# Table of contents

## CHAPTER 1 INTRODUCTION
- 1.1 Features of Mini DIPIPM Ver.7 ................................................................. 2
- 1.2 Functions .................................................................................................. 2
- 1.3 Target Applications .................................................................................. 3
- 1.4 Product Line-up ...................................................................................... 3
- 1.5 The Differences between Previous Series and This Series ........... 4

## CHAPTER 2 SPECIFICATIONS AND CHARACTERISTICS ............... 6
- 2.1 Mini DIPIPM Ver.7 Specifications .......................................................... 6
  - 2.1.1 Maximum Ratings ................................................................. 6
  - 2.1.2 Thermal Resistance ............................................................... 8
  - 2.1.3 Electric Characteristics and Recommended Conditions ........ 9
  - 2.1.4 Mechanical Characteristics and Ratings .............................. 11
- 2.2 Protective Functions and Operating Sequence .................................. 12
  - 2.2.1 Short Circuit Protection ....................................................... 12
  - 2.2.2 Control Supply UV Protection ............................................ 14
  - 2.2.3 Temperature output function V<->r ..................................... 16
- 2.3 Package Outlines .................................................................................. 21
  - 2.3.1 Package outlines ................................................................. 21
  - 2.3.2 Marking .................................................................................. 22
  - 2.3.3 Terminal Description ............................................................ 23
- 2.4 Mounting Method .................................................................................. 25
  - 2.4.1 Electric Spacing ................................................................. 25
  - 2.4.2 Mounting Method and Precautions ................................. 25
  - 2.4.3 Soldering Conditions ............................................................ 27

## CHAPTER 3 SYSTEM APPLICATION GUIDANCE ................................ 28
- 3.1 Application Guidance ........................................................................ 28
  - 3.1.1 System connection ................................................................. 28
  - 3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor) ................................................................. 29
  - 3.1.3 Interface Circuit (Example of Opto-coupler Isolated Interface) .... 30
  - 3.1.4 External SC Protection Circuit with Using Three Shunt Resistors 31
  - 3.1.5 Circuits of Signal Input Terminals and Fo Terminal .......... 31
  - 3.1.6 Snubber Circuit ........................................................................ 33
  - 3.1.7 Recommended Wiring Method around Shunt Resistor .......... 33
  - 3.1.8 Precaution for Wiring on PCB ................................................ 35
  - 3.1.9 Parallel operation of DIPIPM ............................................... 36
  - 3.1.10 SOA of Mini DIPIPM .......................................................... 36
  - 3.1.11 SSOC .................................................. 37
  - 3.1.12 Power Life Cycles .............................................................. 38
- 3.2 Power Loss and Thermal Dissipation Calculation ......................... 39
  - 3.2.1 Power Loss Calculation ........................................................... 39
  - 3.2.2 Temperature Rise Considerations and Calculation Example 41
  - 3.2.3 Installation of thermocouple ............................................... 42
- 3.3 Noise and ESD Withstand Capability ............................................... 43
  - 3.3.1 Evaluation Circuit of Noise Withstand Capability .......... 43
  - 3.3.2 Countermeasures and Precautions ................................... 43
  - 3.3.3 Static Electricity Withstand Capability ............................. 44

## CHAPTER 4 Bootstrap Circuit Operation ............................................ 45
- 4.1 Bootstrap Circuit Operation ................................................................. 45
- 4.2 Bootstrap Supply Circuit Current at Switching State ..................... 46
- 4.3 Note for designing the bootstrap circuit ........................................... 47
- 4.4 Initial charging in bootstrap circuit .................................................... 48

## CHAPTER 5 Interface Demo Board .................................................... 49
- 5.1 Super mini DIPIPM Ver.7 Interface Demo Board ......................... 49
- 5.2 Circuit Schematic, Parts List and Board pattern ......................... 51

## CHAPTER 6 PACKAGE HANDLING ................................................... 53
- 6.1 Packaging Specification ................................................................. 53
- 6.2 Handling Precautions ................................................................. 54
CHAPTER 1 INTRODUCTION

1.1 Features of Mini DIPIPM Ver.7

Mini DIPIPM Ver.7 is an ultra-small compact intelligent power module with transfer mold package favorable for larger mass production. Power chips, drive and protection circuits are integrated in the module, which make it easy for AC100-240V class low power motor inverter control. This series is developed as a succession model of current Mini DIPIPM with BSD series (20,30,50A/600V) with 2500Vrms isolation voltage. Newly developed chips enables to reduce the noise level with same switching loss. Main features of this series are as below.

- Newly developed 7th generation CSTBT reduces noise level with a little lower switching loss as conventional Mini DIPIPM
- Operating junction temperature is expanded to 150°C and maximum junction temperature is expanded to 175°C. It can boost up instantaneous over current capability at overload operation.
- Incorporating bootstrap diode(BSD) with current limiting resistor for P-side gate driving supply
- Same package with current Mini DIPIPM with BSD series (PSSxxS71F6)
- Enlarge minimum insulation distance between the terminals by small terminal shape changes

About detailed differences, please refer Section 1.5.

Fig.1-1-1 and Fig.1-1-2 show the outline and internal cross-section structure respectively.

1.2 Functions

Mini DIPIPM Ver.7 has following functions. Its inner block diagram is described in Fig.1-2-1.

- For P-side IGBTs:
  - Drive circuit; high voltage level shift circuit;
  - Control supply under voltage (UV) lockout circuit (without fault signal output).
  - Built-in bootstrap diode (BSD) with current limiting resistor
- For N-side IGBTs:
  -Drive circuit;
  -Short circuit (SC) protection circuit (by inserting external shunt resistor into main current path)
  -Control supply under voltage (UV) lockout circuit (with fault signal output)
  -Outputting LVIC temperature by analog signal (No self over temperature protection)
- Fault Signal Output
  -Corresponding to N-side IGBT SC and N-side UV protection.
- IGBT Drive Supply
  -Single DC15V power supply (in the case of using bootstrap method)
- Control Input Interface
  -Schmitt-triggered 3V, 5V input compatible, high active logic.
- UL recognized : UL1557 File E323585
1.3 Target Applications
Motor drives for low power industrial equipment and household equipment such as air conditioners, hot water system and so on. (Except for vehicle application)

1.4 Product Line-up
Table 1-4-1 Mini DIPIPM Ver.7 Line-up
(Same package as Mini DIPIPM Ver.4 package and Mini DIPIPM with BSD)

<table>
<thead>
<tr>
<th>Type Name</th>
<th>IGBT Rating</th>
<th>Motor Rating 1)</th>
<th>Isolation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS20S73F6</td>
<td>20A/600V</td>
<td>1.5kW</td>
<td>$V_{iso} = 2500$Vrms</td>
</tr>
<tr>
<td>PSS30S73F6</td>
<td>30A/600V</td>
<td>2.2kW</td>
<td>(Sine 60Hz, 1min)</td>
</tr>
<tr>
<td>PSS50S73F6</td>
<td>50A/600V</td>
<td>3.7kW</td>
<td>All shorted pins-heat sink</td>
</tr>
</tbody>
</table>

1) The motor ratings are calculation results. It will depend on the operation conditions.
(Conditions: $V_{AC}=220$V, $V_0=V_{dc}=15$V, $Tc=100$°C, $Tj=125$°C, $f=5$kHz, P.F=0.8, motor efficiency=0.85, current ripple ratio=1.05, motor over load 150%/1min.)
1.5 The Differences between Previous Series and This Series

Mini DIPIPM Ver.7 series has some differences against current series (PS2176x, PSSxxS71F6). Main differences are described in the following tables.

For more detail and the other characteristics, please refer the datasheet or application note for each product.

Table 1-5-1 Differences of maximum Ratings

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>PS2176x</th>
<th>PSSxxS71F6</th>
<th>PSSxxS73F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction temperature</td>
<td>$T_j$</td>
<td>-20~+150°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Junction operating temperature</td>
<td>$T_{jop}$</td>
<td>-</td>
<td>-</td>
<td>-30~+150°C</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{jmax}$</td>
<td>-</td>
<td>-</td>
<td>Max. 175°C</td>
</tr>
<tr>
<td>Module case operation temperature</td>
<td>$T_c$</td>
<td>-20~+100°C</td>
<td>-</td>
<td>-30~+125°C</td>
</tr>
</tbody>
</table>

1) Mini DIPIPM Ver.7 series specifies the chip junction temperature by the junction operating temperature $T_{jop}$ and the maximum junction temperature $T_{jmax}$. The maximum junction temperature rating of built-in power chips is 175°C (@$T_c\leq125°C$). However, to ensure safe operation of DIPIPM, the average junction temperature should be limited to $T_{j(Ave)}\leq150°C$ (@$T_c\leq125°C$).

<About max.175°C guarantee>

Maximum junction temperature $T_{jmax}$=175°C is set assuming a short-term temperature rise (e.g. motor lock). When designing your system for its continually operation, the average junction temperature should be set less than $T_{j(Ave)}\leq150°C$.

Please also note that the repeated temperature changes affects the lifetime.

Table 1-5-2 Differences of functions and outlines

<table>
<thead>
<tr>
<th>Items</th>
<th>PS2176x</th>
<th>PSSxxS71F6</th>
<th>PSSxxS73F6</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap diodes</td>
<td>None</td>
<td>Built-in</td>
<td></td>
<td>Section 4.2</td>
</tr>
<tr>
<td>V$_{OT}$ output (LVIC temp. output)</td>
<td>None</td>
<td>Built-in 1)</td>
<td></td>
<td>Section 2.2.4</td>
</tr>
<tr>
<td>No.20 terminal</td>
<td>VNO</td>
<td>$V_{OT}$ 2)</td>
<td></td>
<td>Section 2.3.3</td>
</tr>
<tr>
<td>N-side IGBT emitter terminal</td>
<td>Open</td>
<td></td>
<td></td>
<td>Section 2.3</td>
</tr>
<tr>
<td>Terminal shapes</td>
<td>Long</td>
<td></td>
<td>(Partly terminal shape change)</td>
<td>Section 2.3</td>
</tr>
</tbody>
</table>

1) $V_{OT}$ function cannot shutdown by itself when LVIC temperature exceeds protection level. So it is necessary for system controller to monitor this $V_{OT}$ output and shutdown when the temperature reaches the protection level.

2) No.20 pin, which was assigned to VNO or NC for former products, is set as $V_{OT}$ output for this series. If the current PCB which was designed for former products is used for this new product, it is necessary to change the wiring of the PCB.

3) Terminal shape for PSSxxS73F6 is partly changed to enlarge minimum insulation distance between the terminals.
## Differences of specifications and recommended operating conditions

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>PS2176x</th>
<th>PSSxxS71F6</th>
<th>PSSxxS73F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit current for IC (Low voltage part)</td>
<td>ID</td>
<td>Max. 7.0mA</td>
<td>Max. 6.0mA</td>
<td>€</td>
</tr>
<tr>
<td>Short circuit trip level</td>
<td>VSC(ref)</td>
<td>0.43~0.53V</td>
<td>0.45~0.51V</td>
<td>€</td>
</tr>
<tr>
<td>Fault output pulse width (CFo=22nF)</td>
<td>tfo</td>
<td>Typ. 1.8ms</td>
<td>Typ. 2.4ms</td>
<td>€</td>
</tr>
<tr>
<td>Input current</td>
<td>IN</td>
<td>Max. 2.0mA</td>
<td>Max.1.5mA</td>
<td>€</td>
</tr>
<tr>
<td>Inner pull down resistance of input terminal</td>
<td>-</td>
<td>Min. 2.5kΩ</td>
<td>Min. 3.3kΩ</td>
<td>€</td>
</tr>
<tr>
<td>Bootstrap Di forward voltage</td>
<td>Vf</td>
<td>-</td>
<td>Typ. 0.9V @10mA</td>
<td>€</td>
</tr>
<tr>
<td>Arm-shoot-through blocking time</td>
<td>tdead</td>
<td>Min. 2.0μs</td>
<td>Min. 1.5μs(50A)</td>
<td>€</td>
</tr>
<tr>
<td>Allowable minimum input pulse width 1)</td>
<td>PWIN(on)</td>
<td>0.3μs</td>
<td>0.7μs</td>
<td>€</td>
</tr>
<tr>
<td></td>
<td>PWIN(off)</td>
<td>Depend on current rating 2)</td>
<td>€</td>
<td>20A:1.4μs 30A,50A:1.5μs</td>
</tr>
</tbody>
</table>

1) DIPIPM might not make response if the input signal pulse width is less than PWIN(on) / PWIN(off). Moreover, if it makes response to shorter turning off signal than PWIN(off), DIPIPM might make delayed response in case of rated current or more. Please refer below about delayed response.

2) For PS2176x and PSSxxS71F6 series, PWIN(off) depends on the current rating. Please refer the each datasheet.

### Delayed Response Against Shorter Input Off Signal Than PWIN(off) (P-side only, more than rated current)

![Delayed Response Diagram](image)

Real line: pulse width > PWIN(off); turn on time t1
Broken line: pulse width < PWIN(off); turn on time t2
(t1:Normal switching time)
CHAPTER 2 SPECIFICATIONS AND CHARACTERISTICS

2.1 Mini DIPIPM Ver.7 Specifications

Mini DIPIPM specifications are described below by using PSS20S73F6 (20A/600V) as an example. Please refer to respective datasheet for the detailed description of other types.

2.1.1 Maximum Ratings

The maximum ratings of PSS20S73F6 (20A/600V) are shown in Table 2-1-1.

**Table 2-1-1 Maximum Ratings (Tj = 25°C, unless otherwise noted)**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$</td>
<td>Supply voltage</td>
<td>Applied between P-N, N, V, N, W</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CC}$(surge)</td>
<td>Supply voltage (surge)</td>
<td>Applied between P-N, N, V, N, W</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CES}$</td>
<td>Collector-emitter voltage</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>$I_C$</td>
<td>Each IGBT collector current</td>
<td>$T_C=25\degree C$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>$I_{CP}$</td>
<td>Each IGBT collector current (peak)</td>
<td>$T_C=25\degree C, \text{less than } 1\text{ms}$</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>$T_{op}$</td>
<td>Operation junction temperature</td>
<td>Continuous operation</td>
<td>-30 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{max}$</td>
<td>Maximum junction temperature</td>
<td>Temporally operation (e.g. overload)</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 2-1-1 Maximum Ratings (Tj = 25°C, unless otherwise noted)

**NOTES:**

1. $V_{CC}$ The maximum voltage can be biased between P-N. A voltage suppressing circuit such as a brake circuit is necessary if P-N voltage exceeds this value.

2. $V_{CC}$(surge) The maximum P-N surge voltage in switching state. If P-N voltage exceeds this voltage, a snubber circuit is necessary to absorb the surge under this voltage.

3. $V_{CES}$ The maximum sustained collector-emitter voltage of built-in IGBT and FWDi.

4. $+/I_C$ The allowable continuous current flowing at collect electrode ($T_C=25\degree C$) Pulse width and period are limited due to junction temperature.

Publication Date: January 2021
(5) Tjop

The maximum junction temperature rating is 175°C at Tc=25°C. But for safe operation, it is recommended to limit the average junction temperature up to 150°C. Repetitive temperature variation ΔTj affects the life time of power cycle, so refer life time curves for safety design.

(6) Vcc(prot)

The maximum supply voltage for turning off IGBT safely in the case of an SC or OC faults. The power chip might not be protected and break down in the case that the supply voltage is higher than this specification.

(7) Tc position

Tc (case temperature) is defined to be the temperature just beneath the specified power chip. Please mount a thermocouple on the heat sink surface at the defined position to get accurate temperature information. Due to the control schemes such different control between P and N-side, there is the possibility that highest Tc point is different from above point. In such cases, it is necessary to change the measuring point to that under the highest power chip.

[Power chip position]

Fig.2-1-1 indicate the position of the each power chips. (This figure is the view from laser marked side.)

---

Fig.2-1-1 Power chip position (PSSxxS73F6)
2.1.2 Thermal Resistance

Table 2-1-2 shows the thermal resistance of PSS20S73F6 (20A/600V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rth(j-c)</td>
<td>Junction to case thermal resistance (Note)</td>
<td>Inverter IGBT part (per 1/6 module)</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>Rth(j-c)</td>
<td></td>
<td>Inverter FWDI part (per 1/6 module)</td>
<td>-</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Note: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100μm~+200μm on the contacting surface of DIPIPM and heat sink. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.3K/W (per 1/6 module, grease thickness: 20μm, thermal conductivity: 1.0W/m•K).

The thermal resistance of PSSxxS51F6 is defined as the resistance between chip junction and heat sink (Rth(j-f)) which includes Rth(c-f).

The above data shows the thermal resistance between chip junction and case at steady state. The thermal resistance goes into saturation in about 10 seconds. The unsaturated thermal resistance is called as transient thermal impedance which is shown in Fig.2-1-2. Zth(j-c)* is the normalized value of the transient thermal impedance. (Zth(j-c)*= Zth(j-c) / Rth(j-c)max)

For example, the IGBT transient thermal impedance of PSS20S73F6 in 0.2s is 1.3×0.8=1.04K/W.

The transient thermal impedance isn’t used for constantly current, but for short period current (ms order). (e.g. in the cases at motor starting, at motor lock・・・)

![Fig.2-1-2 Typical transient thermal impedance (PSSxxS73F6)](image-url)
2.1.3 Electric Characteristics and Recommended Conditions

Table 2-1-3 shows the typical static characteristics and switching characteristics of PSS20S73F6 (20A/600V).

Table 2-1-3 Static and switching characteristics of PSS20S73F6 (Tj = 25°C, unless otherwise noted)

<table>
<thead>
<tr>
<th>INVERTER PART (Tj = 25°C, unless otherwise noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VCE(sat)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VSC</td>
</tr>
<tr>
<td>t(on)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>t(off)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Switching time definition and performance test method are shown in Fig.2-1-3 and 2-1-4. Switching characteristics are measured by half bridge circuit with inductance load.

Fig.2-1-3 Switching time definition

Fig.2-1-4 Evaluation circuit (inductive load)

Short A for N-side IGBT, and short B for P-side IGBT evaluation

Fig.2-1-5 Typical switching waveform (PSS20S73F6)

Conditions: VCC=300V, VD=VDB=15V, Tj=125°C, IC=20A, Inductive load half-bridge circuit
Table 2-1-4 shows the typical control part characteristics of PSS20S73F6 (20A/600V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>( I_D )</td>
<td>Circuit current</td>
<td>Total of ( V_{PH}-V_{NC} ), ( V_{NH}-V_{NC} )</td>
<td>( V_d=15V ), ( V_{N}=0V )</td>
<td>-</td>
</tr>
<tr>
<td>( I_{DB} )</td>
<td>Circuit current</td>
<td>Each part of ( V_{UR}-V_{LFS}, V_{UR}-V_{LFS}, V_{WR}-V_{WFS} )</td>
<td>( V_d=V_{OD}=15V ), ( V_{N}=0V )</td>
<td>-</td>
</tr>
<tr>
<td>( V_{SC(min)} )</td>
<td>Short circuit trip level</td>
<td>( V_d=15V )</td>
<td>(Note 1)</td>
<td>0.45</td>
</tr>
<tr>
<td>( UV_{OFF} )</td>
<td>P-side Control supply under-voltage protection(UV)</td>
<td>( T_j \leq 125^\circ C )</td>
<td>Trip level</td>
<td>10.0</td>
</tr>
<tr>
<td>( UV_{OL} )</td>
<td>Fault output voltage</td>
<td>( V_{SC} = 0V ), ( F_O ) terminal pulled up to 5V by 10k( \Omega )</td>
<td>Reset level</td>
<td>10.5</td>
</tr>
<tr>
<td>( IT )</td>
<td>Input current</td>
<td>( V_{IN} = 5V )</td>
<td>-</td>
<td>0.70</td>
</tr>
<tr>
<td>( V_{TH(h)} )</td>
<td>ON threshold voltage</td>
<td>( V_{IC}=22nF )</td>
<td>(Note 3)</td>
<td>1.6</td>
</tr>
<tr>
<td>( V_{TH(l)} )</td>
<td>OFF threshold voltage</td>
<td>( I=10mA ) including voltage drop by limiting resistor</td>
<td>-</td>
<td>0.35</td>
</tr>
<tr>
<td>( V_F )</td>
<td>Bootstrap Di forward voltage</td>
<td>( I=10mA ) including voltage drop by limiting resistor</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>( R )</td>
<td>Built-in limiting resistance</td>
<td>Included in bootstrap Di</td>
<td>-</td>
<td>16</td>
</tr>
</tbody>
</table>

Note 1: SC protection works only for N-side IGBT. Please select the external shunt resistance such that the SC trip-level is less than 2 times of the current rating.

Note 2: DIPIPM don’t shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protective level that user defined, controller (MCU) should stop the DIPIPM.

Note 3: Fault signal Fo outputs when SC or UV protection works. Fo pulse width is different for each protection modes. At SC failure, Fo pulse width is a fixed width, which is specified by the capacitor connected to CFO terminal. (\( C_{FO}=9.1 \times 10^{-6} \times t_{FO} [F] \), but at UV failure, Fo outputs continuously until recovering from UV state. (But minimum Fo pulse width is the specified time by \( C_{FO} \).)

Recommended operating conditions of PSS20S73F6 (20A/600V) are given in Table 2-1-5. It is highly recommended to operate the modules within these conditions so as to ensure DIPIPM safe operation.

Table 2-1-5 Recommended operating conditions of PSS20S73F6

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_C )</td>
<td>Supply voltage</td>
<td>Applied between P-NU, NV, NW</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>( V_D )</td>
<td>Control supply voltage</td>
<td>Applied between ( V_{NH}-V_{NC}, V_{NI}-V_{NC} )</td>
<td>13.5</td>
<td>15.0</td>
</tr>
<tr>
<td>( V_{DB} )</td>
<td>Control supply voltage</td>
<td>Applied between ( V_{UR}-V_{LFS}, V_{UR}-V_{LFS}, V_{WR}-V_{WFS}, V_{WR}-V_{WFS} )</td>
<td>13.0</td>
<td>15.0</td>
</tr>
<tr>
<td>( \Delta V_D, \Delta V_{DB} )</td>
<td>Control supply variation</td>
<td>-1</td>
<td>-</td>
<td>+1</td>
</tr>
<tr>
<td>( t_{wait} )</td>
<td>Arm shoot-through blocking time</td>
<td>For each input signal</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>( f_{PWM} )</td>
<td>PWM input frequency</td>
<td>( T_C \leq 100^\circ C, T_j \leq 125^\circ C )</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( P_{WIN(on)} )</td>
<td>Minimum input pulse width</td>
<td>(Note 1)</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>( P_{WIN(off)} )</td>
<td>Minimum input pulse width</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>( V_{NC} )</td>
<td>( V_{NC} ) variation</td>
<td>Between ( V_{NC}-NU, NV, NW ) (including surge)</td>
<td>-5.0</td>
<td>-</td>
</tr>
<tr>
<td>( T_j )</td>
<td>Junction temperature</td>
<td>-30</td>
<td>-</td>
<td>+150</td>
</tr>
</tbody>
</table>

Note 1: DIPIPM might not make response if the input signal pulse width is less than \( P_{WIN(on)} \) / \( P_{WIN(off)} \). Moreover, if it makes response to shorter turning off signal than \( P_{WIN(off)} \), DIPIPM might make delayed response in case of rated current or more. Please refer below about delayed response.
Delayed Response Against Shorter Input Off Signal Than PWIN(off) (P-side only, above rated current)

About Control supply variation
If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet the following specifications:

\[
\frac{dV}{dt} \leq \pm 1 \text{V/\mu s}, \quad V_{\text{ripple}} \leq 2 \text{Vp-p}
\]

2.1.4 Mechanical Characteristics and Ratings

The mechanical characteristics and ratings are shown in Table 2-1-6. Please refer to Section 2.4 for the detailed mounting instruction of Mini DIPIPM Ver.7.

<table>
<thead>
<tr>
<th>MECHANICAL CHARACTERISTICS AND RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mounting torque</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Terminal pulling strength</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Terminal bending strength</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Heat-sink flatness</td>
</tr>
</tbody>
</table>

Note 1: Plain washers (ISO 7089~7094) are recommended.

Note 2: Measurement point of heat sink flatness
2.2 Protective Functions and Operating Sequence

Mini DIPIPM Ver.7 has Short circuit (SC), Under Voltage of control supply (UV) and temperature output (VOT) for protection function. The operating principle and sequence are described below.

2.2.1 Short Circuit Protection

(1) General

Mini DIPIPM Ver.7 uses external shunt resistor for the current detection as shown in Fig.2-2-1. The internal protection circuit inside the IC captures the excessive large current by comparing the CIN voltage generated at the shunt resistor with the referenced SC trip voltage, and perform protection automatically. The threshold voltage trip level of the SC protection Vsc(ref) is typ. 0.48V.

In case of SC protection happens, all the gates of N-side three phase IGBTs will be interrupted together with a fault signal output. To prevent DIPIPM erroneous protection due to normal switching noise and/or recovery current, it is necessary to set an RC filter (time constant: 1.5μs ~ 2μs) to the CIN terminal input (Fig.2-2-1, 2-2-2). Also, please make the pattern wiring around the shunt resistor as short as possible.

![Fig.2-2-1 SC protecting circuit](image)

(2) SC protection Sequence

SC protection (N-side only with the external shunt resistor and RC filter)

a1. Normal operation: IGBT ON and carrying current.
a2. Short circuit current detection (SC trigger).
It is necessary to set RC time constant so that IGBT shut down within 2.0μs when SC. (1.5~2.0μs is recommended generally.)
a3. All N-side IGBTs’ gate are hard interrupted.
a4. All N-side IGBTs turn OFF.
a5. Fo outputs. The pulse width of the Fo signal is set by the external capacitor CFO.
a6. Input = “L”, IGBT OFF
a7. Fo finishes output, but IGBTs don’t turn on until inputting next ON signal (L→H).
IGBT of each phase can return to normal state by inputting ON signal to each phase.
a8. Normal operation: IGBT ON and outputs current.
(3) Determination of Shunt Resistance

1. Shunt resistance

The value of current sensing resistance is calculated by the following formula:
\[ R_{\text{shunt}} = \frac{V_{\text{SC(ref)}}}{I_{\text{SC}}} \]
where \( V_{\text{SC(ref)}} \) is the SC trip voltage.

The maximum SC trip level \( I_{\text{SC(max)}} \) should be set less than the IGBT minimum saturation current which is 2.0 times as large as the rated current. For example, the SC(max) of PSS20S73F6 should be set to 20x2=40A. The parameters \( V_{\text{SC(ref)}}, R_{\text{shunt}} \) dispersion should be considered when designing the SC trip level.

For example of PSS20S73F6, there is +/-0.03V dispersion in the spec of \( V_{\text{SC(ref)}} \) as shown in Table 2-2-1.

Table 2-2-1 Specification for \( V_{\text{SC(ref)}} \)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>at Tj=25°C, ( V_{D} = 15V )</td>
<td>0.45</td>
<td>0.48</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Then, the range of SC trip level can be calculated by the following expressions:
\[ R_{\text{shunt(min)}} = \frac{V_{\text{SC(ref)}}}{I_{\text{SC(max)}}} \]
\[ R_{\text{shunt(typ)}} = \frac{R_{\text{shunt(min)}}}{0.95} \]
\[ R_{\text{shunt(max)}} = R_{\text{shunt(typ)}} \times 1.05 \]

*)This is the case that shunt resistance dispersion is within +/-5%.

So the SC trip level range is described as Table 2-2-2.

Table 2-2-2 Operative SC Range \( R_{\text{shunt}}=12.8\Omega \) (min), 13.4\Omega \) (typ), 14.1\Omega \) (max)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>at Tj=25°C, ( V_{D} = 15V )</td>
<td>31.9</td>
<td>35.8</td>
<td>40</td>
</tr>
</tbody>
</table>

(e.g. 12.8\Omega \) (R_{\text{shunt(min)}}) = 0.51V \) (=\( V_{\text{SC(max)}} \) / 40A \) (=\( I_{\text{SC(max)}} \))

There is the possibility that the actual SC protection level becomes less than the calculated value. This is considered due to the resonant signals caused mainly by parasitic inductance and parasitic capacity. It is recommended to make a confirmation of the resistance by prototype experiment.

2. RC Filter Time Constant

It is necessary to set an RC filter in the SC sensing circuit in order to prevent malfunction of SC protection due to noise interference. The RC time constant is determined depending on the applying time of noise interference and the SC-SOA of the DIPIPM.

When the voltage drop on the external shunt resistor exceeds the SC trip level, the time \( t_1 \) that the CIN terminal voltage rises to the referenced SC trip level can be calculated by the following expression:
\[ V_{\text{SC}} = R_{\text{shunt}} \cdot I_{c} \cdot \left( 1 - e^{-\frac{t_1}{\tau}} \right) \]
\[ t_1 = -\tau \cdot \ln \left( 1 - \frac{V_{\text{SC}}}{R_{\text{shunt}} \cdot I_{c}} \right) \]

\( V_{\text{Sc}} \) : the CIN terminal input voltage, \( I_{c} \) : the peak current, \( \tau \) : the RC time constant

On the other hand, the typical time delay \( t_2 \) (from \( V_{\text{Sc}} \) voltage reaches \( V_{\text{Sc(ref)}} \) to IGBT gate shutdown) of IC is shown in Table 2-2-3.

Table 2-2-3 Internal time delay of IC

<table>
<thead>
<tr>
<th>Item</th>
<th>Min</th>
<th>Typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC transfer delay time</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>( \mu \text{s} )</td>
</tr>
</tbody>
</table>

Therefore, the total delay time from an SC level current happened to the IGBT gate shutdown becomes:
\[ t_{\text{TOTAL}} = t_1 + t_2 \]
2.2.2 Control Supply UV Protection

(1) General

The UV protection is designed to prevent unexpected operating behavior as described in Table 2-2-4. Both P-side and N-side have UV protecting function; however, fault signal (Fo) output only corresponds to N-side UV protection. Fo output continuously during UV state.

In addition, there is a noise filter (typ. 10μs) integrated in the UV protection circuit to prevent instantaneous UV erroneous trip. Therefore, the control signals are still transferred in the initial 10μs after UV happened.

Table 2-2-4 DIPIPM operating behavior versus control supply voltage

<table>
<thead>
<tr>
<th>Control supply voltage</th>
<th>Operating behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4V (P, N-side)</td>
<td>In this voltage range, built-in control IC may not work properly. Normal operating of each protection function (UV, Fo output etc.) is not also assured. Normally IGBT does not work. But external noise may cause DIPIPM malfunction (turns ON), so DC-link voltage need to start up after control supply starts-up.</td>
</tr>
<tr>
<td>4 - UV_Dr (N-side), 4 - UV_DBd (P-side)</td>
<td>UV function becomes active and output Fo (N-side only). Even if control signals are applied, IGBT does not work</td>
</tr>
<tr>
<td>UV_Dr - 13.5V (N-side), UV_DBd - 13.0V (P-side)</td>
<td>IGBT can work. However, conducting loss and switching loss will increase, and result extra temperature rise at this state.</td>
</tr>
<tr>
<td>13.5 - 16.5V (N-side), 13.0 - 18.5V (P-side)</td>
<td>Recommended conditions.</td>
</tr>
<tr>
<td>16.5 - 20V (N-side), 18.5 - 20V (P-side)</td>
<td>IGBT works. However, switching speed becomes fast and saturation current becomes large at this state, increasing SC broken risk.</td>
</tr>
<tr>
<td>20V- (P, N-side)</td>
<td>The control circuit might be destroyed.</td>
</tr>
</tbody>
</table>

Ripple Voltage Limitation of Control Supply

If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem happens, line ripple voltage should meet the following specifications:

\[
\frac{dV}{dt} \leq \pm 1V/\mu s, \quad V_{\text{ripple}} \leq 2V_{p-p}
\]

(2) UV protection Sequence

[N-side UV Protection Sequence]

a1. Control supply voltage \( V_D \) exceeds under voltage reset level (UV_dr), but IGBT turns ON by next ON signal (L\( \rightarrow \)H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.)

a2. Normal operation: IGBT ON and carrying current.

a3. \( V_D \) level dips to under voltage trip level. (UV_dr).

a4. All N-side IGBTs turn OFF in spite of control input condition.

a5. Fo outputs for the period set by the capacitance \( C_{FO} \), but output is extended during \( V_D \) keeps below UV_dr.

a6. \( V_D \) level reaches UV_dr.

a7. Normal operation: IGBT ON and outputs current.

---

Fig.2-2-4 Timing chart of N-side UV protection
[P-side UV Protection Sequence]

a1. Control supply voltage $V_{DB}$ rises. After the voltage reaches under voltage reset level $UV_{DBr}$, IGBT turns on by next ON signal ($L \rightarrow H$).
a2. Normal operation: IGBT ON and outputs current.
a3. $V_{DB}$ level drops to under voltage trip level ($UV_{DBl}$).
a4. IGBT of the corresponding phase only turns OFF in spite of control input signal level, but there is no $F_o$ signal output.
a5. $V_{DB}$ level reaches $UV_{DBr}$.

---

**Fig. 2-2-5 Timing Chart of P-side UV protection**
2.2.3 Temperature output function $V_{OT}$

(1) Usage of this function
This function measures the temperature of control LVIC by built in temperature sensor on LVIC. The heat generated at IGBT and FWDi transfers to LVIC through molding resin of package and outer heat sink. So LVIC temperature cannot respond to rapid temperature rise of those power chips effectively. (e.g. motor lock, short circuit) It is recommended to use this function for protecting from slow excessive temperature rise by such cooling system down and continuance of overload operation. (Replacement from the thermistor which was mounted on outer heat sink currently.)

[Note]
In this function, DIPIPM cannot shutdown IGBT and output fault signal by itself when temperature rises excessively. When temperature exceeds the defined protection level, controller (MCU) should stop the DIPIPM.

Fig.2-2-6 Temperature detecting point

(2) $V_{OT}$ characteristics
$V_{OT}$ output circuit, which is described in Fig.2-2-9, is the output of OP amplifier circuit. The current capability of $V_{OT}$ output is described as Table 2-2-6. The characteristics of $V_{OT}$ output vs. LVIC temperature is linear characteristics described in Fig.2-2-13. There are some cautions for using this function as below.

Table 2-2-6 Output capability

<table>
<thead>
<tr>
<th>(Tc=-20°C ~100°C)</th>
<th>min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>1.7mA</td>
</tr>
<tr>
<td>Sink</td>
<td>0.1mA</td>
</tr>
</tbody>
</table>

Source: Current flow from $V_{OT}$ to outside.
Sink : Current flow from outside to $V_{OT}$.

In the case of detecting lower temperature than room temperature
It is recommended to insert 5.1kΩ pull down resistor for getting linear output characteristics at lower temperature than room temperature. When the pull down resistor is inserted between $V_{OT}$ and $V_{NC}$(control GND), the extra current calculated by $V_{OT}$ output voltage / pull down resistance flows as LVIC circuit current continuously. In the case of only using $V_{OT}$ for detecting higher temperature than room temperature, it isn't necessary to insert the pull down resistor.

Fig.2-2-8 $V_{OT}$ output circuit

Fig.2-2-9 $V_{OT}$ output circuit in the case of detecting low temperature

Publication Date: January 2021
In the case of using with low voltage controller (MCU)
In the case of using $V_{OT}$ with low voltage controller (e.g. 3.3V MCU), $V_{OT}$ output might exceed control supply voltage 3.3V when temperature rises excessively. If system uses low voltage controller, it is recommended to insert a clamp Di between control supply of the controller and this output for preventing over voltage.

![Fig.2-2-10 VOT output circuit in the case of using with low voltage controller](image-url)

In the case that the protection level exceeds control supply of the controller
In the case of using low voltage controller like 3.3V MCU, if it is necessary to set the trip $V_{OT}$ level to control supply voltage (e.g. 3.3V) or more, there is the method of dividing the $V_{OT}$ output by resistance voltage divider circuit and then inputting to A/D converter on MCU (Fig.2-2-11). In that case, sum of the resistances of divider circuit should be almost 5.1kΩ. About the necessity of clamp diode, we consider that the divided output will not exceed the supply voltage of controller generally, so it will be unnecessary to insert the clamp diode. But it should be judged by the divided output level finally.

![Fig.2-2-11 VOT output circuit in the case with high protection level](image-url)
(3) Usage of VOT function

As mentioned above, the heat of power chips transfers to LVIC through the heat sink and package, so the relationship between LVIC temperature: Tc (= VOT output), case temperature: Tc (under the chip defined on datasheet), and junction temperature: Tj depends on the system cooling condition, heat sink, control strategy, etc. For example of PSSxxS73F6, their relationship example in the case of using the heat sink (Table 2-2-7) is described in Fig.2-2-13. This relationship may be different due to the cooling conditions. So when setting the threshold temperature for protection, it is necessary to get the relationship between them on your real system. And when setting threshold temperature Tc, it is important to consider the protection temperature keeps Tj ≤150°C.

Fig.2-2-12 VOT output vs. LVIC temperature (PSSxxS73F6)
Procedure about setting the protection level by using Fig.2-2-14 is described as below.

Table 2-2-8 Procedure for setting protection level

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Setting value example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Set the protection Tj temperature</td>
<td>Set Tj to 135°C as protection level.</td>
</tr>
<tr>
<td>2) Get LVIC temperature Tic that matches to above Tj of the protection level from the relationship of Tj-Tic in Fig.2-2-14.</td>
<td>Tic=85°C (@Tj=135°C)</td>
</tr>
<tr>
<td>3) Get V_{OT} value from the VOT output characteristics in Fig.2-2-15 and the Tic value which was obtained at phase 2).</td>
<td>V_{OT}=2.64V (@Tic=85°C) is decided as the protection level.</td>
</tr>
</tbody>
</table>

As above procedure, the setting value for V_{OT} output is decided to 2.64V. But V_{OT} output has some data spread, so it is important to confirm whether the protection temperature fluctuation of Tj is not Tj>150°C due to the data spread of V_{OT} output. Procedure about the confirmation of temperature fluctuation is described in Table 2-2-9.

Table 2-2-9 Procedure for confirmation of temperature fluctuation

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Confirmation example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Confirm the region of Tic fluctuation at above V_{OT} from Fig.2-2-15.</td>
<td>Tic=80°C~90°C (@V_{OT}=2.64V)</td>
</tr>
</tbody>
</table>
| 5) Confirm the region of Tj fluctuation at above region of Tic from Fig.2-2-14. | Tj=117°C~147°C (≤150°C; No problem)  
In this case, fluctuation of Tc is  
Tc=100°C~120°C |
The relationship between Tic, Tc(measuring) and Tj(calculated by loss) depends on the system cooling condition and control strategy, and so on. So please evaluate about these temperature relationship on your real system when considering the protection level.

If necessary, it is possible to ship the sample with the individual data of V_{OT} vs. LVIC temperature.
2.3 Package Outlines

2.3.1 Package outlines

Fig.2-3-1 PSSxxS73F6 package outline drawing (Dimension in mm)
Note: () pins are used internally, but have some potential (e.g. GND). Please leave them NC (no connection).
2.3.2 Marking

The laser marking specifications of Mini DIPIPM Ver.7 series is described in Fig.2-3-2. Company name, Country of origin, Type name, Lot number, and 2D code mark are marked in the upper side of module.

![Laser marking view PSSxxS73F6](Dimension in mm)

The Lot number indicates production year, month, running number and country of origin. The detailed is described as below.

(Example) C0NAA1

- **Running number**
- **Product month (however O: October, N: November, D: December)**
- **Last figure of Product year (e.g. 2020)**
- **Factory identification**
  - No mark : Manufactured at the factory in Japan
  - C : Manufactured at the factory A in China
  - H : Manufactured at the factory B in China
Table 2-3-1 Terminal description (PSSxxS73F6)

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$V_{IFS}$</td>
<td>U-phase P-side drive supply GND terminal</td>
</tr>
<tr>
<td>2</td>
<td>(UPG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>3</td>
<td>$V_{IFS}$</td>
<td>U-phase P-side drive supply positive terminal</td>
</tr>
<tr>
<td>4</td>
<td>$V_{P1}$</td>
<td>U-phase P-side control supply positive terminal</td>
</tr>
<tr>
<td>5</td>
<td>(COM)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>6</td>
<td>$U_p$</td>
<td>U-phase P-side control input terminal</td>
</tr>
<tr>
<td>7</td>
<td>$V_{VFS}$</td>
<td>V-phase P-side drive supply GND terminal</td>
</tr>
<tr>
<td>8</td>
<td>(VPG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>9</td>
<td>$V_{VFB}$</td>
<td>V-phase P-side drive supply positive terminal</td>
</tr>
<tr>
<td>10</td>
<td>$V_{P1}$</td>
<td>V-phase P-side control supply positive terminal</td>
</tr>
<tr>
<td>11</td>
<td>(COM)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>12</td>
<td>$V_p$</td>
<td>V-phase P-side control input terminal</td>
</tr>
<tr>
<td>13</td>
<td>$V_{WFS}$</td>
<td>W-phase P-side drive supply GND terminal</td>
</tr>
<tr>
<td>14</td>
<td>(WPG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>15</td>
<td>$V_{WFB}$</td>
<td>W-phase P-side drive supply positive terminal</td>
</tr>
<tr>
<td>16</td>
<td>$V_{P1}$</td>
<td>W-phase P-side control supply positive terminal</td>
</tr>
<tr>
<td>17</td>
<td>COM</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>18</td>
<td>$W_p$</td>
<td>W-phase P-side control input terminal</td>
</tr>
<tr>
<td>19</td>
<td>(UNG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>20</td>
<td>$V_{OT}$</td>
<td>Temperature output$^2$</td>
</tr>
<tr>
<td>21</td>
<td>$U_N$</td>
<td>U-phase N-side control input terminal</td>
</tr>
<tr>
<td>22</td>
<td>$V_N$</td>
<td>V-phase N-side control input terminal</td>
</tr>
<tr>
<td>23</td>
<td>$W_N$</td>
<td>W-phase N-side control input terminal</td>
</tr>
<tr>
<td>24</td>
<td>$F_O$</td>
<td>Fault signal output terminal</td>
</tr>
<tr>
<td>25</td>
<td>CFO</td>
<td>Fault pulse output width setting terminal</td>
</tr>
<tr>
<td>26</td>
<td>CIN</td>
<td>SC current trip voltage detecting terminal</td>
</tr>
<tr>
<td>27</td>
<td>$V_{NC}$</td>
<td>N-side control supply GND terminal</td>
</tr>
<tr>
<td>28</td>
<td>$V_{N1}$</td>
<td>N-side control supply positive terminal</td>
</tr>
<tr>
<td>29</td>
<td>(WNG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>30</td>
<td>(VNG)</td>
<td>Dummy-pin</td>
</tr>
<tr>
<td>31</td>
<td>NW</td>
<td>WN-phase IGBT emitter</td>
</tr>
<tr>
<td>32</td>
<td>NV</td>
<td>VN-phase IGBT emitter</td>
</tr>
<tr>
<td>33</td>
<td>NU</td>
<td>UN-phase IGBT emitter</td>
</tr>
<tr>
<td>34</td>
<td>W</td>
<td>W-phase output terminal</td>
</tr>
<tr>
<td>35</td>
<td>V</td>
<td>V-phase output terminal</td>
</tr>
<tr>
<td>36</td>
<td>U</td>
<td>U-phase output terminal</td>
</tr>
<tr>
<td>37</td>
<td>P</td>
<td>Inverter DC-link positive terminal</td>
</tr>
<tr>
<td>38</td>
<td>NC</td>
<td>No connection</td>
</tr>
</tbody>
</table>

1) Dummy pin has some potential like gate voltage. Don’t connect dummy-pins to any other terminals or PCB pattern.

2) About No. 20 terminal, it is assigned the different function from Mini DIPIPM Ver.4 series. For more detail information, refer the following table.

Table 2-3-3 Difference between this series and former products

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Mini DIP Ver.4</th>
<th>Mini DIPIPM with BSD</th>
<th>Mini DIPIPM Ver.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>PS2176x</td>
<td>PSSxxS71F6</td>
<td>PSSxxS73F6</td>
</tr>
<tr>
<td>Connected destination</td>
<td>To GND($V_{NC}$)</td>
<td>To A/D input of MCU or NC (in the case of not using $V_{OT}$)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3-4 Detailed description of input and output terminals

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| P-side drive supply positive terminal | \( V_{UFB} - V_{UFS} \), \( V_{WFB} - V_{WFS} \) | • Drive supply terminals for P-side IGBTs.  
• By virtue of applying the bootstrap circuit scheme, individual isolated power supplies are not needed for the DIPIPM P-side IGBT drive. Each bootstrap capacitor is charged by the N-side \( V_D \) supply during ON-state of the corresponding N-side IGBT in the loop.  
• Abnormal operation might happen if the \( V_D \) supply is not aptly stabilized or has insufficient current capability. In order to prevent malfunction caused by such unsteadiness as well as noise and ripple in supply voltage, a bypass capacitor with favorable frequency and temperature characteristics should be mounted very closely to each pair of these terminals.  
• Inserting a Zener diode (24V/1W) between each pair of control supply terminals is helpful to prevent control IC from surge destruction. |
| P-side drive supply GND terminal | \( V_{P1} \), \( V_{N1} \) | • Control supply terminals for the built-in HVIC and LVIC.  
• In order to prevent malfunction caused by noise and ripple in the supply voltage, a bypass capacitor with good frequency characteristics should be mounted very closely to these terminals.  
• Design the supply carefully so that the voltage ripple caused by operation keep within the specification. \( \frac{dV}{dt} \leq +/\pm 1V/\mu s, \) \( \text{Vripple} \leq 2Vp-p \)  
• It is recommended to insert a Zener diode (24V/1W) between each pair of control supply terminals to prevent surge destruction.  
| N-side control supply terminal | \( V_{NC} \) | • Control ground terminal for the built-in HVIC and LVIC.  
• Ensure that line current of the power circuit does not flow through this terminal in order to avoid noise influences. |
| Control input terminal | \( U_P, V_P, W_P \), \( U_N, V_N, W_N \) | • Control signal input terminals.  
• Voltage input type. These terminals are internally connected to Schmitt trigger circuit and pulled down by min 2.5kΩ resistor internally  
• The wiring of each input should be as short as possible to protect the DIPIPM from noise interference.  
• Use RC coupling in case of signal oscillation. Pay attention to threshold voltage of input terminal, because input circuit has pull down resistor. |
| Short-circuit trip voltage detecting terminal | \( C_{IN} \) | • For short circuit protection, input the potential of external shunt resistor to \( C_{IN} \) terminal through RC filter (for the noise immunity).  
• The time constant of RC filter is recommended to be up to 2μs. |
| Fault signal output terminal | \( F_O \) | • Fault signal output terminal.  
• Fo signal line should be pulled up to the logic supply. (In the case pulling up to 5V supply, over 5kΩ resistor is needed for limiting the Fo sink current \( I_{F0} \) up to 1mA. Normally 10kΩ is recommended.) |
| Fault pulse output width setting terminal | \( C_{F0} \) | • The terminal is for setting Fo pulse width by connecting capacitor between \( V_{NC} \).  
• When 22nF is connected, then the Fo pulse width becomes typ. 2.4ms.  
\( C_{F0}(F) = 9.1 \times 10^{-4} \times t_{F0} \) (Required Fo pulse width) |
| Temperature output terminal | \( V_{OT} \) | • LVIC temperature is output by analog signal.  
• This terminal is connected to the output of OP amplifier internally.  
• It is recommended to connect 5.1kΩ pulldown resistor if output linearity is necessary under room temperature. |
| Inverter DC-link positive terminal | \( P \) | • DC-link positive power supply terminal.  
• Internally connected to the collectors of all P-side IGBTs.  
• To suppress surge voltage caused by DC-link wiring or PCB pattern inductance, smoothing capacitor should be inserted very closely to the P and N terminal. It is also effective to add small film capacitor with good frequency characteristics. |
| Inverter DC-link negative terminal | \( NU, NV, NW \) | • Open emitter terminal of each N-side IGBT  
• These terminals are connected to the power GND through individual shunt resistor. |
| Inverter power output terminal | \( U, V, W \) | • Inverter output terminals for connection to inverter load (e.g. AC motor).  
• Each terminal is internally connected to the intermediate point of the corresponding IGBT half bridge arm. |

Note: 1) Use oscilloscope to check voltage waveform of each power supply terminals and P&N terminals, the time division of OSC should be set to about 1μs/div. Please ensure the voltage (including surge) not exceed the specified limitation.

Publication Date: January 2021
2.4 Mounting Method

This section shows the electric spacing and mounting precautions of Mini DIPIPM.

2.4.1 Electric Spacing

The electric spacing specification of Mini DIPIPM Ver.7 series is shown in Table 2-4-1.

<table>
<thead>
<tr>
<th>Clearance (mm)</th>
<th>Creepage (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between power terminals</td>
<td>4.0</td>
</tr>
<tr>
<td>Between control terminals</td>
<td>3.0</td>
</tr>
<tr>
<td>Between terminals and heat sink</td>
<td>3.0</td>
</tr>
</tbody>
</table>

2.4.2 Mounting Method and Precautions

When installing the module to the heat sink, excessive or uneven fastening force might apply stress to inside chips. Then it will lead to a broken or degradation of the chips or insulation structure. The recommended fastening procedure is shown in Fig.2-4-1. When fastening, it is necessary to use the torque wrench and fasten up to the specified torque. And pay attention not to have any foreign particle on the contact surface between the module and the heat sink. Even if the fixing of heatsink was done by proper procedure and condition, there is a possibility of damaging the package because of tightening by unexpected excessive torque or tucking particle. For ensuring safety it is recommended to conduct the confirmation test (e.g. insulation inspection) on the final product after fixing the DIPIPM with the heatsink.

Fig.2-4-1 Recommended screw fastening order

Table 2-4-2 Mounting torque and heat sink flatness specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting torque</td>
<td>Screw : M3</td>
<td>0.59</td>
<td>0.78</td>
<td>0.98</td>
<td>N·m</td>
</tr>
<tr>
<td>Flatness of outer heat sink</td>
<td>Refer Fig.2-4-3</td>
<td>-50</td>
<td>-</td>
<td>+100</td>
<td>μm</td>
</tr>
</tbody>
</table>

Note: Generally, the temporary fastening torque is set to 20-30% of the maximum torque rating. Not care the order of fastening (1) or (2), but need to fasten alternately.

Fig.2-4-3 Measurement point of heat sink flatness (PSSxxS73F6)
In order to get effective heat dissipation, it is necessary to enlarge the contact area as much as possible to minimize the contact thermal resistance. Regarding the heat sink flatness (warp/concavity and convexity) on the module installation surface, the surface finishing-treatment should be within Rz12. Evenly apply thermally-conductive grease with 100µ-200µm thickness over the contact surface between a module and a heat sink, which is also useful for preventing corrosion. Furthermore, the grease should be with stable quality and long-term endurance within wide operating temperature range. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.3K/W (per 1/6 module, grease thickness: 20µm, thermal conductivity: 1.0W/m·k). When applying grease and fixing heat sink, pay attention not to take air into grease. It might lead to make contact thermal resistance worse or loosen fixing in operation.

Pay attention to the selection of thermal conductive grease. The grease thickness after fixing the heatsink may increase due to the properties of the grease (contained filler diameter, viscosity, amount of application and so on). And it may cause increase of contact thermal resistance or package crack. Please contact thermal conductive grease manufacturer for its detailed characteristics.
2.4.3 Soldering Conditions

The recommended soldering condition is mentioned as below.
(Note: The reflow soldering cannot be recommended for DIPIPM.)

(1) Flow (wave) Soldering

DIPIPM is tested on the condition described in Table 2-4-3 about the soldering thermostability, so the recommended conditions for flow (wave) soldering are soldering temperature is up to 265°C and the immersion time is within 11s.

However, the condition might need some adjustment based on flow condition of solder, the speed of the conveyer, the land pattern and the through hole shape on the PCB, etc.

It is necessary to confirm whether it is appropriate or not for your real PCB finally.

<table>
<thead>
<tr>
<th>Table 2-4-3 Reliability test specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Soldering thermostability</td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>260±5°C, 10±1s</td>
</tr>
</tbody>
</table>

(2) Hand soldering

Since the temperature impressed upon the DIPIPM may changes based on the soldering iron types (wattages, shape of soldering tip, etc.) and the land pattern on PCB, the unambiguous hand soldering condition cannot be decided.

As a general requirement of the temperature profile for hand soldering, the temperature of the root of the DIPIPM terminal should be kept under 150°C for considering glass transition temperature (Tg) of the package molding resin and the thermal withstand capability of internal chips. Therefore, it is necessary to check the DIPIPM terminal root temperature, solderability and so on in your real PCB, when configure the soldering temperature profile. (It is recommended to set the soldering time as short as possible.)

For reference, the evaluation example of hand soldering with 50W soldering iron is described as below.

[Evaluation method]

a. Sample: PSSxxS73F6 (Same package size as Mini DIPIPM with BSD)

b. Evaluation procedure

- Put the soldering tip of 50W iron (temperature set to 400°C) on the terminal within 1mm from the toe.
  (The lowest heat capacity terminal (=control terminal) is selected.)
- Measure the temperature rise of the terminal root part by the thermocouple installed on the terminal root.

[Note]

For soldering iron, it is recommended to select one for semiconductor soldering (12~24V low voltage type, and the earthed iron tip) and with temperature adjustment function.
CHAPTER 3 SYSTEM APPLICATION GUIDANCE

3.1 Application Guidance

This chapter states the Mini DIPIPM application method and interface circuit design hints.

3.1.1 System connection

C1: Electrolytic type with good temperature and frequency characteristics. Note: the capacitance also depends on the PWM control strategy of the application system
C2: 0.22μ-2μF ceramic capacitor with good temperature, frequency and DC bias characteristics
C3: 0.1μ-0.22μF Film capacitor (for snubber)
D1: Zener diode 24V/1W for surge absorber

Fig.3-1-1 System block diagram (Example)
3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor)

Fig.3-1-2 shows a typical application circuit of interface schematic, in which control signals are transferred directly input from a controller (e.g. MCU, DSP).

![Interface Circuit Diagram]

- **Fig.3-1-2 Interface circuit example except for common emitter type**

1. If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1 (near the terminal of shunt resistor).

2. It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction. To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22μF snubber capacitor C3 between the P-N1 terminals is recommended.

3. R1, C4 of RC filter for preventing protection circuit malfunction is recommended to select tight tolerance, temp- compensated type. The time constant R1C4 should be set so that SC current is shut down within 2μs. (1.5μs~2μs is recommended generally.) SC interrupting time might vary with the wiring pattern, so the enough evaluation on the real system is necessary.

4. To prevent malfunction, the wiring of A, B, C should be as short as possible.

5. The point D at which the wiring to CIN filter is divided should be near the terminal of shunt resistor. NU, NV, NW terminals should be connected at near NU, NV, NW terminals when it is used by one shunt operation. Low inductance SMD type with tight tolerance, temp-compensated type is recommended for shunt resistor.

6. All capacitors should be mounted as close to the terminals as possible. (C1: good temperature, frequency characteristic electrolytic type and C2:0.22μ-2μF, good temperature, frequency and DC bias characteristic ceramic type are recommended.)

7. Input logic is High-active. There is a 3.3kΩ(min.) pull-down resistor in the input circuit of IC. To prevent malfunction, the input wiring should be as short as possible. When using RC coupling, make the input signal level meet the turn-on and turn-off threshold voltage.

8. Fo output is open drain type. It should be pulled up to power supply of MCU (e.g. 5V,3.3V) by a resistor that makes IFO up to 1mA. (IFO is estimated roughly by the formula of control power supply voltage divided by pull-up resistance. In the case of pulled up to 5V, 10kΩ (5kΩ or more) is recommended.) When using opto coupler, Fo also can be pulled up to 15V (control supply of DIPIPM) by the resistor.

9. Fo pulse width can be set by the capacitor connected to CFO terminal. \( C_{2}(F) = 9.1 \times 10^{-6} \times t_{Fo} \) (Required Fo pulse width).

10. If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet \( dV/dt \leq +/1V/\mu s \), (Ripples≤2Vp-p).

11. For DIPIPM, it isn’t recommended to drive same load by parallel connection with other phase IGBT or other DIPIPM.
3.1.3 Interface Circuit (Example of Opto-coupler Isolated Interface)

Fig.3-1-3 Interface circuit example with opto-coupler

**Note:**
1. High speed (high CMR) opto-coupler is recommended.
2. Fo terminal sink current for inverter part is max. 1mA. It is recommended for driving coupler to apply buffer. To prevent Fo output from malfunctioning, it is recommended to make wiring from Fo terminal to buffer Tr and coupler as short as possible.
3. About comparator circuit at Vot output, it is recommended to design the input circuit with hysteresis because of preventing output chattering.
3.1.4 External SC Protection Circuit with Using Three Shunt Resistors

![Diagram of External SC Protection Circuit]

Note:
(1) It is necessary to set the time constant $R_fC_f$ of external comparator input so that IGBT stop within $2\mu s$ when short circuit occurs. SC interrupting time might vary with the wiring pattern, comparator speed and so on.
(2) The threshold voltage $V_{\text{ref}}$ should be set up the same rating of short circuit trip level ($V_{\text{sc(ref)}}$ typ. $0.48V$).
(3) Select the external shunt resistance so that SC trip-level is less than specified value.
(4) To avoid malfunction, the wiring A, B, C should be as short as possible.
(5) The point D at which the wiring to comparator is divided should be near the terminal of shunt resistor.
(6) OR output high level should be over $0.51V$ ($=\text{maximum } V_{\text{sc(ref)}}$).
(7) GND of Comparator, GND of $V_{\text{ref}}$ circuit and $C_f$ should be not connected to power GND but to control GND wiring.

3.1.5 Circuits of Signal Input Terminals and Fo Terminal

(1) Internal Circuit of Control Input Terminals

DIPIPM is high-active input logic. 3.3kΩ(min) pull-down resistor is built-in each input circuits of the DIPIPM as shown in Fig.3-1-5, so external pull-down resistor is not needed.

Furthermore, by lowering the turn on and turn off threshold value of input signal as shown in Table 3-1-1, a direct coupling to 3V class microcomputer or DSP becomes possible.

![Diagram of Internal Structure of Control Input Terminals]

Table 3-1-1 Input threshold voltage ratings($T_j=25^\circ\text{C}$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on threshold voltage</td>
<td>$V_{\text{th(on)}}$</td>
<td>$U_P,V_P,W_P-V_{\text{NC}}$ terminals</td>
<td>-</td>
<td>2.1</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td>Turn-off threshold voltage</td>
<td>$V_{\text{th(off)}}$</td>
<td>$U_N,V_N,W_N-V_{\text{NC}}$ terminals</td>
<td>0.8</td>
<td>1.3</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage hysterisis</td>
<td>$V_{\text{th(hys)}}$</td>
<td></td>
<td>0.35</td>
<td>0.8</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>
The wiring of each input should be patterned as short as possible. And if the pattern is long and the noise is imposed on the pattern, it may be effective to insert RC filter. There are limits for the minimum input pulse width in the DIPIPM. The DIPIPM might make no response or delayed response, if the input pulse width (both on and off) is shorter than the specified value. For allowable minimum input pulse width, please refer the datasheet for each product in details.

Note: The RC coupling (parts shown in the dotted line) at each input depends on user’s PWM control strategy and the wiring impedance of the printed circuit board.
The DIPIPM signal input section integrates a 3.3kΩ (min) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

(2) Internal Circuit of Fo Terminal
Fo terminal is an open drain type, it should be pulled up to a 5V supply as shown in Fig.3-1-6. Fig.3-1-7 shows the typical V-I characteristics of Fo terminal. The maximum sink current of Fo terminal is 1mA. If opto-coupler is applied to this output, please pay attention to the opto-coupler drive ability.

Table 3-1-2 Electric characteristics of Fo terminal

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault output voltage</td>
<td>$V_{FOH}$</td>
<td>$V_{SC}=0V,Fo=10k\Omega,5V$ pulled-up</td>
<td>4.9</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$V_{FOL}$</td>
<td>$V_{SC}=1V,Fo=1mA$</td>
<td>-</td>
<td>-</td>
<td>0.95</td>
<td>V</td>
</tr>
</tbody>
</table>

Fig.3-1-8 Fo terminal typical V-I characteristics ($V_D=15V, T_f=25^\circ C$)
3.1.6 Snubber Circuit

In order to prevent DIPIPM from destruction by extra surge, the wiring length between the smoothing capacitor and P terminal (DIPIPM) – N1 points (shunt resistor terminal) should be as short as possible. Also, a 0.1μ~0.22μF/630V snubber capacitor should be mounted in the DC-link and near to P, N1.

Normally there are two positions ((1) or (2)) to mount a snubber capacitor as shown in Fig.3-1-8. Snubber capacitor should be installed in the position (2) so as to suppress surge voltage effectively. However, the charging and discharging currents generated by the wiring inductance and the snubber capacitor will flow through the shunt resistor, which might cause erroneous protection if this current is large enough.

In order to suppress the surge voltage maximally, the wiring at part-A (including shunt resistor parasitic inductance) should be as small as possible. A better wiring example is shown in location (3).

![Fig.3-1-8 Recommended snubber circuit location](image)

3.1.7 Recommended Wiring Method around Shunt Resistor

External shunt resistor is employed to detect short-circuit accident. A longer wiring between the shunt resistor and DIPIPM causes so much large surge that might damage built-in IC. To decrease the pattern inductance, the wiring between the shunt resistor and DIPIPM should be as short as possible and using low inductance type resistor such as SMD resistor instead of long-lead type resistor.

![Fig.3-1-9 Wiring instruction (In the case of using with one shunt resistor)](image)
Pattern wiring around the shunt resistor affects many influence for its DIPIPM operation. Please note that the wiring should be designed as short as possible to reduce its wiring inductance.

Connect GND wiring from V_NC terminal to the shunt resistor terminal as close as possible. It is recommended to make the inductance of each phase (including the shunt resistor) under 10nH. 

e.g. Inductance of copper pattern (width=3mm, length=17mm) is about 10nH.

(1) Influence of the part-A wiring
The ground of N-side IGBT gate is V_NC. If part-A wiring pattern in Fig.3-1-11 is too long, extra voltage generated by the wiring parasitic inductance will result the potential of IGBT emitter variation during switching operation. Please install shunt resistor as close to the N terminal as possible.

(2) Influence of the part-B wiring
The part-B wiring affects SC protection level. SC protection works by detecting the voltage of the CIN terminals. If part-B wiring is too long, extra surge voltage generated by the wiring inductance will lead to deterioration of SC protection level. It is necessary to connect CIN and V_NC terminals directly to the two ends of shunt resistor and avoid long wiring.

(3) Influence of the part-C wiring pattern
C1R2 filter is added to remove noise influence occurring on shunt resistor. Filter effect will dropdown and noise will easily superimpose on the wiring if part-C wiring is too long. It is necessary to install the C1R2 filter near CIN, V_NC terminals as close as possible.

(4) Influence of the part-D wiring pattern
Part-D wiring pattern gives influence to all the items described above, maximally shorten the GND wiring is expected.
3.1.8 Precaution for Wiring on PCB

The case example of trouble due to PCB pattern

<table>
<thead>
<tr>
<th>Case example</th>
<th>Matter of trouble</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Control GND pattern overlaps power GND pattern. The surge, generated by the wiring pattern and di/dt of noncontiguous big current flows to power GND, transfers to control GND pattern. It causes the control GND level fluctuation, so that the input signal based on the control GND fluctuates too. Then the arm short might occur. • Ground loop pattern exists. Stray current flows to GND loop pattern, so that the control GND level and input signal level (based on the GND) fluctuates. Then the arm short might occur.</td>
</tr>
<tr>
<td>2</td>
<td>• Large inductance of wiring between N and N1 terminal. Long wiring pattern has big parasitic inductance and generates high surge when switching. This surge causes the matter as below. • HVIC malfunction due to VS voltage (output terminal potential) dropping excessively. • LVIC surge destruction</td>
</tr>
<tr>
<td>3</td>
<td>Capacitors or zener diodes are nothing or located far from the terminals. IC surge destruction or malfunction might occur.</td>
</tr>
<tr>
<td>4</td>
<td>The input lines are located parallel and close to the floating supply lines for P-side drive. Cross talk noise might be transferred through the capacitance between these floating supply lines and input lines to DIPIPM. Then incorrect signals are input to DIPIPM input, and arm short (short circuit) might occur.</td>
</tr>
</tbody>
</table>
3.1.9 Parallel operation of DIPIPM

Fig.3-1-13 shows the circuitry of parallel connection of two DIPIPMs. Route (1) and (2) indicate the gate charging path of low-side IGBT in DIPIPM No.1 & 2 respectively. In the case of DIPIPM 1, the parasitic inductance becomes large by long wiring and it might have a negative effect on DIPIPM’s switching operation. (Charge operation of bootstrap capacitor for high-side might be affected too.) Also, such a wiring makes DIPIPM be affected by noise easily, then it might lead to malfunction. If more DIPIPMs are connected in parallel, GND pattern becomes longer and the influence to other circuit (protection circuit etc.) by the fluctuation of GND potential is conceivable, therefore parallel connection is not recommended.

Because DIPIPM doesn’t consider the fluctuation of characteristics between each phase definitely, it cannot be recommended to drive same load by parallel connection with other phase IGBT or IGBT of other DIPIPM.

3.1.10 SOA of Mini DIPIPM

The following describes the SOA (Safety Operating Area) of the Mini DIPIPM.

- $V_{CES}$: Maximum rating of IGBT collector-emitter voltage
- $V_{CC}$: Supply voltage applied on P-N terminals
- $V_{CC(surge)}$: Total amount of $V_{CC}$ and surge voltage generated by the wiring inductance and the DC-link capacitor.
- $V_{CC PROT}$: DC-link voltage that DIPIPM can protect itself.

In case of Switching

$V_{CES}$ represents the maximum voltage rating (600V) of the IGBT. By subtracting the surge voltage (100V or less) generated by internal wiring inductance from $V_{CES}$ is $V_{CC(surge)}$, that is 500V. Furthermore, by subtracting the surge voltage (50V or less) generated by the wiring inductor between DIPIPM and DC-link capacitor from $V_{CC(surge)}$ derives $V_{CC}$, that is 450V.

In case of Short-circuit

$V_{CES}$ represents the maximum voltage rating (600V) of the IGBT. By subtracting the surge voltage (100V or less) generated by internal wiring inductor from $V_{CES}$ is $V_{CC(surge)}$, that is, 500V. Furthermore, by subtracting the surge voltage (100V or less) generated by the wiring inductor between the DIPIPM and the electrolytic capacitor from $V_{CC(surge)}$ derives $V_{CC}$, that is, 400V.
3.1.11 SCSOA

Fig.3-1-15~17 show the typical SCSOA performance curves of each products. (Conditions: \(V_{cc}=400\,\text{V},\ T_{j}=125^\circ\text{C}\) at initial state, \(V_{cc}(\text{surge})\leq500\,\text{V}(\text{surge included}),\ \text{non-repetitive,2m load.})\)

In the case of PSS20S73F6, it can shutdown safely an SC current that is about 8 times of its current rating under the conditions if the IGBT conducting period is less than about 4.5\,\mu\text{s}. Since the SCSOA operation area will vary with the control supply voltage, DC-link voltage, and etc, it is necessary to set time constant of RC filter with a margin.

![Fig.3-1-15 Typical SCSOA curve of PSS20S73F6](image)

![Fig.3-1-16 Typical SCSOA curve of PSS30S73F6](image)

![Fig.3-1-17 Typical SCSOA curve of PSS50S73F6](image)
3.1.12 Power Life Cycles

When DIPIPM is in operation, repetitive temperature variation will happen on the IGBT junctions ($\Delta T_j$). The amplitude and the times of the junction temperature variation affect the device lifetime.

Fig. 3-1-18 shows the IGBT power cycle curve as a function of average junction temperature variation ($\Delta T_j$). (The curve is a regression curve based on 3 points of $\Delta T_j$=46, 88, 98K with regarding to failure rate of 0.1%, 1% and 10%. These data are obtained from the reliability test of intermittent conducting operation.)

Fig. 3-1-18 Power cycle curve
3.2 Power Loss and Thermal Dissipation Calculation

3.2.1 Power Loss Calculation

Simple expressions for calculating average power loss are given below:

- **Scope**
  The power loss calculation intends to provide users a way of selecting a matched power device for their VVVF inverter application. However, it is not expected to use for limit thermal dissipation design.

- **Assumptions**
  1. PWM controlled VVVF inverter with sinusoidal output;
  2. PWM signals are generated by the comparison of sine waveform and triangular waveform.
  3. Duty amplitude of PWM signals varies between $\frac{1-D}{2} \sim \frac{1+D}{2}$ (%/100), (D: modulation depth).
  4. Output current various with $I_{cp} \cdot \sin x$ and it does not include ripple.
  5. Power factor of load output current is $\cos \theta$, ideal inductive load is used for switching.

- **Expressions Derivation**
  PWM signal duty is a function of phase angle $x$ as $\frac{1 + D \times \sin x}{2}$ which is equivalent to the output voltage variation. From the power factor $\cos \theta$, the output current and its corresponding PWM duty at any phase angle $x$ can be obtained as below:

  \[
  Output \ current = I_{cp} \times \sin x \\
  PWM \ Duty = \frac{1 + D \times \sin(x + \theta)}{2}
  \]

  Then, $V_{CE(sat)}$ and $V_{EC}$ at the phase $x$ can be calculated by using a linear approximation:

  \[
  V_{ce(sat)} = V_{ce(sat)}(\star I_{cp} \times \sin x) \\
  V_{ec} = (-1) \times V_{ec(\star I_{cp}(= I_{cp}) \times \sin x)}
  \]

  Thus, the static loss of IGBT is given by:

  \[
  \frac{1}{2\pi} \int_{0}^{\pi} (I_{cp} \times \sin x) \times V_{ce(sat)}(\star I_{cp} \times \sin x) \times \frac{1 + D \sin(x + \theta)}{2} \cdot dx
  \]

  Similarly, the static loss of free-wheeling diode is given by:

  \[
  \frac{1}{2\pi} \int_{\pi}^{2\pi} (-1) \times I_{cp} \times \sin x)(-1) \times V_{ec(\star I_{cp} \times \sin x)} \times \frac{1 + D \sin(x + \theta)}{2} \cdot dx
  \]

  On the other hand, the dynamic loss of IGBT, which does not depend on PWM duty, is given by:

  \[
  \frac{1}{2\pi} \int_{0}^{\pi} (P_{sw(on)}(\star I_{cp} \times \sin x) + P_{sw(off)}(\star I_{cp} \times \sin x)) \times f_c \cdot dx
  \]
FWDi recovery characteristics can be approximated by the ideal curve shown in Fig.3-2-1, and its
dynamic loss can be calculated by the following expression:

\[ P_{SW} = \frac{I_{rr} \times V_{cc} \times t_{rr}}{4} \]

Recovery occurs only in the half cycle of the output current, thus the dynamic loss is calculated by:

\[
\frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} I_{rr}(\@I_{cp} \times \sin x) \times V_{cc} \times t_{rr}(\@I_{cp} \times \sin x) \times f_{c} \cdot dx \\
= \frac{1}{8} \int_{\rho}^{2\pi} I_{rr}(\@I_{cp} \times \sin x) \times V_{cc} \times t_{rr}(\@I_{cp} \times \sin x) \times f_{c} \cdot dx
\]

- Attention of applying the power loss simulation for inverter designs
  - Divide the output current period into fine-steps and calculate the losses at each step based on the
    actual values of PWM duty, output current, \( V_{CE(sat)} \), \( V_{EC} \), and \( P_{sw} \) corresponding to the output
    current. The worst condition is most important.
  - PWM duty depends on the signal generating way.
  - The relationship between output current waveform or output current and PWM duty changes with
    the way of signal generating, load, and other various factors. Thus, calculation should be carried
    out on the basis of actual waveform data.
  - \( V_{CE(sat)} \), \( V_{EC} \) and \( P_{sw(on, off)} \) should be the values at \( T_{j}=125^\circ C \).
3.2.2 Temperature Rise Considerations and Calculation Example

Fig. 3-2-2 shows the typical characteristics of allowable motor rms current versus carrier frequency under the following inverter operating conditions based on power loss simulation results.

Conditions: $V_{CC}=300V$, $V_o=V_{DB}=15V$, $V_{CE(sat)}=\text{Typ.}$, Switching loss=Typ., $T_j=125^\circ C$, $T_c=100^\circ C$, $R_{th(j-c)}=\text{Max.}$, $P.F=0.8$, 3-phase PWM modulation, 60Hz sine waveform output

![Fig. 3-2-2 Effective current-carrier frequency characteristics](image)

Fig. 3-2-2 shows an example of estimating allowable inverter output rms current under different carrier frequency and permissible maximum operating temperature condition ($T_c=100^\circ C$, $T_j=125^\circ C$). The results may change for different control strategy and motor types. Anyway please ensure that there is no large current over device rating flowing continuously.

The inverter loss can be calculated by the free power loss simulation software is uploaded to the web site. URL: [http://www.MitsubishiElectric.com/semiconductors/](http://www.MitsubishiElectric.com/semiconductors/)

![Fig. 3-2-3 Loss simulator screen image](image)
3.2.3 Installation of thermocouple

Installation of thermocouple for measurement of DIPIPM case temperature is shown below.

Point for installing thermocouple in heat sink is shown in Fig.3-2-4. In some control schemes, temperature measurement point at the following may not be highest case temperature. In such cases, it is necessary to change the measurement point to that under the highest power chip. (Refer previous figure of power chip position.)

![Diagram of thermocouple installation](image)

Fig. 3-2-4 Point for installing thermocouple in external heat sink

Installation of thermocouple is shown in Fig. 3-2-5. After making a hole under the chip with largest loss into the heat sink, the thermocouple is inserted in this hole and fixed by hammering around the hole with a centerpunch. After fixing the thermocouple, please sandpaper the thermocouple installing surface to make flat surface.

![Diagram of thermocouple installation process](image)

Fig. 3-2-5 Example of installation of thermocouple
3.3 Noise and ESD Withstand Capability

3.3.1 Evaluation Circuit of Noise Withstand Capability

Mini DIPIPM series have been confirmed to be with over +/-2.0kV noise withstand capability by the noise evaluation under the conditions shown in Fig.3-3-1. However, noise withstand capability greatly depends on the test environment, the wiring patterns of control substrate, parts layout, and other factors; therefore an additional confirmation on prototype is necessary.

Note:
C1: AC line common-mode filter 4700pF, PWM signals are input from microcomputer by using opto-couplers, 15V single power supply, Test is performed with IM

Test conditions
Vcc=300V, Vd=15V, Ta=25°C, no load
Scheme of applying noise: From AC line (R, S, T), Period T=16ms, Pulse width tw=0.05-1μs, input in random

3.3.2 Countermeasures and Precautions

DIPIPM improves noise withstand capabilities by means of reducing parts quantity, lowering internal wiring parasitic inductance, and reducing leakage current. But when the noise affects on the control terminals of DIPIPM (due to wiring pattern on PCB), the short circuit or malfunction of SC protection may occur. In that case, below countermeasures are recommended.

Figure 3-3-2 Example of countermeasures for inverter part

- Increase the capacitance of C2 and locate it as close to the terminal as possible.
- Insert the RC filter
- Increase the capacitance of C4 with keeping the same time constant R1·C4, and locate the C4 as close to the terminal as possible.
3.3.3 Static Electricity Withstand Capability

DIPIPM has been confirmed to be with typical +/-1kV or more withstand capability against static electricity from the following tests shown in Fig.3-3-3, 4. HBM method: C=100pF, R=1.5kΩ.

Conditions: Surge voltage is increased by 0.1kV step and only one surge pulse is impressed at each voltage. (Limit voltage of surge simulator: ±4.0kV, Judgment method; change in V-I characteristic)
CHAPTER 4 Bootstrap Circuit Operation

4.1 Bootstrap Circuit Operation

For three phase inverter circuit driving, normally four isolated control supplies (three for P-side driving and one for N-side driving) are necessary. But using floating control supply with bootstrap circuit can reduce the number of isolated control supplies from four to one (N-side control supply).

Bootstrap circuit consists of a bootstrap diode (BSD), a bootstrap capacitor (BSC) and a current limiting resistor. (Mini DIPIPM Ver.7 series integrates BSD and limiting resistor and can make bootstrap circuit by adding outer BSC only.) It uses the BSC as a control supply for driving P-side IGBT. The BSC supplies gate charge when P-side IGBT turning ON and circuit current of logic circuit on P-side driving IC. (Fig.4-1-2) Since a capacitor is used as substitute for isolated supply, its supply capability is limited. This floating supply driving with bootstrap circuit is suitable for small supply current products like DIPIPM.

Charge consumed by driving circuit is re-charged from N-side 15V control supply to BSC via current limiting resistor and BSD when voltage of output terminal (U, V or W) goes down to GND potential in inverter operation. But there is the possibility that enough charge doesn't perform due to the conditions such as switching sequence, capacitance of BSC and so on. Deficient charge leads to low voltage of BSC and might work under voltage protection (UV). This situation makes the loss of P-side IGBT increase by low gate voltage or stop switching. So it is necessary to consider and evaluate enough for designing bootstrap circuit. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual".

The BSD characteristics for Mini DIPIPM Ver.7 series and the circuit current characteristics in switching situation of P-side IGBT are described as below.
4.2 Bootstrap Supply Circuit Current at Switching State

Bootstrap supply circuit current $I_{DB}$ at steady state is maximum 0.55mA. But at switching state, because gate charge and discharge are repeated by switching, the circuit current exceeds 0.55mA and increases proportional to carrier frequency. For reference, Fig.4-2-1~3 show typical $I_{DB}$ - carrier frequency $f_c$ characteristics for PSSxxS73F6. (Conditions: $V_D=V_{DB}=15V$, $T_j=125^\circ C$)

![Fig.4-2-1 $I_{DB}$ vs. Carrier frequency for PSS20S73F6](image)

![Fig.4-2-2 $I_{DB}$ vs. Carrier frequency for PSS30S73F6](image)

![Fig.4-2-3 $I_{DB}$ vs. Carrier frequency for PSS50S73F6](image)
4.3 Note for designing the bootstrap circuit

When each device for bootstrap circuit is designed, it is necessary to consider various conditions such as temperature characteristics, change by lifetime, variation and so on. Note for designing these devices are listed as below. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual".

(1) Bootstrap capacitor

Electrolytic capacitors are used for BSC generally. And recently ceramic capacitors with large capacitance are also applied. But DC bias characteristic of the ceramic capacitor when applying DC voltage is considerably different from that of electrolytic capacitor. (Especially large capacitance type) Some differences of capacitance characteristics between electrolytic and ceramic capacitors are listed in Table 4-3-1.

Table 4-3-1 Differences of capacitance characteristics between electrolytic and ceramic capacitors

<table>
<thead>
<tr>
<th>Temperature characteristics (Ta:-20~85°C)</th>
<th>Electrolytic capacitor</th>
<th>Ceramic capacitor (large capacitance type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum type: Low temp.: -10% High temp: +10%</td>
<td>Different due to temp. characteristics rank</td>
<td></td>
</tr>
<tr>
<td>Conductive polymer aluminum solid type: Low temp.: -5% High temp: +10%</td>
<td>Low temp.: -5%~0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High temp.: -5%~10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in the case of B,X5R,X7R ranks)</td>
<td></td>
</tr>
<tr>
<td>DC bias characteristics (Applying DC15V)</td>
<td>Nothing within rating voltage</td>
<td>Different due to temp. characteristics, rating voltage, package size and so on</td>
</tr>
<tr>
<td></td>
<td>-70%~15%</td>
<td></td>
</tr>
</tbody>
</table>

DC bias characteristic of electrolytic capacitor is not matter. But it is necessary to note ripple capability by repetitive charge and discharge, life time which is greatly affected by ambient temperature and so on. Above characteristics are just example data which are obtained from the WEB, please refer to the capacitor manufacturers about detailed characteristics.

(2) Bootstrap diode

Mini DIPIPM integrates bootstrap diodes for P-side driving supply. This BSD incorporates current limiting resistor (typ. 20Ω). The $V_F-IF$ characteristics (including voltage drop by built-in current limiting resistor) is shown in Fig.4-3-1 and Table 4-3-2.

![Fig.4-3-1 $V_F-IF$ curve for bootstrap Diode (The right figure is enlarged view)](image)

Table 4-3-2 Electric characteristics of built-in bootstrap diode

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap Di forward voltage</td>
<td>$V_F$</td>
<td>$I_F=10mA$ including voltage drop by limiting resistor</td>
<td>0.5</td>
<td>0.9</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>Built-in limiting resistance</td>
<td>$R$</td>
<td>Included in bootstrap Di</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>Ω</td>
</tr>
</tbody>
</table>
4.4 Initial charging in bootstrap circuit

In the case of applying bootstrap circuit, it is necessary to charge to the BSC initially because voltage of BSC is 0V at initial state or it may go down to the trip level of under voltage protection after long suspending period (even 1s). BSC charging is performed by turning on all N-side IGBT normally. When outer load (e.g. motor) is connected to the DIPIPM, BSC charging may be performed by turning on only one phase N-side IGBT since potential of all output terminals will go down to GND level through the wiring in the motor. But its charging efficiency might become lower due to some cause. (e.g. wiring resistance of motor)

There are mainly two procedures for BSC charging. One is performed by one long pulse, and another is conducted by multiple short pulses. Multi pulse method is used when there are some restriction like control supply capability and so on.

Initial charging needs to be performed until voltage of BSC exceeds recommended minimum supply voltage 13V. (It is recommended to charge as high as possible with consideration for voltage drop between the end of charging and start of inverter operation.)

After BSC was charged, it is recommended to input one ON pulse to the P-side input for reset of internal IC state before starting system. Input pulse width is needed to be longer than allowable minimum input pulse width PWIN(on). (e.g. 0.7μs or more for PSSxxS73F6 and 1.0μs or more for PSSxxS51F6. Refer the datasheet for each product.)
CHAPTER 5 Interface Demo Board

5.1 Super mini DIPIPM Ver.7 Interface Demo Board

This chapter describes the interface demo board (EVA16-MDIP) for Mini DIPIPM Ver.7 series. Please use the demo board for not only fist evaluation but also reference design of your actual PCB pattern.

(1) Demo Board Outline

The demo board can mount the minimum necessary components of Mini DIPIPM Ver.7 interface shown in Fig.5-1-1.

(2) Precautions of interface demo board evaluation

- EVA16-MDIP is a common interface demo board for conventional Mini DIPIPM series. Depending on the product series and your usage, it is necessary to change the connection or some parts on the board. Refer its user guide in details.
- SC protection of EVA16-MDIP hires comparator IC1 to detect output current with three shunt resistors. Please select the external shunt resistance such that the SC trip-level is less than 2 times of the current rating. For SC protection with one shunt resistor, insert jumper wires J1 and J2 to contact NU, NV and NW terminals. For common emitter configuration, it is recommended to monitor the shunt resistor voltage with Cin terminal directly, instead of using the initial overcurrent detection comparator IC1.
- EVA16-MDIP has current monitor output circuit for shunt resistors through high speed OP-amp. 3 shunt current can be detected by mounting additional OP-amp IC2 and peripheral components.
- When driving DIPIPM with the interface board, connect the board to the signal source such as MCU as short as possible.
- This evaluation board is for your quick and temporary evaluation and the following patterns and parts list are examples. We cannot guarantee the proper operation of this PCB in all case. When selecting parts and design patterns for your PCB, please comply with your design standard and consider life time, reliability and so on.
(2) Demo Board Photo (Board size: 110mmx85mm, Copper pattern thickness: 35µm)

(Note) The circuit components and printings on the board are subject to be changed without notice.

Fig.5-1-2 Demo board EVA16-MDIP photo
5.2 Circuit Schematic, Parts List and Board pattern,

(1) Circuit Schematic

- When current feedback to the MCU is required, please also arrange unimplemented OP-amp IC2, resistors and capacitors. Please refer the following parts list for the components details.

- The probe pins are prepared on the board for easier evaluation. Please be careful that the yellow probe pins are on main circuit parts or high voltage parts.
## Parts List

<table>
<thead>
<tr>
<th>#</th>
<th>Symbol</th>
<th>Parts</th>
<th>Specification</th>
<th>Type Name</th>
<th>Note</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPM1</td>
<td>DIPIPM</td>
<td>Mini DIPIPM</td>
<td>e.g. PSV&lt;sub&gt;x&lt;/sub&gt;SS1F6</td>
<td>Mitsubishi</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>IC1</td>
<td>Comparator</td>
<td>Overcurrent protection IC</td>
<td>RT8H052C</td>
<td>ISAHAYA</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>IC2</td>
<td>OP Amp</td>
<td>SR=S9Vµs, SSOPT14</td>
<td>NJU7048</td>
<td>NJR</td>
<td>(1)</td>
</tr>
<tr>
<td>4</td>
<td>Q1</td>
<td>Transistor</td>
<td>-0.2A -50V</td>
<td>IS1A602AM1</td>
<td>ISAHAYA</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>D1-3</td>
<td>Diode</td>
<td>0.8A 600V, 3.7×2.5</td>
<td>e.g. D1FK60</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D4</td>
<td>Zener Diode</td>
<td>24V 1W</td>
<td>CM2B24</td>
<td>Toshiba</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>C1,9,15-17,23</td>
<td>Capacitor</td>
<td>0.1μF 50V, 1.6x0.8</td>
<td>GRM188R71H104K1D</td>
<td>Murata</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>C2,7,13-14,19-20</td>
<td>Capacitor</td>
<td>1000pF 50V, 1.6x0.8</td>
<td>GRM188R71H102K</td>
<td>Murata</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>C8</td>
<td>Capacitor</td>
<td>1000pF 50V, q=811.5</td>
<td>EKY-500ELL101MB5D</td>
<td>Nichicon</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>C10-12</td>
<td>Capacitor</td>
<td>10μF 50V, q=511</td>
<td>EKY-500ELL100ME11D</td>
<td>Nichicon</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>C18</td>
<td>Capacitor</td>
<td>0.047μF 50V, 1.6x0.8</td>
<td>GRJ188R71H473KE11</td>
<td>Murata</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>C21</td>
<td>Capacitor</td>
<td>10mm pitch, TH=1</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C22</td>
<td>Capacitor</td>
<td>0.22μF 630V, 5.7x5.0</td>
<td>GRM55DR72J224K910L</td>
<td>Murata</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>C24-25</td>
<td>Capacitor</td>
<td>0.1μF 50V, 1.6x0.8</td>
<td>e.g. GRM188R71H104K1D</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R1-6</td>
<td>Resistor</td>
<td>1/16W 100Ω ±1%</td>
<td>CR1/16W101F</td>
<td>Hokuriku Denko</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>R7,13</td>
<td>Resistor</td>
<td>1/16W 5.1kΩ ±1%</td>
<td>CR1/16W512F</td>
<td>Hokuriku Denko</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>R8</td>
<td>Resistor</td>
<td>1/16W 2.2kΩ ±1%</td>
<td>CR1/16W222F</td>
<td>Hokuriku Denko</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>R9</td>
<td>Resistor</td>
<td>1/16W 2.7kΩ ±1%</td>
<td>CR1/16W272F</td>
<td>Hokuriku Denko</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>R10</td>
<td>Resistor</td>
<td>1/16W 4.7kΩ ±1%</td>
<td>CR1/16W472F</td>
<td>Hokuriku Denko</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>R11,19-21</td>
<td>Resistor</td>
<td>1/16W 1kΩ ±1%</td>
<td>CR1/16W102F</td>
<td>Hokuriku Denko</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>R12,15-17,34-36,39-40</td>
<td>Resistor</td>
<td>1/16W 10kΩ ±1%</td>
<td>e.g. CR1/16W103D</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>R14</td>
<td>Resistor</td>
<td>1/16W 47Ω ±1%</td>
<td>CR1/16W471F</td>
<td>Hokuriku Denko</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>R18</td>
<td>Resistor</td>
<td>1/16W 2kΩ ±1%</td>
<td>CR1/16W202F</td>
<td>Hokuriku Denko</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>R22-24,31-33</td>
<td>Resistor</td>
<td>1/16W 1kΩ ±0.5%</td>
<td>e.g. CR1/16W102D</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>R25-27</td>
<td>Resistor</td>
<td>5W 10mΩ ±1%, 11.5x7.0</td>
<td>SLN55TE10L</td>
<td>KOA</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>R28-30</td>
<td>Resistor</td>
<td>Current shunt, 11.5x7.0</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>R37</td>
<td>Resistor</td>
<td>1/16W 33kΩ ±1%</td>
<td>CR1/16W333F</td>
<td>KOA</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>R38</td>
<td>Resistor</td>
<td>1/16W 1.2kΩ ±1%</td>
<td>CR1/16W122F</td>
<td>KOA</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>JP1-2</td>
<td>Jumper</td>
<td>2.5mm pitch, TH=1</td>
<td>B9B-PH-K-S</td>
<td>JST</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>CON1</td>
<td>Connector</td>
<td>2mm pitch</td>
<td>B3B-PH-K-S</td>
<td>JST</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>CON2</td>
<td>Connector</td>
<td>2mm pitch</td>
<td>B3P-VH</td>
<td>JST</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>CON3</td>
<td>Connector</td>
<td>3.96mm pitch</td>
<td>B3P-VH</td>
<td>JST</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>T1,2</td>
<td>Tab</td>
<td>187 series</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note1) Mini DIPIPM (No.1), IC2 (No.3), D1-3 (No.5), C21 (No.12), C24-25 (No.14), R12,15-17,34-36,39-40 (No.21), R22-24,31-33 (No.24), R28-30 (No.26), JP1-2 (No.29) are not mounted.

(Note2) Snap fit connectors for CON1 (No.30), CON2 (No.31) and CON3 (No.32) are enveloped.
Each lead lengths are 100mm.

(3) Pattern diagram

![Component side](image1)

![Back side](image2)

Fig.5-2-1 Demo board component layout (DIPIPM is mounted to back side.)
CHAPTER 6 PACKAGE HANDLING

6.1 Packaging Specification

Spacers are put on the top and bottom of the box. If there is some space on top of the box, additional buffer materials are also inserted.

Fig.6-1 Packaging Specification
## 6.2 Handling Precautions

| Transportation  | · Put package boxes in the correct direction. Putting them upside down, leaning them or giving them uneven stress might cause electrode terminals to be deformed or resin case to be damaged.  
|                 | · Throwing or dropping the packaging boxes might cause the devices to be damaged.  
|                 | · Wetting the packaging boxes might cause the breakdown of devices when operating. Pay attention not to wet them when transporting on a rainy or a snowy day. |
| Storage         | · We recommend temperature and humidity in the ranges 5-35°C and 45-75%, respectively, for the storage of modules. The quality or reliability of the modules might decline if the storage conditions are much different from the above. |
| Long storage    | · When storing modules for a long time (more than one year), keep them dry. Also, when using them after long storage, make sure that there is no visible flaw, stain or rust, etc. on their exterior. |
| Surroundings    | · Keep modules away from places where water (including dew condensation) or organic solvent may attach to them directly or where corrosive gas, explosive gas, fine dust or salt, etc. may exist. They might cause serious problems. |
| Flame resistance| · The epoxy resin and the case materials are flame-resistant type (UL standard 94-V0), but they are not noninflammable. |
| Static electricity| · ICs and power chips with MOS gate structure are used for the DIPIPM power modules. Please keep the following notices to prevent modules from being damaged by static electricity. |
|                 | (1) Precautions against the device destruction caused by the ESD  
|                 | The ESD of human bodies and packaging and/or excessive voltage applied across the gate to emitter may damage and destroy devices. The basis of anti-electrostatic is to inhibit generating static electricity possibly and quick dissipation of the charged electricity.  
|                 | · Containers that charge static electricity easily should not be used for transit and for storage.  
|                 | · Terminals should be always shorted with a carbon cloth or the like until just before using the module. Never touch terminals with bare hands.  
|                 | · Should not be taking out DIPIPM from tubes until just before using DIPIPM and never touch terminals with bare hands.  
|                 | · During assembly and after taking out DIPIPM from tubes, always earth the equipment and your body. It is recommended to cover the work bench and its surrounding floor with earthed conductive mats.  
|                 | · When the terminals are open on the printed circuit board with mounted modules, the modules might be damaged by static electricity on the printed circuit board.  
|                 | · If using a soldering iron, earth its tip.  
|                 | (2) Notice when the control terminals are open  
|                 | · When the control terminals are open, do not apply voltage between the collector and emitter. It might cause malfunction.  
|                 | · Short the terminals before taking a module off. |
Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer’s compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer’s technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer’s research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it’s applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.
Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
• Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).
• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
• The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

© MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.
DIPIPM and CSTBT are registered trademarks of MITSUBISHI ELECTRIC CORPORATION.