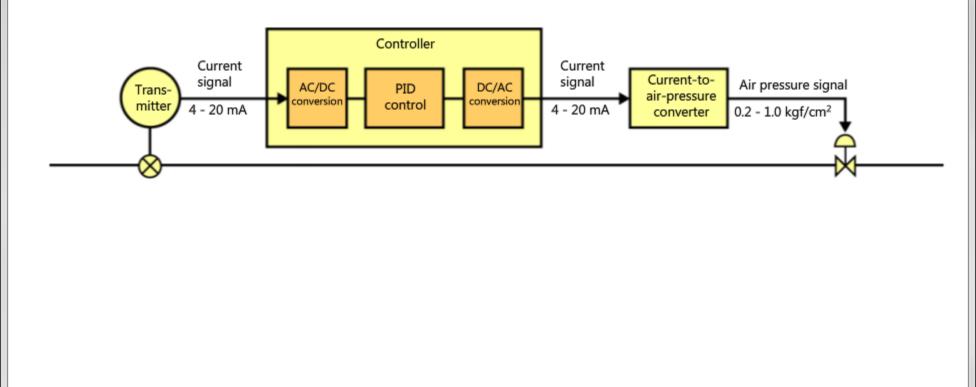
"TIC001" indicates loop number 001 for temperature instruction and adjustment.

Symbol for TIC001

	Variable code	Function code
Α		Warning
С		Adjustment
D	Density, Specific gravity	
F	Instantaneous flow rate	
G	Position, Length	
н	Manual operation	
I		Instruction
К	Time	
L	Fluid and other levels	
М	Humidity, Moisture content	
Р	Pressure, Vacuum	
Q	Quality (composition, concentration)	Integration
R	Radiation	Record
S	Velocity, Speed, Frequency	Switch
Т	Temperature	Transmission
V	Viscosity	
W	Mass, Force	
Z		Safety, Emergency

X

I4 ►I TOC


Frequently used code

>>

2.4 **Additional Information - Standardized Signals**

Input and output signals for process control systems, such as measurements and actuation commands, are standardized (typically 4 - 20 mA DC). These signals are called standardized signals.

Signal type	Signal range
Current	4 - 20 mA DC
Voltage	1 - 5 V DC
Air pressure	0.2 - 1.0 kgf/cm ²

X

>>

2.5 Input and Output Modules

The input and output modules for the process control system are shown in the following table. This information is required in Step 2 "FBD programming" and Step 3 "FB property setting."

Module/Device	Slot	Head I/O address	Connection	Range
Analog (current/voltage) input module (Q64AD-GH)	(vo o	0000	The input signal line from the water level sensor is connected to the channel 1 (CH1) input terminal of the module.	Analog input signal range: 4 - 20 mA Digital output signal range: 0 - 64000
Analog (current/voltage) output module (Q62DA-FG)	[VO 1	0010	The output signal line to the supply regulating valve is connected to the channel 1 (CH1) output terminal of the module.	Digital input signal range: 0 - 12000 Analog output signal range: 4 - 20 mA

Place the cursor on the flashing broken lines to display an arrow.

>>

Chapter 3 FBD Programming

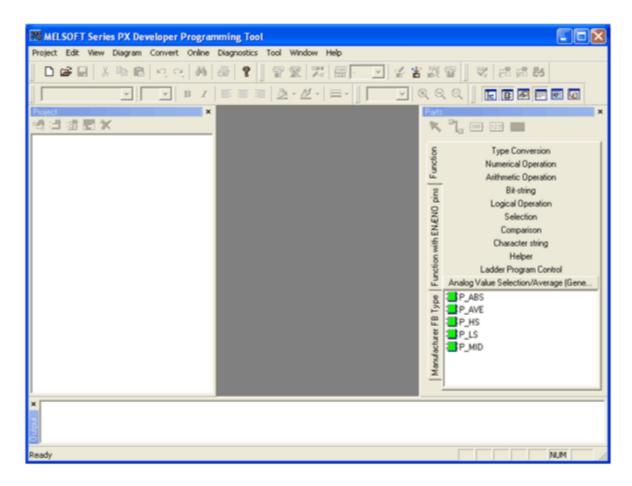
In this chapter, you will write FBD programs using the PX Developer programming tool.

х

>>

3.1

Starting the PX Developer Programming Tool


To perform FBD programming, start the PX Developer programming tool, which is application software.

Click the **Start** menu of Windows, **All Programs** and then **PX Developer Programming Tool** to start the application software.

-

I II TOC

х

3.2 Creating New Projects

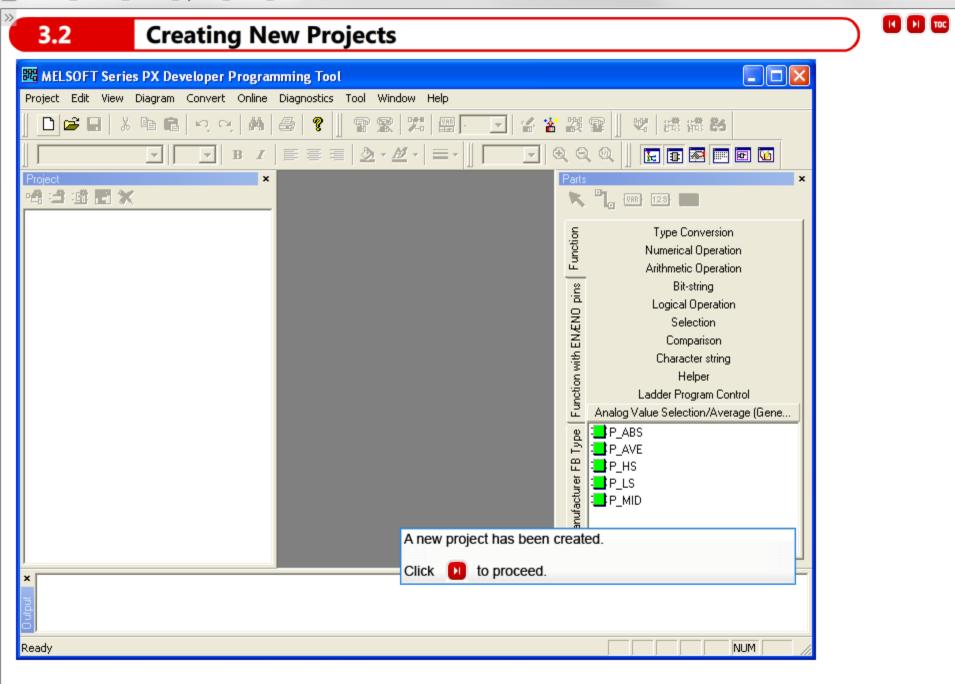
To write programs using the programming tool, you need to create a project. This requires you to set certain items.

(1) Programmable controller model Specify a programmable controller CPU. It can be a process CPU or a redundant CPU. In this training course, you will configure the system with a process CPU (Q25PH). Select **Q25PH**.

CPU type	Programmable controller model			
Q02PH				
Q06PH	Process CPU			
Q12PH	Process CPU			
Q25PH				
Q12PRH	- Redundant CPU			
Q25PRH				

K

х

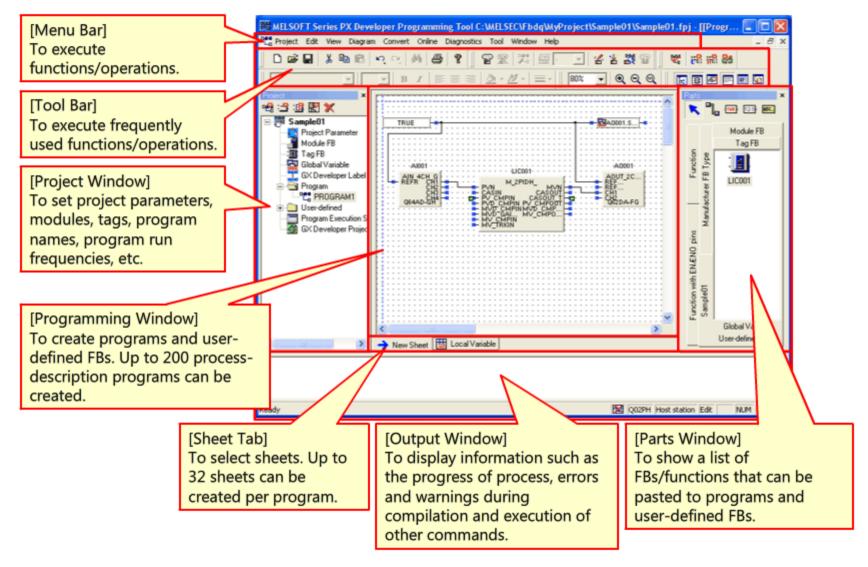

>I TOC

(2) Project name

Specify the drive/path to which you want to save the project file and the project name. In this training course, enter the following.

Drive/Path: c:\MELSEC\Flodq\MyProject Project name: Sample01

* When a project name is specified, a folder with the project name is automatically created in the specified drive/path.



- - X

3.3

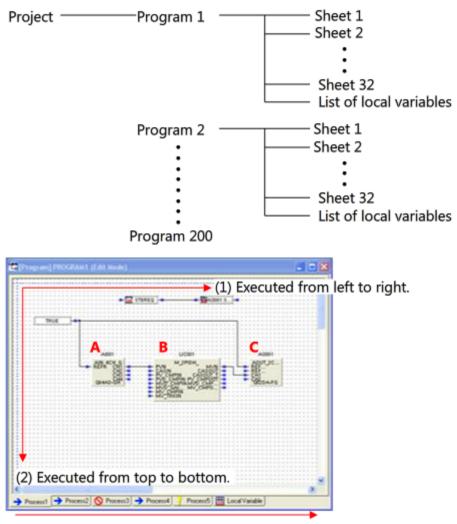
Screen Layout of the PX Developer Programming Tool

The screen of the PX Developer programming tool is laid out as shown below.

- - X

TOC

3.3.1 Additional Information - FBD Program Structure and Processing Sequence


The following shows the structure of FBD programs and the processing sequence that are available with PX Developer.

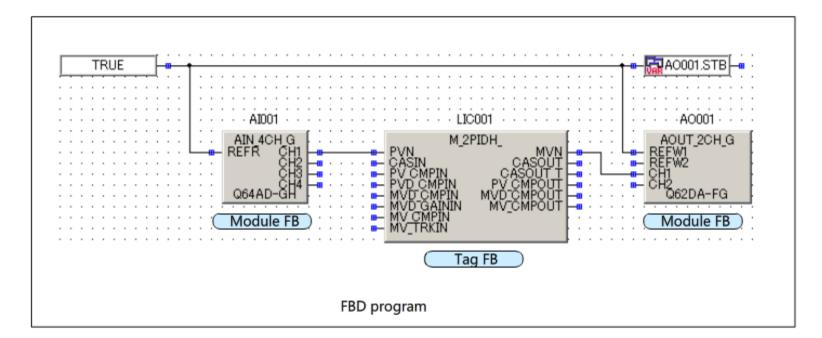
As shown on the right, multiple programs can be created for a project, with each program being able to accommodate a maximum of 32 program sheets.

(For details, please see the user's manual for PX Developer.)

FBD parts that are inserted, arranged and connected on the sheet are executed in the order of (1), (2) and (3) as shown in the illustration on the right.

The FBD parts shown in the illustration are executed in the order of A, B and C.

X


TOC

(3) Executed from the leftmost tab sheet to the rightmost tab sheet.

3.4 Creating FBD Programs

3.4.1 Program to Be Created

In this training course, the following water level control program will be created.

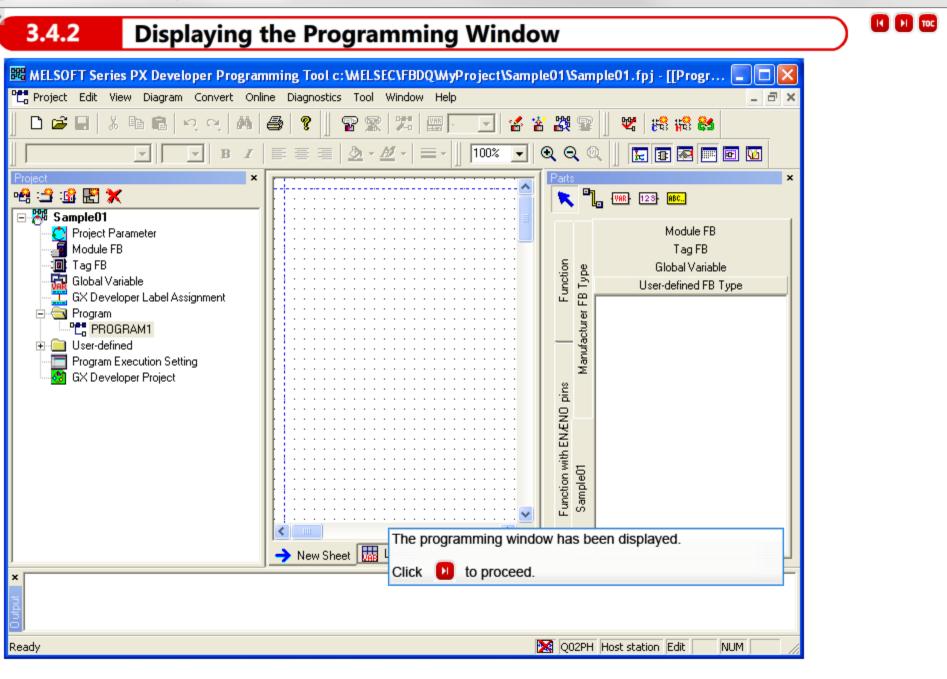
X

PV (process variable) is sent from a module FB representing the analog input module (Q64AD-GH) to a tag FB, which then performs computation. The results of the computation, or MV (manipulated variable), are sent out to a module FB representing the analog output module (Q62DA-FG).

The program loop tag is a 2-degree-of-freedom high-performance PID control tag FB (M_2PIDH_), which can accommodate a wide range of applications with its rich range of functions.

>>

3.4.2 Displaying the Programming Window


х

IN DI TOC

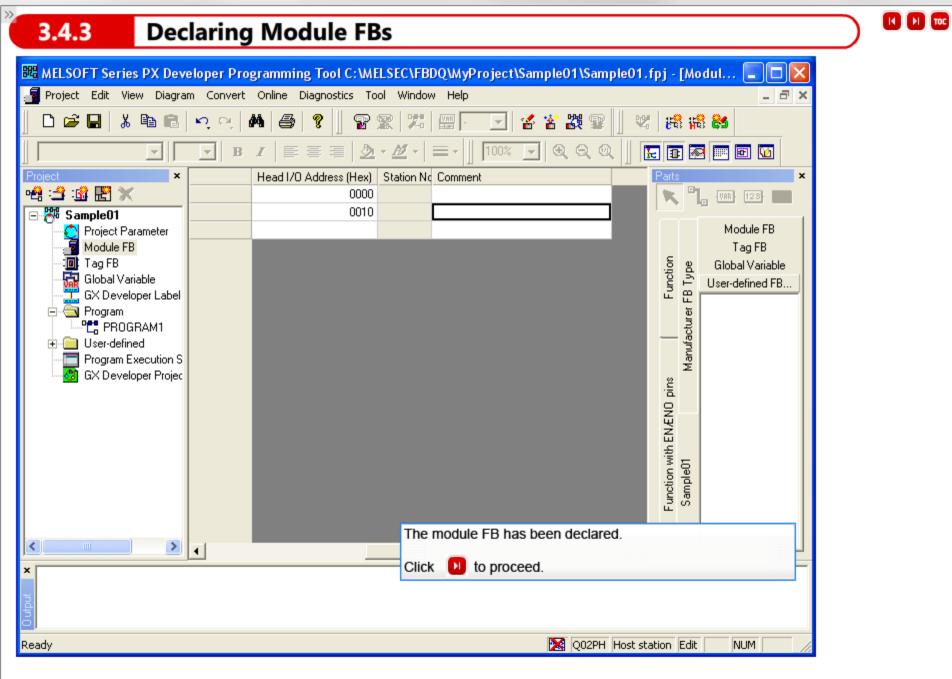
To create an FBD program, you need to display the programming window. In this training course, you will create an FBD program on the following sheet.

Program name: Program 1 Sheet name: New sheet

* Program 1 and a new sheet will be automatically created as you create a new project.

X

>>


3.4.3 Declaring Module FBs

To access the input and output modules (Q64AD-GH and Q62DA-FG) from the program, declare (register) module FBs representing these modules in the module FB declaration window. In the module FB declaration window, set the following items.

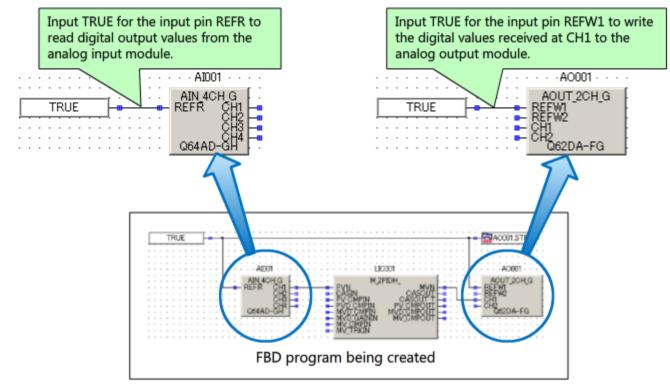
Module FB variable name	Module model	Module FB type	Start I/O address
AI001	Q64AD-GH	AIN_4CH	0000
AO001	Q62DA-FG	AOUT_2CH	0010

* Selecting a module model automatically sets a corresponding module FB type.

23

- - X

3.4.4 Pasting Module FBs

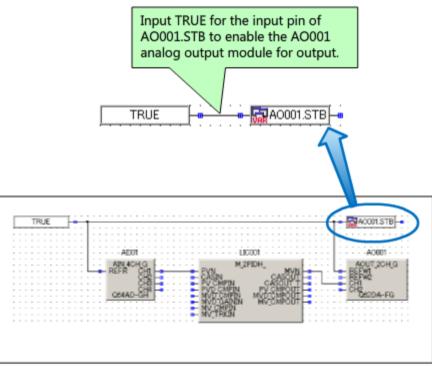

The module FBs (AI001 and AO001) that have been declared in the module FB declaration window need to be pasted to the programming window. After that, follow the procedure below to enable the module FBs.

X

I4 ▶I TOC

(1) Enabling the AI001 (Q64AD-GH) for output and the AO001 (Q62DA-FG) for input

Input TRUE for REFR and REFW1 to enable the AI001 output pin and the AO001 input pin on the FBD program.

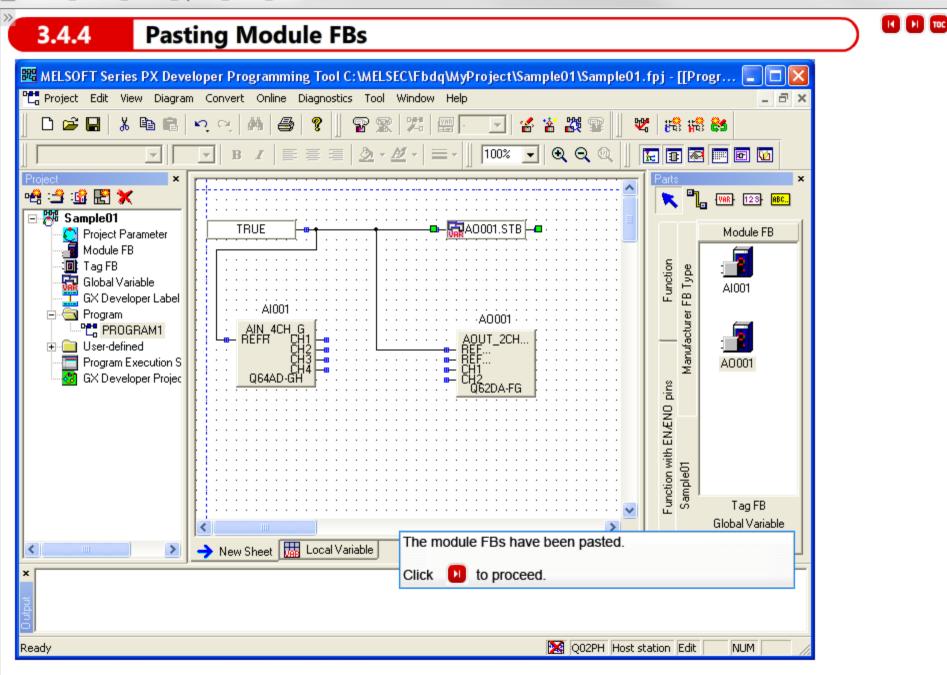

In order to achieve the above, paste TRUE constants to the programming window and connect them to the following two input variables (pins).

Module FB	Variable name	Variable type	Data type	Description
AI001	REFR	Input variable	BOOL	Output condition signal. Executed by TRUE.
AO001	REFW1	Input variable	BOOL	Input condition signal for CH1. Executed by TRUE.

3.4.4 Pasting Module FBs

(2) Enabling the AO001 (Q62DA-FG) for output

Input TRUE to AO001.STB, which is a public variable, to enable the analog output module FB AO001 for analog output.


X

I4 ▶I TOC

In order to achieve the above, paste TRUE constants to the programming window and connect them to the following two input variables (pins).

Variable name	Variable type	Data type	Description
AO001.STB	Public variable	BOOL	Operating condition setting request Executes D/A conversion enable/disable setting upon switching from FALSE to TRUE.

*Because AO001.STB is the public variable of the AO001, there is no need to specify the variable type when creating the variable.

X

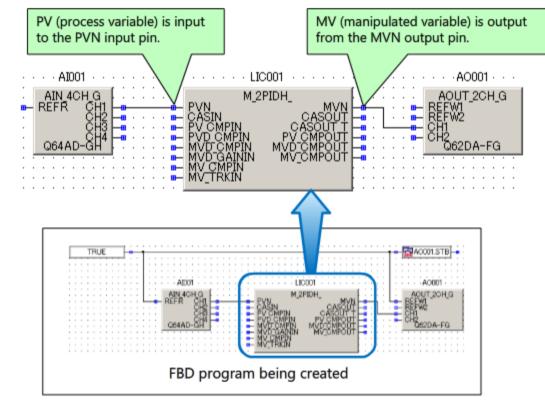
>>

3.4.5 Declaring Tag FBs

A 2-degree-of-freedom high-performance PID control tag FB (M_2PIDH_) needs to be registered in the tag FB declaration window to enable PID control. In the tag FB declaration window, set the following items. Because the tag FB is used to give instructions and control water level, the tag FB variable is named LIC001.

Tag FB variable name	Tag FB type	Tag type
LIC001	M_2PIDH_	2PIDH

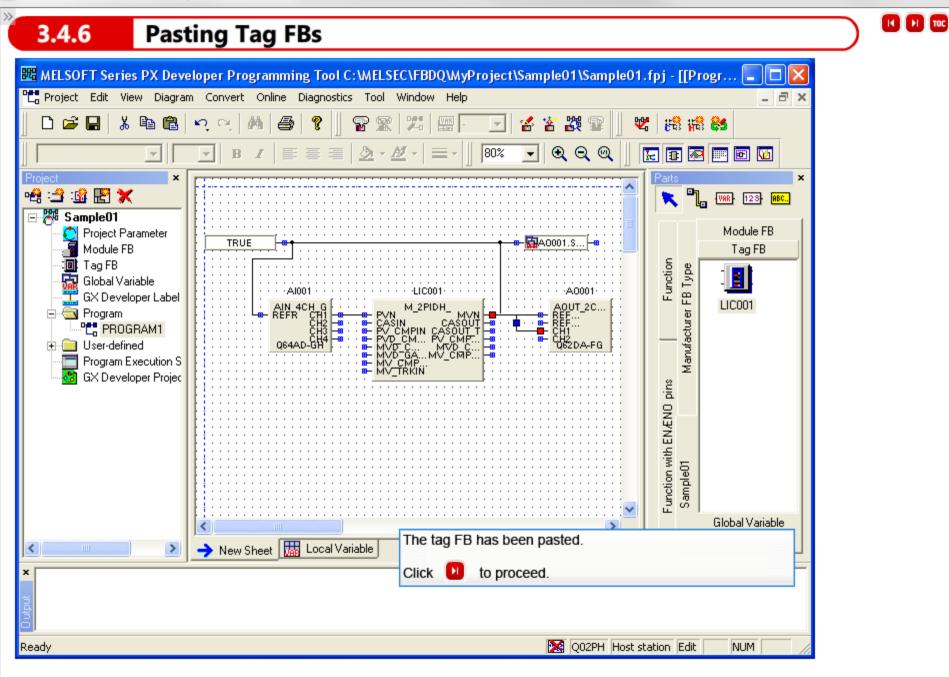
* The tag type is automatically set.


23

MELSEC_Process_Control_S	ystem_Basics_ENG								
3.4.5 Dec	laring Tag FBs	1							
J.H.J Dec	laring ray rbs								
B MELSOFT Series PX Deve	eloper Programming Tool (C:\MELSEC\Fbdq\My	Project\Sa	mple01\Sample	01.fp	j - [Ta	g F 🔳 🗖 🗙		
: Project Edit View Diagram	m Convert Online Diagnostic	s Tool Window Help)				_ 7 ×	1	
	v a 🗛 🚑 🢡	88 7 8		s 👔 🎇 🖀 📗	2	18 #	8 84		
	■ B I ■ ■ ■	$ \underline{\mathfrak{D}} \cdot \underline{\mathscr{U}} \cdot \equiv \cdot$	100%		E	1	2 🖭 🖭 🔽		
Project ×					Ē	Parts	×		
🗠 🗳 🏦 🚼 🗙	Maximum No. of Tags (0 to 120) 100 Apply				K "	UAR 128		
🖃 🚟 SampleO1	N. T. FRY SHAN	T CD T	т. т.				Module FB		
Project Parameter	No. Tag FB Variable Na 1 LIC001	M 2PIDH	Tag Type 2PIDH	Assigned Device (ZR3000					
🔤 Tag FB	2		Enen	ZR3130		e e			
Global Variable	3			ZR3260		Function Manufacturer FB Type	AI001		
GX Developer Label	4			ZR3390		E F			
Program	5			ZR3520		ture			
⊕ ⊡ User-defined	6			ZR3650		lfac			
Program Execution S	7			ZR3780		dan.	A0001		
🔤 🔂 GX Developer Projec	8			ZR3910	_	_			
	9			ZR4040	_	Ē			
	10			ZR4170	-	ENC.			
	11			ZR4300	-	EN/			
	12			ZR4430	-	1 vith			
	13			ZR4560 ZR4690	-	on v			
	14			ZR4690 ZR4820	-	Function with ENÆNO pins Sample01	T == 50		
	16			ZR4950	-	പ്ര	Tag FB Global Variable		
	17	The tag Fl	B has beer	n declared.			. Juniar is adable		
	•						J		
x		Click 🗾	to proce	ed.					
t									
dan (
						and the			
Ready				🔀 Q02PH Hos	st statio	on jEdit	NUM /		

>>

3.4.6 Pasting Tag FBs

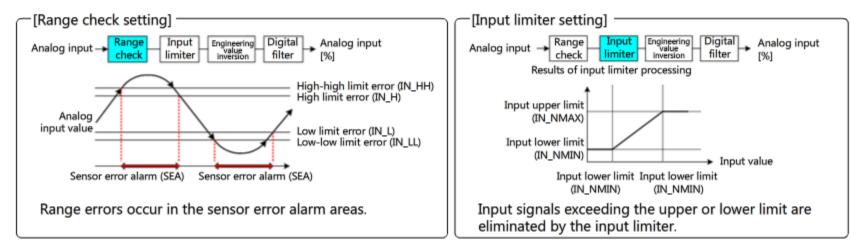

Paste the tag FB (LIC001), which has been declared in the tag FB declaration window, to the programming window. Connect the PVN pin for process variable input and the MVN pin for manipulated variable output to the input/output pins of the two module FBs that have been pasted to the window.

As shown below, connect CH1 of the analog input module to PVN and CH1 of the analog input module to MVN.

Output pin			Input pin	
Tag/module variable name	Pin name		Tag/module variable name	Pin name
AI001	CH1	\rightarrow	LIC001	PVN
LIC001	MVN	\rightarrow	AO001	CH1

X

X


3.4.7 Setting the FB Property Initial Values

Set the initial values such as for input and output ranges of tag FBs according to the input/output characteristics of a controlled device.

х

TOC

First, the setting methods for the range check, which detects errors of analog sensor input from a detector, and input limiter are described.

Because the analog input module used in this course has a digital output range of 0 to 64000, the upper and lower limits of the limiter are set at 64000 and 0 respectively.

Setting item for analog input	Setting value	Description
High-high limit error	65535.0	An error occurs when the analog input value reaches 65535 or above.
High limit error	64000.0	The normal state is restored when the analog input value drops to 64000 or below.
Low limit error	0.0	The normal state is restored when the analog input value rises to 0 or above.
Low-low limit error	-1536.0	An error occurs when the analog input value drops to -1536 or below such as when the sensor circuit opens.
Input upper limit	64000.0	The Q64AD-GH module has a digital output range of 0 to 64000 for conversion of
Input lower limit	0.0	the analog input range of 4 to 20 mA.

* Out-of-range error thresholds, or setting values, vary depending on the module type.

- 1	iew Diagram Convert Online Diagnostics Tool Window Help – 🗗 🗙	
st	Input PID Operation Cascade Output Other Analog Input	
Sample01 Sample01 Solution Government Gover	Input High Limit 6400000 Input Low Limit 0.0 High Limit Range Error 65535.0 High Limit Range Error Reset 64000.0 Low Limit Range Error Reset 0.0 Low Limit Range Error -1536.0 PV Engineering Value[Engineering Value] PV Engineering Value High Limit 100.0 PV Engineering Value Low Limit 0.0 PV Engineering Value Low Limit 0.0 PV High High Limit Alarm Value 100.0 PV High Limit Alarm Value 100.0	
1111	PV Low Limit Alarm Value 0.0 PV Low Low Limit Alarm Value 0.0 Input Range: -9999999.0 <= Low Limit Range Error <= Low Limit Range Error Reset	

X

>>

3.4.7 Setting the FB Property Initial Values

The next setting concerns the range of analog output to the final controlling element.

Because the analog output module used in this course has a digital input range of 0 to 12000, the upper and lower limits of the limiter are set at 12000 and 0 respectively.

х

Setting item for analog output	Setting value	Description
Output conversion upper limit	12000.0	The Q62DA-FG module has a digital input range of 0 to 12000 for
Output conversion lower limit	0.0	conversion into the analog output range of 4 to 20 mA.

3.4.7	Setting the FB Property Initial Values	
MELSOFT Ser	ies PX Developer Programming Tool C:\MELSEC\Fbdq\MyProject\Sample01\Sample01.fpj - [[Progr 🔳 🗖 🗙	
Project Edit	View Diagram Convert Online Diagnostics Tool Window Help - 🗗 🗙	
🗅 🚅 🖬 🛛	🖼 FB Property Page [LIC001]	
	Input PID Operation Cascade Output Other	
oject	Analog Output	
: 🕄 🟦 🛃	Output Conversion High Limit 12000.0	
🚟 SampleO1	Output Conversion Low Limit 0.0	
Project	Module FB Tag FB	
📑 Tag FB		
🚊 🔄 Program	LIC001	
En <mark>PR</mark> ⊡⊡ User-de		
Program		
🔤 🔂 GX De		
	Input Range: -999999.0 <= Output Conversion Low Limit < Output Conversion High Limit Global Variable	
	Analog output signal range setting has been completed.	
	Click 🕑 to proceed.	
	OK Cancel	
	Q02PH Host station Edit NUM	
ady		

>>

3.4.7 Setting the FB Property Initial Values

PV out-of-range alarm hysteresis [%] (HS) PV high-high limit alarm threshold (HH) PV high limit alarm threshold (PH) PV low limit alarm threshold (PL) PV low-low limit alarm threshold (PL) PV low-low limit alarm threshold (LL) Alarms are issued when input exceeds the alarm thresholds.

The following items need to be set in accordance with the tank's upper and lower water-level limits, which are 20 and 0 respectively in this course.

х

>I TOC

K

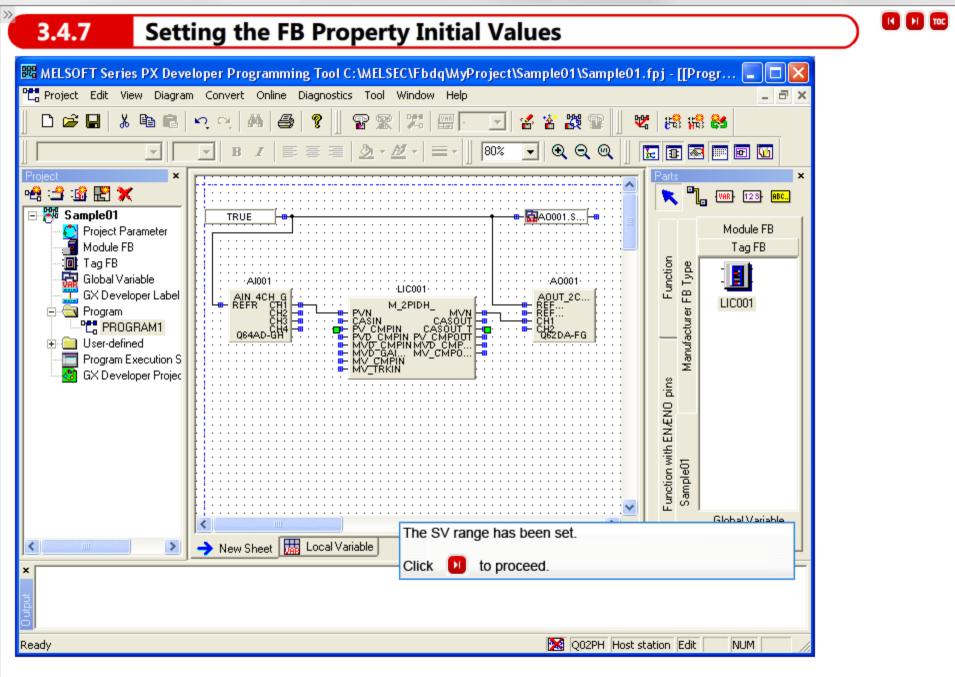
Setting item	Setting value	Description
PV upper limit engineering value	20.0	
PV low limit engineering value	0.0	
PV high-high limit alarm threshold (HH)	20.0	The upper water-level limit of the tank is 20. Therefore, the high and low limits of the PV (process variable) range are set at 20 and 0 respectively. H and low limit alarm thresholds are also set at 20 and 0 respectively.
PV high limit alarm threshold (PH)	20.0	
PV low limit alarm threshold (PL)	0.0	
PV low-low limit alarm threshold (LL)	0.0	

The next setting concerns the display of water level and related alarms.

roject Edit y	iew Diagram Convert Online Diagnostics Toc FB Property Page [LIC001]) Window Heln		
t.	Input PID Operation Cascade Output Other	·		
Sample01 Completed Module Completed Module Completed Global Completed	Input High Limit Input Low Limit High Limit Range Error High Limit Range Error Reset Low Limit Range Error Reset Low Limit Range Error PV Engineering Value[Engineering Value] PV Engineering Value High Limit PV Engineering Value High Limit PV Engineering Value Low Limit PV High High Limit Alarm Value PV High Limit Alarm Value PV Low Limit Alarm Value	64000.0 0.0 65535.0 64000.0 0.0 0.0 -1536.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Image: Tage FB Tage FB Image: Tage F	
Ш	PV Low Low Limit Alarm Value PV High Limit Alarm Value is more than PV High Hi	0.0 gh Limit Alarm Value. Water level display and related alarms have bee Click I to proceed.	Global) (ariable n set.	

X

>>


3.4.7 Setting the FB Property Initial Values

х

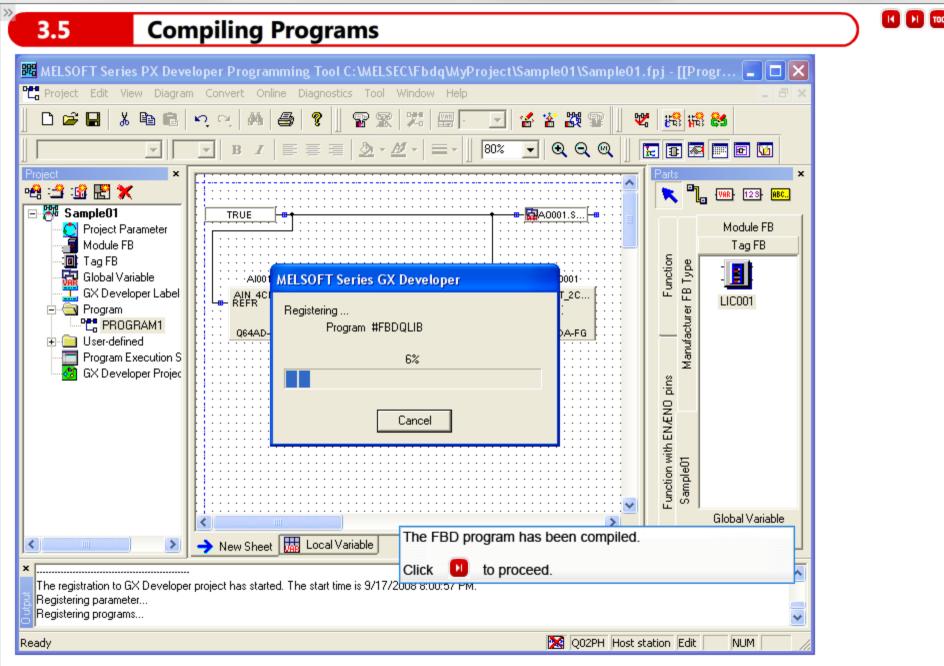
Finally, set the SV range of the tank water level for PID calculation.

The range here is defined with an upper limit of 20 and a lower limit of 0.

Setting item	Setting value	Description
SV upper limit	20.0	Set the range of tank water leve
SV low limit	0.0	Set the range of tank water level.

X

>>


3.5 Compiling Programs

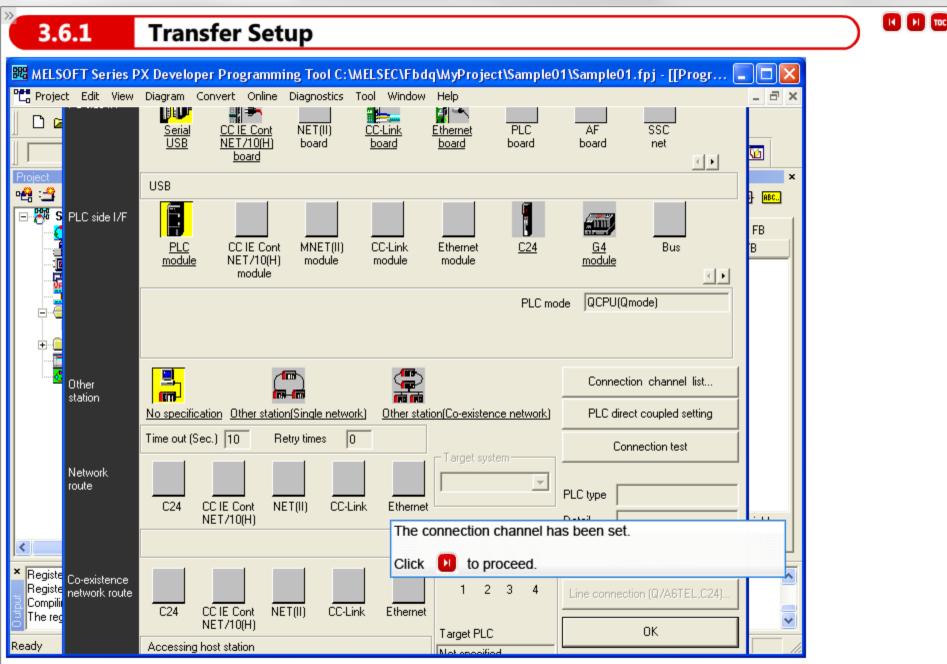
Compile the created FBD program to write it to the programmable controller.

The status of the compilation process is shown in the output window. Check the window to confirm that the compilation process has been successfully completed.

х

MELSEC Process Control System Basics ENG

X

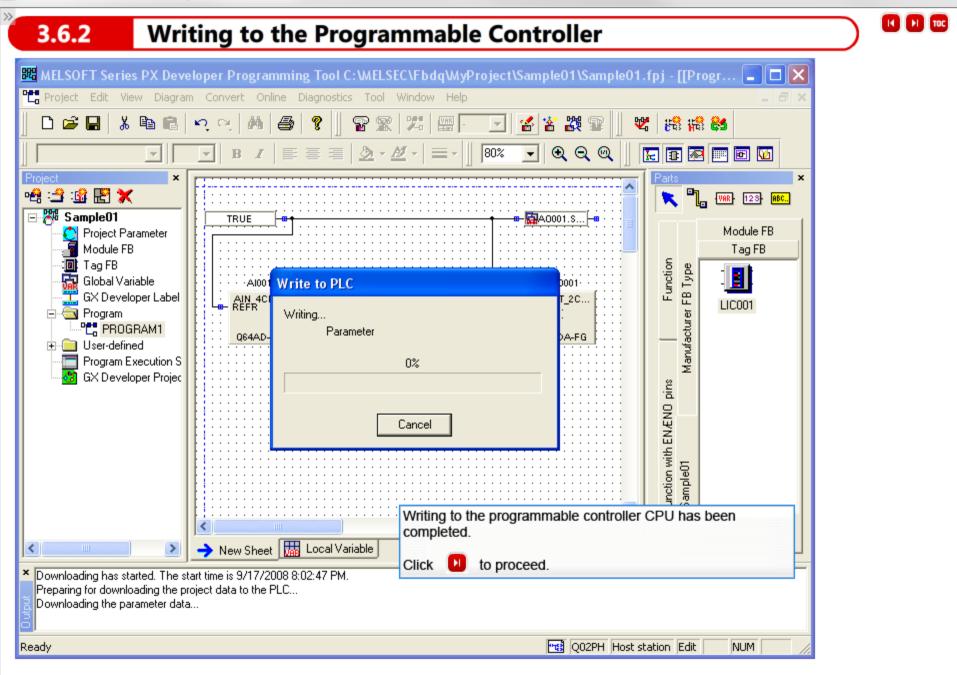

>>

3.6 Writing Programs to the Programmable Controller CPU

3.6.1 Transfer Setup

Specify a connection channel to write the compiled program to the programmable controller CPU. Here, the PC and programmable controller CPU will be directly connected using a USB cable.

23


- - X

>>

3.6.2 Writing to the Programmable Controller

х

Write the program to the programmable controller CPU.

X

>>

Chapter 4 Program Monitoring and Tuning

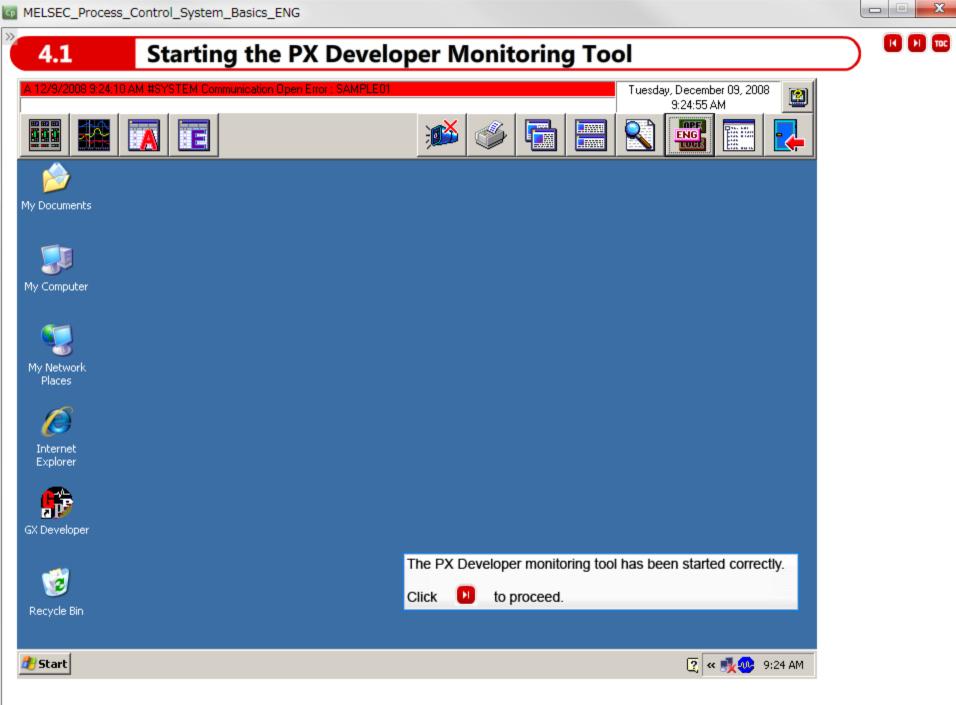
This chapter explains how to check that programs work correctly and how to tune PID control using the PX Developer programming and monitoring tools.

4.1 Starting the PX Developer Monitoring Tool

Start the PX Developer monitoring tool to monitor the operation of the FBD program that has been created. Enter the engineer mode, which enables you to set up the monitoring tool. K

X

>I TOC

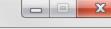

The monitoring tool has the following modes.

Mode name	Description
Engineer mode (for designing and administration)	In this mode, all of the monitoring tool functions can be used. This mode is used when making initial settings and changing settings.
Operator mode (for monitoring)	In this mode, general monitoring functions can be used while operating conditions and other settings of the functions cannot be changed. The system normally operates in this mode.
Lock mode	This mode blocks an attempt to change the operating conditions and other settings of the functions and to use tags for these purposes.

The engineer mode can be entered by clicking the mode switching button and entering the following user name and password for engineering authorization.

User name: admin Password: admin

(The user name and password that have been entered can be changed later.)


х

>>

4.2 Setting a Monitored Project

Set a project being monitored by the PX Developer monitoring tool.

You will set the Sample01 project that has been created using the PX programming tool as the project for monitoring.

	4.2 Setting	a Monitored Project	
Monitor Tool Setting Vontor Target Project Setting Vontor Target Project Setting Vontor Target Project Setting Trend Setting Trend Setting Setting Vontor Setting Vontor Setting Setting Setting Setting Setting Setting Vontor Setting Setting Vontor Setting Duplicated Tag Name Duplicated Tag Name The project to be monitored has been set.			
User Setting Monitor Target Project Setting Control Panel Setting Alara Setting User-created Screen Setting Unit Setting Faceplate Display Pattern Setting Faceplate Display Scale Setting Option Setting Duplicated Tag Name Duplicated Tag Name The project to be monitored has been set.	Monitor Tool Setting [Monitor Target Project Se		
Alarm Setting Event Setting User-created Screen Setting Faceplate Display Pattern Setting Faceplate Display Scale Setting Faceplate WY Characters Setting Ockout Tag Setting Option Setting Duplicated Tag Name Duplicated Tag Name The project to be monitored has been set.	User Setting Monitor Target Project Setting Control Panel Setting	No. Project Name Assignment Information Database File PLC Type Transfer Setup	
Faceplate Display Pattern Settin Faceplate Display Scale Setting Faceplate MY Characters Setting Lockout Tag Setting Option Setting Duplicated Tag Name Duplicated Tag Name Duplicated Project Name	Alarm Setting Event Setting User-created Screen Setting	2 3 4	
Option Setting Duplicated Tag Name Duplicated Project Name The project to be monitored has been set. The project to be monitored has been set.	Faceplate Display Pattern Settin Faceplate Display Scale Setting Faceplate MY Characters Setting	6 7 	
		Duplicated Tag Name Duplicated Project Name	
Click M to proceed.			
		Click II to proceed.	
Ready		×	

>>

4.3 Registering a Faceplate in Control Panel Setup

The PX Developer monitoring tool offers a control panel setup feature whereby up to eight faceplates, which resemble actual controllers, can be arranged on the same screen.

23

In this section, you will register a faceplate for the LIC001 tag FB variable that has been created in the program.

Monitor Tool Setting [Control Panel Setting]

4.3

>>

Registering a Faceplate in Control Panel Setup

	x

<u>F</u> ile <u>E</u> dit			
User Setting	Apply	Cancel	
Monitor Target Project Setting	Item	Contents	•
Control Panel Setting		Contents	<u>=</u>
Trend Setting	🗇 Group 1	- ·	
Alarm Setting	- Group Name	Group1	
Event Setting	🗏 - Faceplate 1	O LIC001	
User-created Screen Setting	🗏 - Faceplate 2		
Unit Setting	- Faceplate 3		
Faceplate Display Pattern Settin	- Faceplate 4		
Faceplate Display Scale Setting	- Faceplate 5		
Faceplate MV Characters Setting Lockout Tag Setting	- Faceplate 6		
Option Setting	- Faceplate 7		
option betting	- Faceplate 8		
	🗆 Group 2		
	- Group Name		
	- Faceplate 1		
	- Faceplate 2		
	- Faceplate 3		
	- Faceplate 4		
	- Faceplate 5		
	- Faceplate 6		
	- Faceplate 7	feeeplate has been registered	
	🕒 Faceplate The	faceplate has been registered.	
	🖵 Group 3 Clic	k 🔃 to proceed.	
	- Group Name		
	- Faceplate 1		
۲	- Faceplate 2		
Ready	· · · · · · · · · · · · · · · · · · ·		1

>>

4.4 Displaying the Control Panel

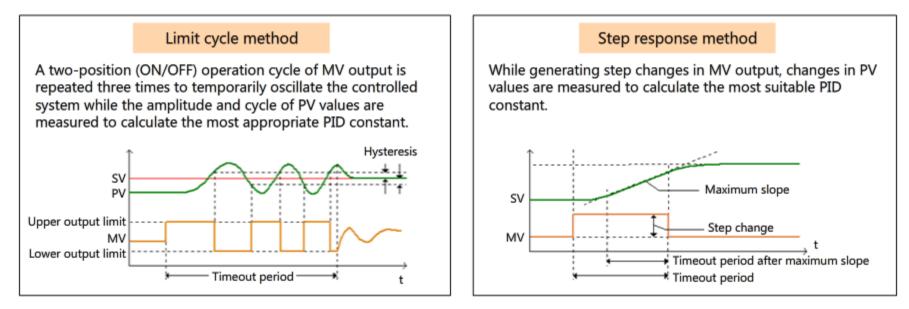
You will now display the control panel to check whether it contains the LIC001 faceplate that has been registered.

» 4.4	Displaying the Control Panel	
A 2008/09/19 18:10:1	8 LICOO1 SEA	
🗱 Control Panel - Gr		
NOR		
LIC001		
PVA DVA MVA		
SVA 20.0		
0.0		
PV 0.0		
SV 0.0 MV 0.0 %	The control panel has been displayed.	
0 (%) 100	Click D to proceed.	
	Click a to proceed.	
MANUAL		
SPA SEA OOA		

>>

4.5 Tuning the PID Control Loop

Click the **Details** button on the faceplate to open the **Tuning** window, and identify PID constants by auto-tuning.

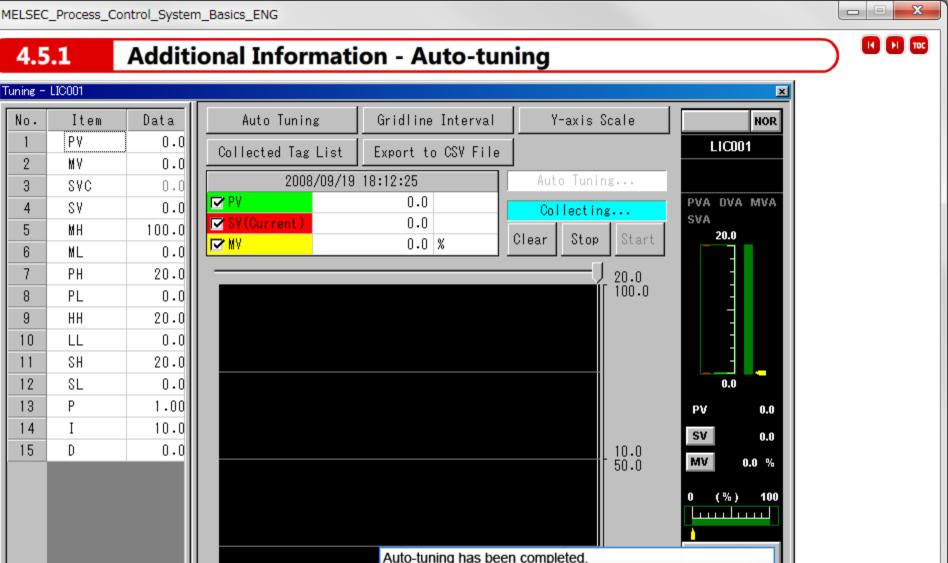

4.5.1 Additional Information - Auto-tuning

The high-performance PID control tag FB (M_2PIDH_) offers a choice of two auto-tuning methods to meet a variety of applications: limit cycle and step response.

X

Characteristics of limit cycle and step response methods

The limit cycle method has a minimal noise impact on PV values during the identification of PID constants, offering stable PID constants. The step response method is suitable for control systems that require non-fluctuating MV and PV values.


MELSEC Process Control System Basics ENG

>>

•

Basic

Process

>>

Close

		ļ.
	Auto-tuning has been completed.	
	Click 🔃 to proceed.	
).0
		1.0
Variable		

>>

4.6 Test Operation of the System

Test-operate the system for PID loop automatic control using the PID constants identified by auto-tuning, and check whether measured PV values converge onto the target SV value.

х

MELSEC Process Control System Basics ENG

>>

4.6

No.

2

3

4

5

6 7

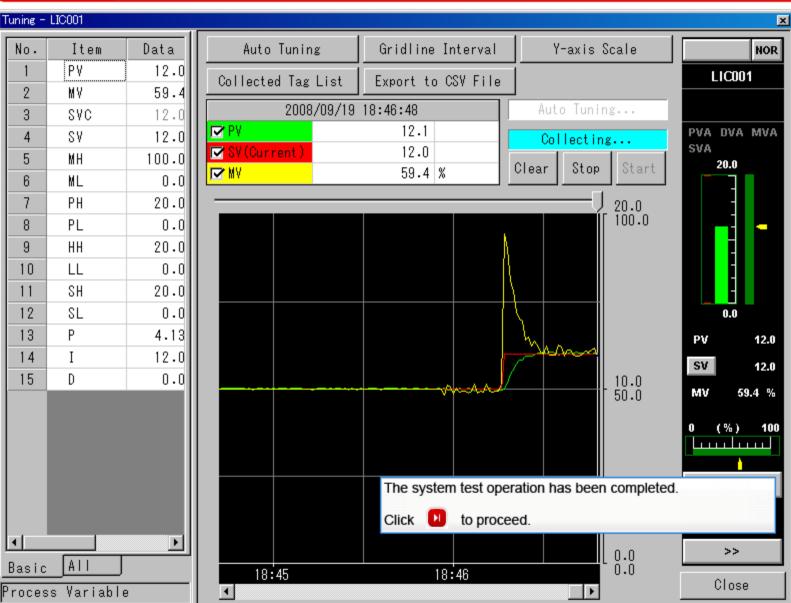
8

9 10

11

12

13


14

15

•

Basic

Test Operation of the System

х

K M TOC

Test Final Test

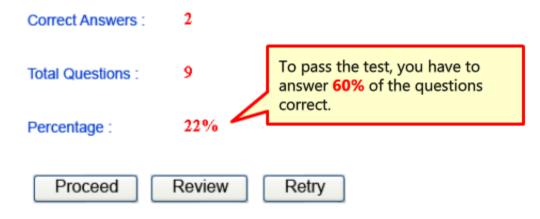
Now that you have completed all of the lessons of the PLC MELSEC Process Control System Basics Course, you are ready to take the final test. If you are unclear on any of the topics covered, please take this opportunity to review those topics.

ĸ

X

TOC

There are a total of 5 questions (19 items) in this Final Test.


You can take the final test as many times as you like.

How to score the test

After selecting the answer, make sure to click the **Answer** button. Your answer will be lost if you proceed without clicking the Answer button. (Regarded as unanswered question.)

Score results

The number of correct answers, the number of questions, the percentage of correct answers, and the pass/fail result will appear on the score page.

- Click the Proceed button to exit the test.
- Click the Review button to review the test. (Correct answer check)
- Click the Retry button to retake the test again.

Test Final Test 1

>>

MELSEC process control system modules/software

For each of the descriptions, choose the corresponding module/software from the list.

Description	Module/Software
An FBD software package for process control system	Select 🔻
A module designed to receive current/voltage signals of typically 4-20 mA/1-5 V from a converter	Select
A CPU module that ensures uninterrupted system operation in the event of a control system malfunction by automatically switching control to the standby system	Select
An analog module compatible with two-wire transmitters	Select 🔻
A module to which signal lines from a platinum/nickel temperature-measuring resistor can be directly connected	Select
A module that offers high-speed loop and sequence control and the possibility of developing a multiple-CPU system	Select

Answer

Back

Test Final Test 2

>>

PX Developer programming tool functions

For each of the FB descriptions, choose the corresponding PX Developer programming tool function from the list.

х

Description	Function
An FB designed to receive and send analog/digital signals like analog modules and I/O modules do	Select V
An FB designed to accommodate controllers for PID and other control	Select V

Answer

Back

Test Final Test 3

>>

PX Developer monitoring tool functions

For each of the screen descriptions, choose the corresponding PX Developer monitoring tool function from the list.

Description	Function
A setting screen for displaying faceplates by the group	Select
A screen to identify PID constants by step response and limit cycle methods	Select

Answer

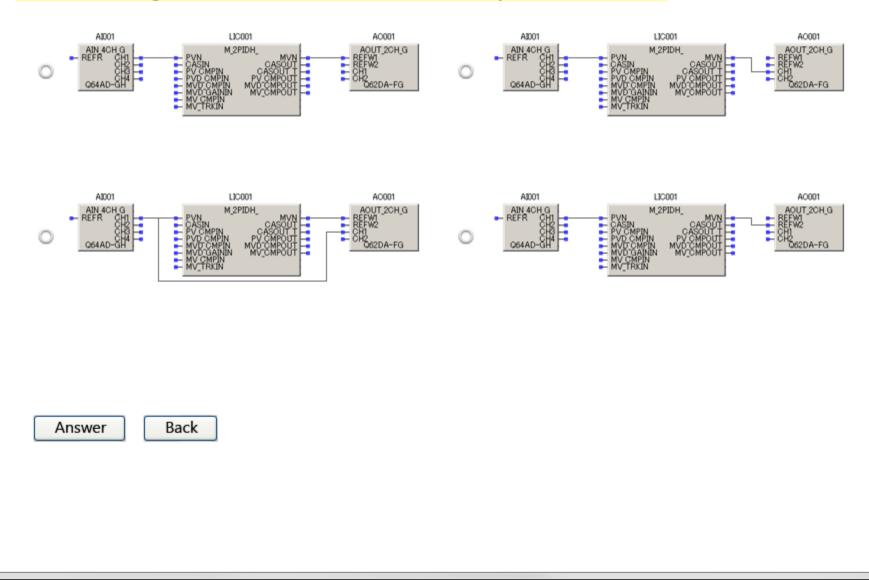
Back

х

-

Test Final Test 4

FBD programming

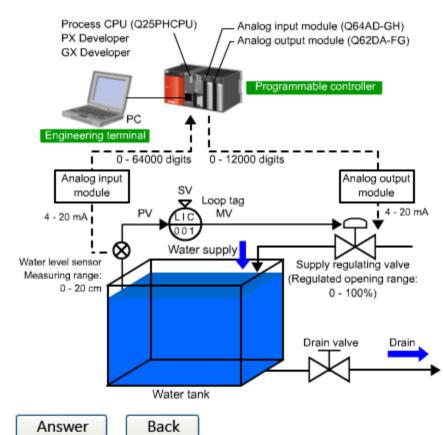

>>

The following figures show connections between the module FBs representing current/voltage input and output modules and the tag FB for PID control. Choose the one that correctly shows the connection.

X

-

I4 ►I TOC



Test Final Test 5

FB property

>>

Set properties for a tag FB (M_2PIDH_) representing the loop tag LIC001 in the figure below. Select the correct value for each of the eight setting items.

FB property setting item	Options
Analog input	
Input signal upper limit	•
Input signal lower limit	•
Analog output	
Output conversion upper limit	•
Output conversion lower limit	•
PV engineering value	
PV engineering value upper limit	
PV engineering value lower limit	•
PID calculation	
SV upper limit	•
SV lower limit	

- - X

DI TOC

Test Test Score

>>

You have completed the Final Test. You results area as follows. To end the Final Test, proceed to the next page.

Correct answers :	0 5	
Total questions :	2	
Percentage :	0%	
Proceed	Review	Retry

You failed the test.

- -

х

 \gg

You have completed the PLC MELSEC Process Control System Basics Course.

Thank you for taking this course.

We hope you enjoyed the lessons and the information you acquired in this course will be useful in the future.

You can review the course as many times as you want.

Close