K 1-Programming_Basics (Structured_Text)_na00189_eng I. = ﬂh_J
4 sy 00s
ELECTRIC
Changes for the Better
g PLC A
Programming Basics
L (Structured Text) y

This course covers how to create basic programs used to
control MELSEC programmable controllers.

Structured text (ST) is used for program descriptions in this
course.

Copyright ©2015 Mitsubishi Electric Corporation. All Rights Reserved.

L{MAJOODTBOENG

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

> Purpose of the course) 00c

This course explains how to create control programs in structured text (ST) for MELSEC programmable controllers.

Completion of the following course or having equivalent knowledge is a prerequisite prior to taking this course:
Programming Basics

Having knowledge or experience with C or BASIC programming language can help understand the contents of
this course.

K 1-Programming_Basics (Structured_Text)_na00189_eng [= | |_i3-]

m Course structure D) 00

The contents of this course are as follows.

Chapter 1 - Overview of structured text

This chapter describes the features and suitable applications of structured text (ST).

Chapter 2 - Basic rules of ST programs

This chapter describes the basic rules used to create programs in ST.
Chapter 3 - Creating 1I/0 control programs

This chapter describes how to create I/O control programs.
Chapter 4 — Arithmetic operations

This chapter describes how to create arithmetic operation programs.
Chapter 5 - Conditional branching

This chapter describes conditional branching.
Chapter 6 - Storage and handling of data

This chapter describes how to write concise programs to store and handle data.
Chapter 7 - Handling of string data
This chapter describes the methods to handle string data.

Final Test

Pass grade: 60% or higher

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l
P
How to use this e-Learning tool) 000

Go to the next page

Back to the previous page

Move to the desired page

Exit the leaming

Go to the next page.

Back to the previous page.

"Table of Contents” will be displayed, enabling you to navigate to
the desired page.

Exit the learning.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lg

Intruductinn Cautions for use) 000

Safety precautions

When you learn based on using actual products, please carefully read the safety precautions in the corresponding manuals.
Precautions in this course

The displayed screens of the MELSOFT engineering software that you use may differ from those in this course.
This course uses the ladder symbols of MELSOFT GX Works3 to create programs.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

@ Overview of structured text

) oo

This chapter describes the features and suitable applications of structured text (ST).

1.1 Control programs

1.2 Features of ST and comparison with other IEC programming languages

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

y <] v Jroc]
Control programs)
The following figure illustrates the configuration of a programmable controller system.
Programmable controllers operate according to control programs.
The operation of programmable controllers can be configured as desired by creating control programs.
Input device Programmable controller Output device
Pushbutton 0 o
switch perance) Lamp
part
0. m B I
= 5
g 3 2
: =INE
3 Dat z
8 — 2
g B
= | Program | [«
Control program (Ladder)
A Pushbutton switch Lamp
/ R0 V0
— — — — --------1 —1 | <
- | Creating and debugging} I
control programs I By writing a control program, the lamp will turn on
I in response to the status of the pushbutton switch.
f— — l
Input module CPU module OQutput module Personal computer
The programming languages for programmable controllers are defined by the international standard developed by the
International Electrotechnical Commission (IEC).

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

-

m Features of ST and comparison with other IEC programming Ianguag@ 0oc

IEC 61131 is an international standard for programmable controller systems.

programming languages.

Ladder Diagram (LD)

Programming languages for programmable controllers are standardized by IEC 61131-3. ST is one of the standard

Each language has different features to accommodate your application and programmers’ skill.

The following table lists features of the IEC 61131-3 programming languages.

Programming language Features

Symbols for contacts and coils are used to create a program resembling an electrical circuit.
Program flow is easy to follow and understand, even for beginners.

Structured Text (ST)

Programs are written in text (characters).

5T is easy to learn for those with experience in writing programs in C or BASIC programming language.
Calculation formulas are similar to mathematical expressions, which are easy to understand.

5T is suitable for data handling.

Function Block Diagram
(FBD)

Programs are written by arranging blocks with different functions and indicating relationships between the
blocks.
FBD Improves readability as the entire operation can be easily seen.

Sequential Function Chart
(SFC)

Conditions and processes are written as flowcharts.
Program flow is easy to understand.

Instruction List (IL)

IL is similar to machine language.
IL is rarely used today.

This course describes how to write basic control programs using ST.

1-Programming_Basics (Structured_Text)_na00189_eng

ey

) oo

The contents of this chapter are:

+ Features of ST

Important points to consider:

Relationship between
programmable controller systems
and control programs

International standard for control
programs

Features of ST

* Relationship between programmable controller systems and control programs

+ International standard for control programs

Programmable controllers operate according to control programs.

The operation of programmable controllers can be configured as desired by creating
control programs.

5T is one of the IEC programming languages.

Other IEC programming languages include LD, FBD, SFC, and IL, each of which has
different features to accommodate your application and programmers' skill.

5T is easy to learn for those with experience writing programs in C or BASIC language.

Calculations such as addition and subtraction can be written as typically used
mathematical expressions, which are easy to understand.

5T is suitable for data handling.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

»@m Basic rules of programs in ST

) oo

This chapter describes the basic rules used to create programs in ST.

2.1 Basic program example (I/O control statement)
2.2 Basic program example (Assignment statement)
2.3 Numerical notation

2.4 Program execution sequence

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil;lg
g . oo
2.1 Basic program example (I/O control statement))

This section illustrates an example of a basic ST program.
With the following example program, the output YO turns on when the input X10 turns on, and Y0 turns off when X10 turns off.

OUT(Y10

Argument Argument | Semicolon

An instruction defines the operation to execute.

Arguments are written in parentheses after an instruction.

Arguments are used to describe variables, arithmetic expressions, and constant values.

With MELSEC programmable controllers, devices of the CPU module can be used as variables.

The number of arguments depends on the instruction.
Multiple arguments are separated with commas (,).

The one line shown above represents one statement. Each statement is ended with a semicolon ().
A program is written by combining statements.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

»m Basic program example (Assignment statement)) e

The next example illustrates a program that uses an assignment statement.
The following statement assigns the decimal constant "5" to the variable "D10".

(* Assigns the constant "5" as the initial value.*)

Right side

Assignment operator

An assignment operator (:=) is used for this assignment statement. Note that a colon () is placed to the left of the equal sign (=).
An assignment operator assigns the right side value to the left side.

Adding a comment to a program makes the operation more understandable. Enclose comments between two asterisks (* *).

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

m Numerical notation D) ooc

With the example program on the previous page, a decimal value was assigned to a variable.

Sometimes values other than decimal such as binary and hexadecimal are used for sequential control.
The following table lists the types of numerical notation used in ST used for MELSEC programmable controllers.

Type of numerical notation Motation method Example
Binary Add a prefix of "2#". 2#11010
Octal Add a prefix of "8#". B#32
Decimal Direct input 26
Add a prefix of "K". K2e
Hexadecimal Add a prefix of "16#". 16#1A
Add a prefix of "H" H1A

Program examples to assign values to variables are shown below.

D10 := 8#32;
D10 := K26;
D10 := H1A;

Ll)
) 000

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

@EFM Eit notation

Bits represent true/false conditions such as on/off states of signals. Bits also represent establishment/non-

establishment of conditions.
In ST, bits cannot be written as "ON" and "OFF". These are expressed as "1" (ON) and "0" (OFF). Bits can also be

expressed as "TRUE" and "FALSE".

The following table lists the different types of notation.

MNumeric notation

True/ffalse notation

Here are some examples of assigning values to bit-type variables.

Mumeric notation True/false notation
X0:=1; = X0 := TRUE;
Numeric notation True/false notation

X0 := FALSE;

X0:=0;

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

o
m Program execution sequence) 000

ST statements are executed in order from top to bottom.

ST program example

Y10 := (X0 OR X1) AND X2; (* Executed first *)
Y11 := X3 AND X4, (* Executed second *) Repetitive
Y12 := X3 AND X5; ¢ Executed third. Does not require an END statement at the end.*) execution

*Though an END statement is necessary at the end of the program in LD, it is unnecessary in ST.

The following ladder program represents the same operation as the ST program example above.

Repetitive
execution

As is the case in LD, instructions in ST are repeatedly executed by returning to the first instruction after
reaching to the last instruction.

1-Programming_Basics (Structured_Text)_na00189_eng

ey

) oo

The contents of this chapter are:

* Basic ST program

+ Assignment statement format
* Numerical notation

* Program execution sequence

« Comment

Important points to consider:

Basic ST program

Assignment statement format

Mumerical notation

Program execution sequence

Comment

A statement is the minimum element of ST programs.
Each statement is ended with a semicolon ().
A program is written by combining statements.

An assignment operator (:=) is used for assignments.

Types of numerical notation in 5T
"1" and "0" are used for bit values in 5T instead of the "ON" and "OFF" notation.
Bit values can be also stated as "TRUE" and "FALSE" in ST.

Programs created in 5T are executed in order from top to bottom.

As with LD programs, ST programs process repetitively returning to the beginning of the
program once the end of the process has been reached.

Adding a comment to a program makes the operation more understandable.
Comments are enclosed between two asterisks (* #).

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

>m Creating 1/0 control programs

) oo

This chapter describes how to create I/O control programs in ST.

3.1 1/O control programs
3.2 Combining multiple conditions

3.3 Defining meaning to variables

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil;lg

> I/0 control programs) 0o

The following is a program example for I/O control of a programmable controller.

Y10|);

Qutput Execution condition QOutput device
instruction (argument) (argument)

"OUT" is the output instruction. An argument specifies an execution condition and the device to which output is directed.
When the execution condition X0 is satisfied, the device Y10 turns on.

Click the input switch shown below. The input switch X0 turns on.

* When the input switch X0 turns on, the output lamp Y10 turns on.
* When the input switch X0 turns off, the output lamp Y10 turns off.

Example of [fO control program written in ST Input switch X0 Output lamp Y10

OUT(X0,Y10); (%)

|
The same program written in LD

/
}_‘Kﬂ %ﬂ—{
|
|

v

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil—lﬂj

> I/0 control programs) oo

Similar to LD, there are many instructions available besides the OUT instruction such as I/O control instructions and
data processing instructions.

Refer to the programming manual of your programmable controller for more information on the instructions
available in ST.

MNote that writing "OUT(X0, Y10);" as "Y10 := X0;" produces the same operation.

Y10 := X0; (* Same operation as "OUT(XO0, Y10);" *)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

)
m Combining multiple conditions) 00c
The following ladder program represents a self-retaining circuit.
RO g Y70
| | -t O
YT
| |

The same program can be written in ST as follows.

Y70 := (X0

Logical operator

As shown above, logical operators are used to combine multiple conditions in ST.

The following table lists the logical operators.

Operator Meaning

OR Logical OR
AND Logical AND
NOT Logical negation
XOR Exclusive OR

K 1-Programming_Basics (Structured_Text)_na00189_eng — % -

>}“ Defining meaning to variables) <] v Jroc]

Using ST with MELSEC programmable controllers, both devices and labels can be assigned as aliases to variables.
Users can use labels according to the applications.

When a label related to the application is assigned, the operation is easier to understand.

Y10 := (X0 OR X1) AND X2; (* Written using device names *)

Lamp := (SwitchO OR Switchl) AND Switch2; (* Written using labels *)

Labels can be named using the MELSOFT engineering software.

Subsequent program examples in this course are described using labels.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

ey

) oo

The contents of this chapter are:

I/O control program examples
* Logical operators are used to combine multiple conditions in ST.

» Device names and labels can be used as variable names.

Important points to consider:

Combining multiple conditions » Logical operators are used to combine conditions in ST.

Defining meaning to variables « When a label related to the application is assigned, the operation is easier to understand.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Arithmetic operations

) oo

This chapter describes how to create arithmetic operation programs.

« Describing arithmetic operations
« Specifying data types corresponding to the numeric ranges
» Naming variables to avoid data type inconsistencies

4.1 Basic arithmetic operations
4.2 Data types of variables
4.3 Variable names that represent data types

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

> Basic arithmetic uperations

This example program totals the production volume of two separate production lines.
The right side of an equation is an arithmetic operation containing variables and arithmetic operators.

Example arithmetic program written in ST

) oo

TotalProduction := LinelProductiDnlil Line2Pr0ductiDn|§Waster;
(* Total the production volume of two production lines, subtract the number of
defective products from the total, and assign the obtained value. *)

The same program written in LD is as shown below.

EI I i + Line1P talPro n
i 4 =2 talPro 'y
{ = talPro
h

As shown above, the program must be written by using 3 lines in Ladder, but with ST, it can be written in 1 line.

The following table lists the basic arithmetic operators.

Operator Meaning

+

Addition

Subtraction

*

Multiplication

/

Division

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

»m Data types of variables

) oo

A data type must be specified for each variable to define the range of the values to be handled.
The data types for numeric values used in ST are bit, integer, and real number types.

Among the data types used in ST, the table below shows the data types used in this course.

Data type Data range

Bit ON/OFF state of bit devices and true/false state of execution results
Integer Word {unsigned) 0 - 65,535

Word (signed) -32.768 - 32767

Double-word {(unsigned) 0 - 4,294 967 295

Double-word (signed) -2,147 483,648 - 2,147 483,647

When using the integer type, select the word or double-word type according to the data range, and select the
signed or unsigned type according to the necessity to handle negative values.
Specify the data type of a variable when the label name is set using the MELSOFT engineering software.

K 1-Programming_Basics (Structured_Text)_na00189_eng

=]

»m Variable names that represent data types

) oo

Using different data types on the left and right sides of an assignment equation may cause a compiling error or unexpected result.
Below is an example of such a case.

ValueA := ValueB;

(* ValueA: Word integer ValueB: Double-word integer *)

A double-word integer cannot be assigned to a word integer. However in this case, the data type is not recognizable.

Prefixes that represent the data type can be added to variable names to make data types to be visually identifiable.
This kind of variable naming is known as Hungarian notation.

Data type Data range Prefix Expansion of prefix
Bit OM/OFF state of bit devices and b Bit
true/false state of execution results
Integer | Word (unsigned) 0 - 65,535 u unsigned word
Word (signed) -32,768 - 32,767 w signed word
Double-word (unsigned) 0-4,294967,295 ud unsigned double-word
Double-word (signed) -2,147 483,648 - 2,147 483,647 d signed double-word

The example program on top of this page can be written as follows using Hungarian notation:

wValueA := dValueB; (* Double-word variable cannot be assigned to a word variable. *)

By using Hungarian notation, data type inconsistencies can be identified in the process of writing a program.

In the rest of the course, variable names in example are written in Hungarian notation.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

€O ey

) oo

The contents of this chapter are:

Important points to consider:

Basic arithmetic operations

Data types of variables

Adding variable names that
represent data types

* Describing arithmetic operations
+ Specifying data types corresponding to the numeric ranges

« Adding variable names that represent data types

Operators common to general programming languages can be used in 5T to express
calculations.

A data type must be specified for each variable to define the range of the values to be handled.

Describing variable names using Hungarian notation enables inconsistencies in variable data
types to be identified when writing programs.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

>m Conditional branching) 000

Control programs also contain sections of code in which actual processing changes in accordance with specified conditions.
This chapter describes conditional branching.

5.1 Conditional branching (IF)

5.2 Conditional branching according to integer values (CASE)

K 1-Programming_Basics (Structured_Text)_na00189_eng — % -

> Conditional branching (IF)) ooc

IF statements are used for conditional branching. IF statements are described as follows.

IF conditional expression THEN

Execution statement; (* Statement is executed if conditional expression is satisfied. *)
END_IF; (* END_IF; must be placed at the end of the IF statements. *)

In this example program, a statement is executed when the conditional expression is satisfied. The statement is not
executed when the conditional expression is not satisfied.

The following figure illustrates the operation

flow in this example program.
Start of IF
statement
The following example illustrates branching of the program by comparing values of variables.
In the example program, the heater turns on when the temperature in the control panel falls

Conditional Not satisfied below 0 degrees.
expression

Satisfied IF wTemperature < 0 THEN
e bHeater := 1; (* The heater is turned on when the temperature in the control panel falls below 0 degrees. *)
END_IF;
Execution
statement

End of IF
statement

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil;lg
by
Writing conditional expressions) oo

The previous page described a conditional expression of "wTemperature < 0", which means "when the value of variable
wTemperature is less than 0".

Like this expression, conditional expressions use comparison operators to represent relationship between variables and
values to compare.

Conditional expressions Value to compare

On the left and right sides of an comparison operator, values are written as variables or constants for comparison.

In addition to comparing variables and constants, conditional expressions can be written to compare variables, and
perform logical operations of comparison results or bit-type variables.

Comparing variables The following table lists the types of comparison operators.
¢ uveluel <= ualuez
Logical operation for two comparison results > Greater than
* (10 < uValue) AND (uValue <= 50) < Less than
Logical operation for two bit-type variables > = Greater than or equal to
« bSwitch0 OR bSwitchl <= Less than or equal to
= Equals

<> Does not equal

K 1-Programming_Basics (Structured_Text)_na00189_eng lil_lﬂ_hJ
Exceptional branching for IF statement (ELSE)) 0oc

Simple IF statements (see 5.1) are used to execute a statement when the conditional expression is satisfied.
To execute a different statement when the conditional expression is not satisfied, an ELSE statement is used.

IF conditional expression THEN

Execution statement 1; (* Statement 1 is executed if conditional expression is satisfied. *)

ELSE

Execution statement 2; (* Statement 2 is executed if conditional expression is not satisfied *)
END_IF;

The following figure illustrates the operation
flow when using an ELSE statement.

The following example program executes different statements depending on

whether the condition is satisfied.
statement

The example program in 5.1 had a drawback that the heater keeps raising the

- temperature even after it reaches 0 degrees. However, the following program
Mot satisfied " n
Conditional turns off the heater when "wTemperature" exceeds 0 degrees.
expression

Satisfied IF wTemperature < 0 THEN
Y bHeater := 1: (* Turns on the heater when the temperature falls below 0 degrees. *)
ELSE
Statement 1 Statement 2 bHeater := 0; (* Turns off the heater when the temperature reaches or exceeds 0 degrees *)
END_IF;
< |

End of IF
statement

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

-

> Additional branching for IF statement (ELSIF)

) oo

ELSE statements are used to execute a different statement when the conditional expression is not satisfied.
Another conditional branching can be added by using ELSIF statements, which mean that if the previous conditional expression

is not satisfied, then another conditional expression is checked.

IF Conditional expression 1 THEN

Execution statement 1; (* Statement 1 is executed if conditional expression 1 is satisfied. *)
ELSIF Conditional expression 2 THEN
Execution statement 2; i* Statement 2 is executed if conditional expression 1 is not satisfied and conditional expression 2 is satisfied. *)
ELSE
Execution statement 3; (* Statement 3 is executed if conditional expressions 1 and 2 are not satisfied. *)
END_IF;

The following figure illustrates the operation flow
when using an ELSEIF statement.

Start of IF
statement
Conditional
expression 1

Satisfied

Conditional
expression 2

Satisfied

Mot satisfied

Mot satisfied

ELSIF statement is added to the program example illustrated in 5.1.2 to
cope with the case when the temperature exceeds 40 degrees.

Conditional

Statement 1 Statement 2 .
expression 3

End of IF
statement

IF wTemperature < 0 THEN

bHeater := 1; (* Turns on the heater when the temperature falls below 0 degrees. *)
bCooler:= 0; (* Turns off the cooler when the temperature falls below 0 degrees. *)

ELSIF 40 < wTemperature THEN

bHeater := 0; (* Turns off the heater if the temperature exceeds 40 degrees. *)
bCooler := 1; (* Turns on the cooler if the temperature exceeds 40 degrees. *)

ELSE

bHeater := 0; (* Turns off the heater if none of the previous conditions are satisfied. *)
bCooler := 0; (* Turns off the cooler if none of the previous conditions are satisfied. *)

END_IF;

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil—lﬂj

m Conditional branching according to integer values (CASE)) 0oo

IF statements are used for branching depending on whether or not conditional expressions are satisfied.
CASE statements are used for branching according to integer values.
The following figure illustrates how a CASE statement is written.

CASE Variable OF
Inteaer value 1: Execution statement 1: * Statement 1 is executed when the variable matches integer value 1. *

er value 2: Execution statement 2: * Statement 2 is executed when the variable matches integer value 2. *

Integer value 3: Execution statement 3; (* Statement 3 is executed when the variable matches integer value 3. *)

ELSE Execution statement 4; (* Statement 4 is executed if the variable does not match any of the integer values. *)
END_CASE; (* "END_CASE;" must be placed at the end of the CASE statement. *)

The following figure illustrates the operation flow when using a CASE statement.

Start of CASE
statement

Variable
Integer value 1 Integer value 2 Integer value 3
Statement 1 Statement 2 Statement 3 Statement 4

End of CASE
statement

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

>m Example program for CASE statement

) oo

The CASE statement execution is described using the example program operation.

Click E to proceed to the next page.
To watch the animation again, dick the "Play” button.

Play J

CASE wWeight OF
0..20: uSize ;= 1;
21..30: uSize := 2;

31..40: uSize := 3;
ELSE uSize ;= 4;
END_CASE;

Weight uSize
0to 20 kg 1 M
21to 30 kg 2 L
31t0 40 kg 3 XL
41 kg and over 4 Oversize

1-Programming_Basics_(Structured_Text)_nal0189_eng

(5s

) oo

The contents of this chapter are:

+ Conditional branching with IF statements

+ Writing conditional expressions

« Conditional branching according to integer values (CASE statement)

Important points to consider:

IF statement

Conditional expression

CASE statement

With an IF statement, the program is branched when a conditional expression is satisfied.
An ELSE statement is used for branching when the conditional expression is not satisfied.

An ELSIF statement is used to add another branching when the conditional expression in
the IF statement is not satisfied.

Conditional expressions represent relationship between variables and values to compare
using comparison operators.

CASE statements are used for branching according to integer values.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

> Storage and handling of data

) oo

As well as for I/O control applications, nowadays programmable controllers are used to process large amounts of
data as the core of productions systems.

To process large amounts of data, data must be stored and then read as necessary.

This chapter describes how to write concise programs to store and process data.

« Arrays are used to sequence and organize variables.
» Data structures are used to organize related variables.
* Loop-processing programs effectively process arrays using FOR statements.

Concise programs to store and handle data can be created by using arrays, data structures, and FOR statements.
6.1 Sequencing and storing data (Array)

6.2 Looping (FOR)
6.3 Storing related data (Structures)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Ll)

> Sequencing and storing data (Array)

) oo

By using arrays, multiple values can be handled by one variable.

In the following example, the production volume data in an automotive manufacturing plant is stored by destination country.

Destination

Production volume

created for each destination.

Mot using array

Using array

uProductionA
uproductiDnB — UF’I’DdLICl‘IDh

uProductionC

uProductionl [0]

J

Destination =

(row)
Element number

In the following program example, the variable of the planned production
volume for Country A is assigned.

uShowProductionPlan := uProduction[0];
(* Specifies the element number for country A. *)

The production volume data by destination country is assigned to a variable. Without using arrays, one variable must be

By using arrays, however, the production volume for multiple destinations can be assigned to and stored in one variable.

Individual variables in the array are specified using element numbers. Element numbers start from zero [0].

Country A
Country B

Country C

o1 35
A 75
2l 65

Cou ntry A

[=]] aNNed neeet

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

@R Vatrix array

Next, paint color data is used in addition to the destination data.

Destination

Paint color

Production
volume

As illustrated in the following table, data can be separated and stored by paint color (column) for each destination country (row).

Destination d
(row)

Country B

Country C

10 5 20

35 in total

75 in total

Paint color (column)

Arrays that organize data into rows and celumns in this way
are known as matrix arrays.
Element numbers that represent the rows and columns are
separated by commas.

65 in total

uProduction E!ﬂﬂ

|
I
Red Yellow Blue
[0,0] [0,1] [0,2]
Country A 10 20
Element number representing

[2,0] 25, [2,1] 30 [2,2] 10
Element number
representing the paint color

Array variable (matrix array)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

> Matrix array assignment) e

Using matrix arrays, the following example program assigns the number of cars to be urgently manufactured in addition to
the planned production volume of yellow automobiles for Country B.

uAdditionalProduction := 5;
uProduction[1,1] := uProduction[1,1] + uAdditionalProduction;
(* Adds the additional amount of production (5 units) to the initially planned production volume. *)

Additional
5 cars

Destination

Paint color

Production

volume

75 in total 65 in total

35 in total

Paint color (column)
L

Destination =
(row)

Country A
Country B

Country C

Red Yellow Blue
0,0 0,1 0,2
[0,0] 10 [0,1] [0.2]
[1,0] 15 [1,1] 40 -> 45 [1,2] 20
[2,0] 25 [2,1] 30 [2,2] 10

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lg
(' 613 —— . - . 000
6.1. Processing information stored in matrix arrays

Using matrix arrays, the following example program calculates the total production volume planned for all paint
colors for Country C and assigns the value to a variable.

the value to "uProductionToday". *)

uProductionToday := uProduction[2,0] + uProduction[2,1] +uProduction[2,2];
(* Calculates the total production volume planned for today for all paint colors for Country C and assigns

Destination

Paint color

Production

volume 35 in total

o e
10 5 20

80 in total

Paint color (column)
|

Red Yellow Blue
C try A [0,0] [0,1] [0,2]
ountry 10 s %
: . — 1.0 1 1,2
Destination Country B | [L0] 15 [1,1] 45 [1,2]
(row)
v 2
Country C | [2.0] 25 [2,1] 30 [2,2] 10

65 in total

Country C: Togay«

Planned Production

K 1-Programming_Basics (Structured_Text)_na00189_eng l = &

@ ooping OB) ews

The example program on the previous page (the planned production volume for today is assigned) is shown below again.

uProductionToday := uProduction[2,0] + uProduction[2,1] + uProduction[2,2];

With this program example, when the number of paint colors increases, more variables will be added. Then, the
expression becomes longer, making it more difficult to read.

uProductionToday := uProduction[2,0] + uProduction[2,1] + uProduction[2,2]
+ uProduction[2,3] + uProduction[2,4] + uProduction[2,5] ...

In this case, loop statements can be used to create cleaner code.
Loop statements include the FOR, WHILE, and REPEAT statements. This course covers FOR statements.

FOR statements are described as follows.

FOR variable := initial value TO final value BY increments DO
Execution statement; (* Statement is executed in a loop until the variable reaches the final value. *)
END_FOR; (* END_FOR; must be placed at the end of the FOR statements. *)

The statement is repeated until the final value of the variable is reached and the "END_FOR;" code is executed.

{ mm) (R et

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

@ ooping OB) ©os

Using a FOR statement, the following example program obtains the planned production volume for all paint colors for Country C.

Integer type VELELS Variable Variable value

variable initial value final value of increase

(* Initializes the variable. *)

uProductionToday := uProductionToday + uProduction[2,wColor]; (* Adds the planned production volume. *)

END_FOR;

Using the FOR statement, the "wColor" variable increases by one starting from the initial value of zero and the statement is
repeated until the variable reaches the final value of two.

The "wColor" variable is specified as the second element number in the "uProduction” array described in the execution statement.
The value of the "wColor" variable increases each time the statement is repeated. The planned production volume for each paint
color is added each time to obtain the total.

This example program is executed in a loop three times. (First time: red [0] => Second time: yellow [1] => Third time: blue [2])

The operation of this program is illustrated on the next page.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

@ ooping OB

The execution of the FOR statement is described using the operation of the program example.

Country A
Country B

Country C

) oo

Array of estimated production volume

Red Yellow Blue
00 4, 01 021 o4
ol 15 A 45 (121 20
(201 25 (211 30 (221 10

Click E.i to proceed to the next page.
To watch the animation again, dick the "Play” button.

Play

uProductionToday := 0;

FOR wColor:=0TO 2 BY 1 DO

2

uProductionToday :=

END_FOR;

uProd uc&ionTDday + uProduction[2,wColor];

Number of repetition of the loop: 3

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lg

>}m Storing related data (Structure)) 000

A structure enables one variable name to represent multiple related variables.
In the following example, the status of an automobile production line is displayed on Andon (display board).

The following table lists the variable names, values, and the data types corresponding to
the displayed items.

Item Variable name Value Variable Data Type
Model sModel 'ST TRUCK' Text string
Status bStatus 'in production' | Bit type
Target production uPlanQty 100" Integer type Word
volume for today {(unsigned)
Current production uActualQty ‘88 Integer type Word
volume (unsigned)

If a structure is not used, the variable names must be changed for each line when multiple
production lines exist.
The following shows examples of variable names by the production line.

First production line Second production line

slstLineModel sZ2ndLineModel

blstLineStatus b2ndLineStatus © 0 0
ulstLinePlanQty uZndLinePlanQty

ulstLineActualQty uZndLineActualQty

When the number of production line increases, the number of variables to be handled will also increase. Then, the program
becomes longer and more difficult to read.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

>m Storing related data (Structure)) oo

Using structures enables one variable name to represent multiple variables related to one production line.
Like this, structures are used to organize, store, and handle data in a batch for conditions and specifications of physical
objects such as devices, equipment and workpieces.

Structure

Multiple variables

) Variable name
slstLineModel Multiple variables
blstlLineStatus defined in a structure sModel
ulstlLinePlanQty bStatus
ulstlLineActualQty uPlanQty

uActualQty

The structure variable contains a prefix of "st" to represent that this is a structure.
The individual variables defined by the structure are known as members. Data types of each member can be different.

Each member of structure arrays can be specified after the element number of the array using a dot before the member name.

name

stlstLing|juPlanQty

In the following example program, a constant is assigned to a member of the structure variable for the first production line.

stlstLine.uPlanQty := 150;
(* Sets the today's target production of the first production line to 150. *)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l
r : 00
m Storing structure arrays)
Structures can be created as arrays.
In the following example, the production status is stored by date.
Structure a‘rranged* by date * In this array, the element number starts from "1".
(stProductionByDate) Day (column)
|
I 1
Day 1 Day 21
2 1,21
January 1141 e [: Structure to which the production Structure that stores the status
[2.1] status on July 21 is assigned of the first production line
Month |) stProductionByDate([7,21]
(row)
sModel sModel
uly | [71] [7.21] bStatus Assignment | lSNEIIE
uPlanQty uPlanQty

uActualQty

uActualQty

stProductionByDate[7,21] := stlstLine;
(* The production status on July 21 is stored in the structure arranged by
date (stProductionByDate). *)

Like this, members do not need to be individually specified for structure assignment.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Ll)

»m Reading structure arrays

) oo

In the following example, the production volume is read from a structure arranged by date and then assigned to a variable.

Structure arranged by date

(stProductionByDate) Day (column)
|

[
— Day 1

January | [1,1] [1,2]

Structure to which the production
status on June 1 is stored

[2.1]
Month
(row)]

|
June [6,1] ——

sModel
bStatus
uPlanQt

Variable to which the
production volume is assigned

uPastProduction

uPastProduction := stProductionByDate[6,1].uActualQty;
(* Assigns the production volume on June 1 to the uPastProduction variable. *)

Each member of the structure arrays can be specified by appending a dot () and a member name to the element

number of the array.

1-Programming_Basics (Structured_Text)_na00189_eng =l

O ey) ©os

The contents of this chapter are:

* QOverview and usage of arrays
+ Loop processing using FOR statements

« Qverview and use of structures

Important points to consider:

Array + Multiple values can be handled by one variable by using arrays.
+ Individual variables in arrays are specified by element numbers added to the end of variable
names.
FOR statement * Loop statements are used in programs when repetitive operation is desired.

+ FOR statements are used to repeat operation until the conditions for the end of the loop
operation are satisfied. The statement before the "END_FOR;" statement are executed
repeatedly.

+ Structures enable one variable name to represent multiple related variables. Structures can
include variables of different data types.

* Individual variables, or members, defined in structures are specified by adding a dot and the
member name after the structure variable name.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

> Handling of string data) n%:ﬂ

In some cases, programmable controllers use string data to send commands to or receive feedback from
connected devices such as barcode readers, temperature controllers, or electronic scales. For such purposes, it
is necessary to join or extract string data as required.

This chapter describes how to handle string data.

7.1 Example of string data handling
7.2 String assignment

7.3 Extracting strings (LEFT)

7.4 Extracting strings (MID)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

-

> Example of string data handling

) oo

As an example of string processing, the example illustrates a scenario in which data is read from a barcode reader.

Functions (a type of instructions) are used to process strings.

As illustrated below, strings read by the barcode reader contain a 4-character fixed-length error code and 8-character

fixed-length month, date, time and minute data.
The string processing program example will be described using this system.

Example string data read from a barcode reader

e112,(12091458

Programmable
controller _—

8-character error
generation date

4-character
error code

)

Barcode

M n_za_d er

String processing
functions

ell?2

An error code is extracted.
7.3 Extracting strings (LEFT)

12091458

The error occurrence date and time (14:58, December 9) is extracted.
7.4 Extracting strings (MID)

1

Barcode

l 04

54002574872

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

> String assignment

Before explaining about how to extract strings, this section describes the data types for strings.

The data types for strings that can be used with programmable controllers are listed in the following table.

Data type

String

Character type can be processed

Strings of alphanumeric characters and
numbers {(ASCID) or Japanese (Shift-JIS)

Hungarian notation prefixes

Expansion of prefix

string

String [Unicode]

Strings of many different languages and
symbols

W5

wide string

The type of string to be used depends on the device being connected to the programmable controller or the
corresponding language.
This chapter describes different types of text strings.

When a string type string is assigned to a string variable, enclose the string in single-quotation marks (').

sDefault ;= '€112,12091458"; (* String assignment *)

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

@ZE Extracting strings (LEFT)) 008

The error code "ell2" is extracted from the string variable "sBarcodeData" that contains the string "e112,12091458".

Variable name Stored string

sBarcodeData -ellZ 12091458

The LEFT function extracts only the specified number of characters starting from the left side of the input string.
The following illustrates an example program.

m m Number of extracted characters
L W

sErrorCode|:=|[LEFT dsBarcodeData EILI)
(* Extracts 4 characters of error code from the left *)

Four characters are extracted from the left. A value "e112", which is the string representing the error code, is assigned
to the left side.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

@3 Extracting strings (MID)) D08

The error generation time "12091458" is extracted from the string variable "sBarcodeData" that contains the string
"el12,12091458".

Variable name Stored string

sBarcodeData e112,,1209 1458

The MID function extracts the specified number of characters from the specified start position in the input string.
The following illustrates an example program.

m m Number of extracted characters Position of first character to be extracted

v
skrrorDate|:= MID (sBarcodeData ya 8);

(* Extracts 8 characters starting from the sixth character
from the left. *)

In this example, an 8-character string is extracted starting from the sixth character. A value "12091458", which is the string
representing the error occurrence time, is assigned to the left side.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng
P

7.5 Summary

) oo

The contents of this chapter are:

+ Methods of assigning strings to string variables
+ Functions that extract strings (LEFT and MID)

Important points to consider:

String assignment « To assign a string to a string variable, enclose the string in single-quotation marks ().

Use either of the string type or the string [Unicode] type according to the device being
connected to the programmable controller or the corresponding language.

ST G ER T ETG LGRS« Functions are used to handle strings.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

b

7.6 Course summary) 000

This course covered the basics on how to create programs in ST.
This brings us to the end of this e-learning course.

ST programs are created using the MELSOFT engineering software.

For the details of the specific steps such as entering data, editing, saving, and compiling programs with the MELSOFT
engineering software, refer to the following.

» Mitsubishi FA e-Learning Course "MELSOFT GX Works3 (Structured Text)" (to be released soon)
* Operating manual of your MELSOFT engineering software

For further information on ST, refer to the following.

* Programming guidebook of your programmable controller

For the information on instructions and functions for your application, refer to the following.

* Programming manual of your programmable controller

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lg

> Final Test) 000

Now that you have completed all of the lessons of the Programming Basics (Structured Text) course, you are ready to
take the final test. If you are unclear on any of the topics covered, please take this opportunity to review those topics.
There are a total of 12 questions (20 items) in this Final Test.

You can take the final test as many times as you like.

How to score the test
After selecting the answer, make sure to click the Answer button. Your answer will be lost if you proceed without
clicking the Answer button. (Regarded as unanswered question.)

Score results
The number of correct answers, the number of questions, the percentage of correct answers, and the pass/fail
result will appear on the score page.

Correct Answers : 2
Total Questions - 9 To pass the test, you have to
answer 60% of the questions
correct.
Percentage : 22%
Proceed Review Retry

» Click the Proceed button to exit the test.
» Click the Review button to review the test. (Correct answer check)
« Click the Retry button to retake the test again.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 1

) oo

Characteristics of structured text (ST)
Select the incorrect description of ST.

5T is easy to learn for those with experience writing programs in C or BASIC language.
Calculations such as addition and subtraction can be written as typically used mathematical expressions.
» Symbols for contacts and coils are used to create a program resembling an electrical circuit.

~ 5T is suitable for data handling.

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 2

) oo

Basic principles of ST
Select the correct statement written in ST.

~ uProduction = 15
~ uProduction := 15:
#» uProduction := 15;

~ uProduction = 15;

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 3

) oo

Describing comments
Select the correct comment written in ST.

~ " Assigns a value of 1 to the varniable.

(=

(* Assigns a value of 1 to the vanable. ¥)
~ { Assigns a value of 1 to the variable. }

~ =l Assigns a value of 1 to the variable. —->

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 4

) oo

ST program execution sequence

*The initial value of "uTotalProduction” is "100". The value of the variable "uTotalProduction” will be
“101" after the following example program is processed. Select the correct "uTotalProduction” status
after a few seconds elapse.

uTotalProduction := uTotalProduction + 1;

~ The value remains at 101.

The value keeps changing.

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lﬂ

> Final Test 5) 00c

Combining multiple conditions
Select the correct ST program example that represents the same operation as the following program example in LD.

bF lag0 EFlag2 bResultl
o | | i
bFlag1 bFlaz3 bResultl
Eryim I o

bResultO := (bResultO OR bFlagl) AND bFlag2;
bResultl := bResultO AND bFlag3;

bResult0 := (bFlag0 OR bFlag2) AND bFlagi,
bResultl := bResultO AND bFlag3;

Answer Back

K 1-Programming_Basics (Structured_Text)_na00189_eng [= | |_-?3-]

> Final Test 6) 0o

Description of IF statements in ST

The following operation is executed by the example program below.

*If the temperature drops to 5 degrees or less, the heater turns on and the cooler turns off.

*If the temperature exceeds 50 degrees, the heater turns off and the cooler turns on.

*If the temperature does not apply to the above statements, both the heater and cooler are turned off.

*Variable names: Temperature (wTemperature), heater (bHeater), and cooler (bCooler)
Select the correct choice for each blank section of the example program.

IFwTemperature Q1 <=)

bHeater :=
bCooler := Q2 -THEN)

| Q3 BN WTCmPCf’atUFC Q3 [ELSIF -
bHeater 0; | |
bCooler := 1; Q4 < v
Q5
bHeater := 0; Q> ELSE
pCooler := (Q;
END _IF;

-

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng lil_lg

> Final Test 7) 00c

CASE statements
Select the correct one for each (Q1 to Q5) of the following description of CASE statements.

CASE statements are used for branching according to the value of (Q1).
In the following example program, when the value of (Q2) is 25, the variable (Q3) is assigned a value of (Q4).
When the value of variable (Q2) is not equal to 10, 25, or 8, the variable (Q3) is assigned a value of (Q5).
1
CASE wCode OF Q1 |Integers d
10: ulane:=1; Q2 wCode)
25: uLane := 2; | |
8: uLane := 3; Q3 ulane v
ELSE wulane := 4;
END_CASE: Q4 2 v
Q5 4 v

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Ll)

Final Test 8

) oo

ST arrays and repetitive statements

The following example program totals the planned production volume of all models destined for Country Y and
then assigns this value to a variable. Select the section of the array that is read after the FOR statement is executed

in a loop 3 times.

uProductionToday := 0;
FOR wCarModel := 0 TO 3 BY 1 DO

END_FOR;

uProductionToday := uProductionToday + uProduction[1,wCarModel];

Array used to store the estimated number of units produced
per model and destination (uProduction)

Model (column)

Country X [0.0]

Destination | Country Y [1.0]
{row)

Model 1 Model 2 Model 3 Model 4
[0,1] [0,2] C [0,3]
[1.1] A [1.2] D [1.3] E
[2,0] [2.1] [2.2] [2.3]

Country Z

B

Answer Back

O N W >

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Ll)

Final Test 9

) oo

ST arrays and repetitive statements

4 weeks is obtained from the array that stores the production volume per day. Select the correct figure for the
example program.

The following example program obtains the total production volume on the same days of the week. The total over

uTotalProduction := O;
FOR wOnceAWeek :=1TO B BY 7 DO
uTotalProduction := uTotalProduction + uProductionByDate[2,wOnceAWeek];

END_FOR;

(* Extracts and totals the production volume on the same days of the week over 4 weeks starting from February 1. *)

Array that stores the production volume per day (uProductionByDate)

Day (column) -

Production volume on Production volume on I B
February 1 (Week 1) February 8 (Week 2) et

Day 2 Day3 Day4 Day5 Day6 Day/ Day8 -

Jan.[[11] fln21 |[1L3] |[[L4] [[(L5] |[L6] |[[L7) |[[L8] /..
Month | ¢ [21) (1220 1231 124 [1251 |26 [[271 [[28)/ |.. o
eb.
(row) 5 8

Answer Back

22
21

28

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 10

) oo

Characteristics of structures in ST
Select an incorrect description of structures.

— Structures are used to organize and store data on devices by conditions such as status and specifications.
~ Programs that process large amounts of data can be concisely written using structures.
All members defined in the structure must have the same data type.

~ Values can be assigned to the members in the same structure without being individually specified.

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Final Test 11

Specifying members for structures in ST
The following structure organizes variables related to an automobile production line.
Select the correct description for specifying the member "bStatus” in this structure.

Structure

Parameter Variable name

Variable name

Mode shModel

Status bStatus

Members

Target production for
the current day uPlanQty

Current production

number uActualQty

» st3rdlLine.b5tatus

. st3rdLine-=b5tatus
~ st3rdLine[bStatus)
~ st3rdLine[1]

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng =l

Final Test 12) o0

Handling strings in ST

The following example program extracts a specific string from the string "e3211151602" stored in the variable
“sBarcodeData". The MID function extracts the specified number of characters starting at the specified start position.
Select the string extracted correctly.

Number of characters j§ Start position to
to extract extract a string

sData := MID(sBarcodeData 4],
(* Extracts the text string from "e3211151602". *)

- 1151
~ 1602

- e321
s 1115

Answer Back

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

Test Score

) oo

You have completed the Final Test. You results area as follows.
To end the Final Test, proceed to the next page.

Correct answers : 12

Total questions : 12

Percentage : 100%%
Proceed Review

Congratulations. You passed the test.

ki 1-Programming_Basics_(Structured_Text)_na00189_eng

b

You have completed the Programming Basics (Structured Text) course,

Thank you for taking this course.

We hope you enjoyed the lessons and the information you acquired in
this course will be useful in the future.

You can review the course as many times as you want.

Review Close

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	スライド番号 57
	スライド番号 58
	スライド番号 59
	スライド番号 60
	スライド番号 61
	スライド番号 62
	スライド番号 63
	スライド番号 64
	スライド番号 65
	スライド番号 66
	スライド番号 67
	スライド番号 68
	スライド番号 69
	スライド番号 70

