CHAPTER 1 INTRODUCTION ... 2
 1.1 Features of Super mini DIPIPM Ver.7 ... 2
 1.2 Functions .. 2
 1.3 Target Applications .. 3
 1.4 Product Line-up ... 4
 1.5 The Differences between Previous Series and This Series (PSS**S93*6) ... 4

CHAPTER 2 SPECIFICATIONS AND CHARACTERISTICS .. 7
 2.1 Super Mini DIPIPM Ver.7 Specifications .. 7
 2.1.1 Maximum Ratings ... 7
 2.1.2 Thermal Resistance ... 9
 2.1.3 Electric Characteristics and Recommended Conditions .. 10
 2.1.4 Mechanical Characteristics and Ratings ... 13
 2.2 Protective Functions and Operating Sequence ... 14
 2.2.1 Short Circuit Protection ... 14
 2.2.2 Control Supply UV Protection .. 16
 2.2.3 OT Protection (PSS**S93F6-* only) ... 16
 2.2.4 Temperature output function VΟUT (PSS**S93F6-* only) ... 19
 2.3 Package Outlines .. 24
 2.3.1 Package outlines .. 24
 2.3.2 Marking ... 25
 2.3.3 Terminal Description .. 26
 2.4 Mounting Method ... 28
 2.4.1 Electric Spacing .. 28
 2.4.2 Mounting Method and Precautions ... 28
 2.4.3 Soldering Conditions .. 29

CHAPTER 3 SYSTEM APPLICATION GUIDANCE .. 30
 3.1 Application Guidance .. 30
 3.1.1 System connection .. 30
 3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor) .. 31
 3.1.3 Interface Circuit (Example of Optocoupler Isolated Interface) ... 32
 3.1.4 External SC Protection Circuit with Using Three Shunt Resistors .. 33
 3.1.5 Circuits of Signal Input Terminals and Feedback Terminals .. 33
 3.1.6 Snubber Circuit ... 35
 3.1.7 Recommended Wiring Method around Shunt Resistor .. 35
 3.1.8 Precaution for Wiring on PCB ... 37
 3.1.9 Parallel operation of DIPIPM ... 38
 3.1.10 SOA of DIPIPM Ver.7 .. 38
 3.1.11 SC SOA .. 39
 3.1.12 Power Life Cycles .. 41
 3.2 Power Loss and Thermal Dissipation Calculation .. 42
 3.2.1 Power Loss Calculation .. 42
 3.2.2 Temperature Rise Considerations and Calculation Example ... 44
 3.2.3 Installation of thermocouple .. 45
 3.3 Noise and ESD Withstand Capability .. 46
 3.3.1 Evaluation Circuit of Noise Withstand Capability .. 46
 3.3.2 Countermeasures and Precautions .. 46
 3.3.3 Static Electricity Withstand Capability ... 47

CHAPTER 4 Bootstrap Circuit Operation .. 48
 4.1 Bootstrap Circuit Operation ... 48
 4.2 Bootstrap Supply Circuit Current at Switching State .. 49
 4.3 Note for designing the bootstrap circuit .. 50
 4.4 Initial charging in bootstrap circuit ... 52

CHAPTER 5 Interface Demo Board .. 53
 5.1 Super mini DIPIPM Ver.7 Interface Demo Board .. 53
 5.2 Circuit Schematic, Parts List and Board pattern ... 55

CHAPTER 6 PACKAGE HANDLING ... 57
 6.1 Packaging Specification ... 57
 6.2 Handling Precautions ... 58
CHAPTER 1 INTRODUCTION

1.1 Features of Super mini DIPIPM Ver.7
Super Mini DIPIPM Ver.7 (hereinafter called DIPIPM Ver.7) is an ultra-compact intelligent power module with transfer mold package favorable for larger mass production. Power chips, drive and protection circuits are integrated in a module, which makes it easy for AC100-240V class low power motor inverter control.

DIPIPM Ver.7 takes over the functions of conventional DIPIPM Ver.6 (such as incorporating bootstrap diode with resistor, analog temperature signal output), additionally, DIPIPM Ver.7 is improved more.

Main features of DIPIPM Ver.7 are as below.

- Newly developed low noise 7th generation CSTBT are integrated for reducing noise level with same efficiency compared with DIPIPM Ver.6. It achieves system cost reduction for noise suppression parts.
- Operating junction temperature is expanded to 150°C and maximum junction temperature is expanded to 175°C. It can boost up instantaneous over current capability at overload operation.
- The wider shape of terminal root part contributes to improve the terminal strength and to suppress the temperature rise of the soldered part during inverter operation.
- Expanding line-up up to 40A.
- Easy to replace from conventional series due to high pin compatibility.

About detailed differences, please refer Section 1.5. Fig.1-1-1 and Fig.1-1-2 show the outline and internal cross-section structure respectively.

1.2 Functions
DIPIPM Ver.7 has following functions and inner block diagram as described in Fig.1-2-1.
- For P-side IGBTs:
 - Drive circuit;
 - High voltage level shift circuit;
 - Control supply under voltage (UV) lockout circuit (without fault signal output).
 - Built-in bootstrap diode (BSD) with current limiting resistor
- For N-side IGBTs:
 - Drive circuit;
 - Short circuit (SC) protection circuit (by inserting external shunt resistor into main current path)
 - Control supply under voltage (UV) lockout circuit (with fault signal output)
 - Over temperature (OT) protection by monitoring LVIC temperature. (PSS**S93E6-AG series only)
 - Outputting LVIC temperature by analog signal (PSS**S93F6-AG series only)
- Fault Signal Output
 - Corresponding to N-side IGBT SC, N-side UV and OT protection. (OT: PSS**S93E6-AG series only)
- IGBT Drive Supply
 - Single DC15V power supply (in the case of using bootstrap method)
- Control Input Interface
 - Schmitt-triggered 3V, 5V input compatible, high active logic.
- UL recognized
 - UL 1557 File E323585
1.3 Target Applications

Motor drives for household electric appliances, such as air conditioners, washing machines, refrigerators
Low power industrial motor drive except automotive applications
1.4 Product Line-up

Table 1-4-1 DIPIPM Ver.7 Line-up with temperature output function

<table>
<thead>
<tr>
<th>Type Name</th>
<th>IGBT Rating</th>
<th>Motor Rating (Note1)</th>
<th>Isolation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS15S93F6-AG</td>
<td>15A/600V</td>
<td>0.75kW/220VAC</td>
<td>V_{iso} = 1500Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Sine 60Hz, 1min All shorted pins-heat sink)</td>
</tr>
<tr>
<td>PSS20S93F6-AG</td>
<td>20A/600V</td>
<td>1.5kW/220VAC</td>
<td></td>
</tr>
<tr>
<td>PSS30S93F6-AG</td>
<td>30A/600V</td>
<td>2.2kW/220VAC</td>
<td></td>
</tr>
<tr>
<td>PSS40S93F6-AG</td>
<td>40A/600V</td>
<td>2.2kW/220VAC</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-4-2 DIPIPM Ver.7 Line-up with over temperature protection function

<table>
<thead>
<tr>
<th>Type Name</th>
<th>IGBT Rating</th>
<th>Motor Rating (Note1)</th>
<th>Isolation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS15S93E6-AG</td>
<td>15A/600V</td>
<td>0.75kW/220VAC</td>
<td>V_{iso} = 1500Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Sine 60Hz, 1min All shorted pins-heat sink)</td>
</tr>
<tr>
<td>PSS20S93E6-AG</td>
<td>20A/600V</td>
<td>1.5kW/220VAC</td>
<td></td>
</tr>
<tr>
<td>PSS30S93E6-AG</td>
<td>30A/600V</td>
<td>2.2kW/220VAC</td>
<td></td>
</tr>
<tr>
<td>PSS40S93E6-AG</td>
<td>40A/600V</td>
<td>2.2kW/220VAC</td>
<td></td>
</tr>
</tbody>
</table>

Note 2: The motor ratings are simulation results under following conditions: V_{AC}=220V, V_{D}=V_{DB}=15V, T_c=100°C, T_j=125°C, f_{PWM}=5kHz, P.F=0.8, motor efficiency=0.75, current ripple ratio=1.05, motor over load 150% 1min.

1.5 The Differences between Previous Series and This Series (PSS**S93*6-AG)

DIPIPM Ver.7 has some differences against conventional series (PS219A*, PS219B* and PSS*S92*6-AG). Main differences are described as follows. Refer each product datasheets for further information.

Table 1-5-1 Differences of maximum ratings

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>PS219A* Ver.4 with BSD</th>
<th>PS219B* Ver.5</th>
<th>PSS**S92*6-AG Ver.6</th>
<th>PSS**S93*6-AG Ver.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction temperature</td>
<td>T_j</td>
<td>-30~+150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation junction temperature</td>
<td>T_{jop}</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{max}</td>
<td>-</td>
<td></td>
<td></td>
<td>Max. 175°C ¹ ¹</td>
</tr>
<tr>
<td>Module case operation temperature</td>
<td>T_C</td>
<td>-30~+100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The maximum junction temperature rating of built-in power chips is 175°C(@T_c≤125°C). However, to ensure safe operation of DIPIPM, the average junction temperature should be limited to T_j(Ave)≤150°C (@T_c≤125°C).

About 175°C Operation:

Maximum junction temperature: 175°C is assumed only for instantaneous operation like overload condition. For continuous operation, please design your system at average junction temperature: 150°C or less. It is also necessary to consider its lifetime by the repeated temperature changes.

Table 1-5-2 Differences of specifications and functions

<table>
<thead>
<tr>
<th>Items</th>
<th>PS219A* Ver.4 with BSD</th>
<th>PS219B* Ver.5</th>
<th>PSS**S92*6-AG Ver.6</th>
<th>PSS**S93*6-AG Ver.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in bootstrap diodes ¹ ¹</td>
<td>Built-in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature protection</td>
<td>OT (-T)</td>
<td>OT or VOT ² ¹ ³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy terminal (Compare with PS2196* ³ ³)</td>
<td>Add one terminal (No. 1-B pin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-side IGBT emitter terminal</td>
<td>Common / Open</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Ver.5, Ver.6 and Ver.7 series have built-in bootstrap diode (BSD) with current limiting resistor. So there aren’t any limitation about bootstrap capacitance like PS219A* has (22μF or less in the case of one long pulse initial charging).

Note 2: Temperature protection function of both Ver.5, Ver.6 and Ver.7 series is selectable from two functions. (They have different model numbers.) One is conventional over temperature protection (OT), and the other is LVIC temperature output function (VOT). OT function shutdowns all N-side IGBTs automatically when LVIC temperature exceeds specified value...
(For Ver.5 and Ver.6 series: typ.120°C, for Ver.7 series: typ. 140°C). But VOVT function cannot shutdown by itself in that case. So it is necessary for system controller to monitor this VOVT output and shutdown when the temperature reaches the protection level.

Note 3: Because of incorporating bootstrap diodes, a part of package was changed. (Just one dummy terminal was added) But its package size, pin assignment and pin number weren’t changed, so the same PCB can be used with small modification when replacing from Super mini DIPIPM Ver.4. (External bootstrap diodes and current limit resistors should be removed in the case of replacing from PS2196*). And also if N-side common emitter type was used in former PCB, it is necessary to change wiring from common emitter to open emitter wiring because of both DIPIPM Ver.5 and DIPIPM Ver.6 have open emitter type only.

<table>
<thead>
<tr>
<th>Table 1-5-4 Differences of specifications and recommended operating conditions (Less than 20A products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Circuit current for P-side driving</td>
</tr>
<tr>
<td>Circuit current for P-side driving</td>
</tr>
<tr>
<td>Bootstrap Di forward voltage</td>
</tr>
<tr>
<td>Fault output current</td>
</tr>
<tr>
<td>Arm-shoot-through blocking time</td>
</tr>
<tr>
<td>Allowable minimum input pulse width</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1-5-5 Differences of specifications and recommended operating conditions (More than 30A products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Circuit current for P-side driving</td>
</tr>
<tr>
<td>Circuit current for P-side driving</td>
</tr>
<tr>
<td>Bootstrap Di forward voltage</td>
</tr>
<tr>
<td>Fault output current</td>
</tr>
<tr>
<td>Arm-shoot-through blocking time</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Allowable minimum input pulse width</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note 1: When inputting shorter pulse than PWIN(on), DIPIPM might not make response. DIPIPM might make delayed response or no response for the input signal with off pulse width less than PWIN(off). Moreover, in case of rated current or more, DIPIPM might make delayed response even for input signal with off pulse more than PWIN(off), Please refer below about delayed response. Please refer below about delayed response.

Note 2: IPM might make delayed response or no response for the input signal with off pulse width less than PWIN(off). Please refer below about delayed response (Ver.6 30~35A products only). In case of 5~20A products IPM might not make response. Refer the datasheet for each product.

Delayed Response against Shorter Input Off Signal than PWIN(off) (P-side only)

![Diagram](image-url)
Table 1-5-6 Improved points of Ver.7 series from former products (e.g. Comparison of each 15A products)

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>PS219A4 Ver.4 with BSD</th>
<th>PS219C4 Ver.5</th>
<th>PSS15S92*6-AG Ver.6</th>
<th>PSS15S93*6-AG Ver.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation voltage</td>
<td>$V_{CE(sat)}$ 1)</td>
<td>Max. 2.0V @15A ⦿</td>
<td>Max. 2.05V @15A ⦿</td>
<td>Max. 2.05V @15A ⦿</td>
<td>Max. 2.05V @15A ⦿</td>
</tr>
<tr>
<td>Short circuit trip level</td>
<td>$V_{SC(ref)}$ 2)</td>
<td>0.48V±0.05V ⦿</td>
<td>0.48V±0.025V ⦿</td>
<td>⦿</td>
<td>⦿</td>
</tr>
<tr>
<td>Over temperature protection Trip level</td>
<td>O_T 3)</td>
<td>Typ.120°C ⦿</td>
<td>⦿</td>
<td>⦿</td>
<td>Typ.140°C ⦿</td>
</tr>
</tbody>
</table>

Note 1: $V_{CE(sat)}$ specification at one tenth of the rated current is added since Ver.6 and Ver.7 series to care room air conditioner system efficiency at low power operation which will affect APF (annual performance factor).

Note 2: Short circuit trip level tolerance of Ver.6 is improved to 0.48±5%. By this improvement, Ver.6 has wider overload operating range. If short circuit protection is applied to the protection for demagnetization of motor, wider overload operating range can be realized due to improve trip level tolerance as in Fig.1-5-1.

Note 3: Condition: $V_D=15V$, detected by LVIC temperature.

When the LVIC temperature exceeds the OT protection trip level (O_T), all N-side IGBTs turn OFF in spite of control input condition and Fo outputs. For Ver.7 series, the OT protection trip level is also expanded to typ.140°C from typ. 120°C of conventional series because the maximum rating of junction temperature T_J and case temperature T_C are expanded. In that case if the heatsink dropped off or fixed loosely, don’t reuse that DIPIPM. There is a possibility that junction temperature of power chips exceeded its maximum junction temperature (For Ver.5 and Ver.6 series: 150°C, for Ver.7 series: 175°C).

Fig.1-5-1 Comparison of fluctuation of short circuit trip level

For more detail and the other characteristics, please refer the datasheet for each product.
CHAPTER 2 SPECIFICATIONS AND CHARACTERISTICS

2.1 Super Mini DIPIPM Ver.7 Specifications

DIPIPM Ver.7 specifications are described below by using PSS15S93*6-AG (15A/600V) as an example. Please refer to respective datasheets for the detailed description of other types.

2.1.1 Maximum Ratings

The maximum ratings of PSS15S93*6-AG (15A/600V) are shown in Table 2-1-1. (Tj = 25°C, unless otherwise noted)

Table 2-1-1 Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>Applied between P-NU,NV,NW</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>VCC(surge)</td>
<td>Supply voltage (surge)</td>
<td>Applied between P-NU,NV,NW</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>VCES</td>
<td>Collector-emitter voltage</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>±IC</td>
<td>Each IGBT collector current</td>
<td>Tj = 25°C</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>±ICp</td>
<td>Each IGBT collector current (peak)</td>
<td>Tj = 25°C, less than 1ms</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>TJop</td>
<td>Operating Junction temperature</td>
<td>Continuous operation</td>
<td>-30~+150</td>
<td>°C</td>
</tr>
<tr>
<td>Tmax</td>
<td>Maximum Junction temperature</td>
<td>Temporarily operation (e.g. overload)</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Pulse width and period are limited due to junction temperature.
Note2: The average junction temperature should be limited to Tj(Ave)=150°C (@Tcs=125°C).

CONTROL (PROTECTION) PART

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td>Control supply voltage</td>
<td>Applied between Vcc, Vcc, Vcc</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Vce</td>
<td>Control supply voltage</td>
<td>Applied between Vce, Vce, Vce</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Vio</td>
<td>Input voltage</td>
<td>Applied between Uo, Vo, Wu, Uo, Vu, Wu-Vcc</td>
<td>-0.5~Vcc+0.5</td>
<td>V</td>
</tr>
<tr>
<td>Vfo</td>
<td>Fault output supply voltage</td>
<td>Applied between F0-Vcc</td>
<td>-0.5~Vcc+0.5</td>
<td>V</td>
</tr>
<tr>
<td>Vsc</td>
<td>Current sensing input voltage</td>
<td>Applied between Cin-Vcc</td>
<td>-0.5~Vcc+0.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC(prot)</td>
<td>Self protection supply voltage limit</td>
<td>Vcc = 13.5~16.5V, Inverter Part</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Tc</td>
<td>Module case operation temperature</td>
<td>Measurement point of Tc is provided in the following figure</td>
<td>-30~+125</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage temperature</td>
<td>-40~+125 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viso</td>
<td>Isolation voltage</td>
<td>60Hz, Sinusoidal, AC 1min, between connected all pins and heat sink plate</td>
<td>1500</td>
<td>Vrms</td>
</tr>
</tbody>
</table>

(1) Vcc The maximum voltage can be biased between P-N. A voltage suppressing circuit such as a brake circuit is necessary if P-N voltage exceeds this value.
(2) Vcc(surge) The maximum P-N surge voltage in switching state. If P-N voltage exceeds this voltage, a snubber circuit is necessary to absorb the surge under this voltage.
(3) VCES The maximum sustained collector-emitter voltage of built-in IGBT.
(4) +/-IC The allowable current flowing into collect electrode (@Tc=25°C). Pulse width and period are limited due to junction temperature Tj.
(5) Tj The maximum junction temperature rating is 175°C. But for safe operation, it is recommended to limit the average junction temperature up to 150°C(@Tcs=125°C). Repetitive temperature variation ΔTj affects the life time of power cycle, so refer lifetime curves for safety design.
(6) Vcc(prot) The maximum supply voltage for turning off IGBT safely in the case of an SC or OC fault. The power chip might be damaged if supply voltage exceeds this specification.
(7) Isolation voltage Isolation voltage of Super mini DIPIPM is the voltage between all shorted pins and copper surface of DIPIPM. The maximum rating of isolation voltage of Super mini DIPIPM is 1500Vrms. But if such as convex shape heat radiation fin will be used for enlarging clearance between outer terminals and heat radiation fin (2.5mm or more is recommended), it is able to correspond isolation voltage 2500Vrms. Super mini DIPIPM is recognized by UL at the condition 2500Vrms with pedestal shape heat radiation fin.

![Diagram showing isolation voltage setup]

(8) Tc position Tc (case temperature) is defined to be the temperature just beneath the specified power chip. Please mount a thermocouple on the heat sink surface at the defined position to get accurate temperature information. Due to the control schemes such different control between P and N-side, there is the possibility that highest Tc point is different from above point. In such cases, it is necessary to change the measuring point to that under the highest power chip.

![Diagram showing power chip position]

[Power chip position]
Fig.2-1-2 indicates the position of each power chips. (This figure is the view from laser marked side.)
2.1.2 Thermal Resistance

Table 2.1.2 shows the thermal resistance of PSS15S93*6-AG (15A/600V). (Tj = 25°C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rth(j-c)</td>
<td>Junction to case thermal resistance (Note)</td>
<td>Inverter IGBT part (per 1/6 module)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rth(f-c)</td>
<td>Inverter FWDi part (per 1/6 module)</td>
<td>-</td>
<td>-</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Note: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100μm~+200μm on the contacting surface of DIPIPM and heat sink. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.3K/W (per 1/6 module, grease thickness: 20μm, thermal conductivity: 1.0W/m•K).

The above data shows the thermal resistance between chip junction and case at steady state. The thermal resistance goes into saturation in about 10 seconds. The unsaturated thermal resistance is called as transient thermal impedance which is shown in Fig.2.1.3. Zth(j-c)* is the normalized value of the transient thermal impedance. (Zth(j-c)* = Zth(j-c) / Rth(j-c)max)

For example, the IGBT transient thermal impedance of PSS15S93*6-AG in 0.3s is 3.7×0.8=2.96K/W.

The transient thermal impedance isn’t used for constantly current, but for short period current (ms order).

(e.g. In the cases at motor starting, at motor lock...)

![Fig.2-1-3 Typical transient thermal impedance](image-url)
2.1.3 Electric Characteristics and Recommended Conditions

Table 2-1-3 shows the typical static characteristics and switching characteristics of PSS15S93*6-AG(15A/600V). (Tj = 25°C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CE(sat)})</td>
<td>Collector-emitter saturation voltage</td>
<td>(V_D=V_{DB} = 15V, V_{IN}= 5V)</td>
<td>(I_C= 15A, T_J= 25°C)</td>
<td>-</td>
</tr>
<tr>
<td>(V_{CE})</td>
<td>Forward voltage</td>
<td>(V_{IN}= 0V, -I_C= 15A)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(I_{ON})</td>
<td>Switching times</td>
<td>(V_C= 300V, V_D= V_{DB}= 15V)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(I_{OFF})</td>
<td></td>
<td>(I_C= 15A, T_J= 125°C, V_{IN}= 0--5V)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>Inductive Load (upper-lower arm)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(I_{CES})</td>
<td>Collector-emitter cut-off current</td>
<td>(V_{CE}=V_{CES})</td>
<td>(T_J= 25°C)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_J= 125°C)</td>
<td>-</td>
</tr>
</tbody>
</table>

Switching time definition and performance test method are shown in Fig.2-1-4 and 2-1-5. Switching characteristics are measured by half bridge circuit with inductance load.

Fig.2-1-4 Switching time definition
Fig.2-1-5 Evaluation circuit (inductive load)
Short A for N-side IGBT, and short B for P-side IGBT evaluation

Fig.2-1-6 Typical switching waveform (PSS15S93*6-AG)
Conditions: \(V_{CC}=300V, V_D=V_{DB}=15V, T_J=125°C, I_C=15A \), Inductive load half-bridge circuit
Table 2-1-4 shows the typical control part characteristics of PSS15S93*6-AG(15A/600V).

(Tj = 25°C, unless otherwise noted)

Table 2-1-4 Control (Protection) characteristics of PSS15S93*6-AG(15A/600V)

<table>
<thead>
<tr>
<th>CONTROL (PROTECTION) PART</th>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I0</td>
<td>Circuit current</td>
<td>Total of VPH-VNC, VNH-VNC</td>
<td>VD=15V, VIN=0V</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VD=15V, VNH=15V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I0E</td>
<td>Circuit current</td>
<td>Each part of VUP-U, VIN-VU, VWN-VW</td>
<td>VD=VIN=15V, VIN=0V</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VD=VIN=15V, VIN=5V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VD=VIN=15V, VIN=5V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VSC(tip)</td>
<td>Short circuit trip level</td>
<td>VD = 15V</td>
<td>Trip level</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>UVD(T)</td>
<td>P-side Control supply under-voltage protection(UV)</td>
<td></td>
<td>Tj ≤ 125°C</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>UVD(N)</td>
<td>N-side Control supply under-voltage protection(UV)</td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>UV(T)</td>
<td>Temperature output (PSS15S93F6-AG only) (Note 5)</td>
<td>Pull down R=5.1kΩ (Note 2)</td>
<td>LVIC Temperature=90°C</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>OT(N)</td>
<td>Overt temperature protection (PSS15S93E6-AG only) (Note 3) (Note 5)</td>
<td>Detect LVIC temperature</td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>VFOH</td>
<td>Fault output voltage</td>
<td>VSC = 0V, F0 terminal pulled up to 5V by 10kΩ</td>
<td></td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>VFDL</td>
<td>Fault output voltage</td>
<td>VSC = 1V, IF0 = 1mA</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IFOE</td>
<td>Fault output pulse width</td>
<td>VSC = 5V</td>
<td>(Note 4)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>V(N)</td>
<td>ON threshold voltage</td>
<td></td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>V(ON)</td>
<td>OFF threshold voltage</td>
<td>Applied between UN, VN, WN-VNC</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>V(th)</td>
<td>ON/OFF threshold hysteresis voltage</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>IF0</td>
<td>Bootstrap Di forward voltage</td>
<td>I=10mA including voltage drop by limiting resistor</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Built-in limiting resistance</td>
<td>Included in bootstrap Di</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Note 1 : SC protection works only for N-side IGBT. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

2 : For temperature output type, DIPIPM don't shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protective level that user defined, controller (MCU) should stop the DIPIPM. Temperature of LVIC vs. VOT output characteristics is described in Fig. 3.

3 : When the LVIC temperature exceeds OT trip temperature level(OTt), OT protection works and Fo outputs. In that case if the heat sink dropped off or fixed loosely, don't reuse that DIPIPM. (There is a possibility that junction temperature of power chips exceed maximum Tjop (175°C).

4 : Fault signal Fo outputs when SC, UV or OT protection works. Fo pulse width is different for each protection modes. At SC failure, Fo pulse width is a fixed width (=minimum 20μs), but at UV or OT failure, Fo outputs continuously until recovering from UV or OT state. (But minimum Fo pulse width is 20μs.)

5 : It is necessary to select from temperature output function or over temperature protection about temperature protection.

Their part numbers are different. (e.g. PSS15S93F6-AG is the type with temperature output function and PSS15S93E6-AG is the type with over temperature protection.)

*) Characteristic of Bootstrap Di (VF, R) are different between the rated current. For more detail, refer the datasheet for each product.
Recommended operating conditions of PSS15S93*6-AG (15A/600V) are given in Table 2-1-5. (Tj = 25°C, unless otherwise noted)

Although these conditions are the recommended but not the necessary ones, it is highly recommended to operate the modules within these conditions so as to ensure DIPIPM safe operation.

Table 2-1-5 Recommended operating conditions of PSS15S93*6-AG (15A/600V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>Applied between P-NU, NV, NW</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>VD</td>
<td>Control supply voltage</td>
<td>Applied between Vf+VNC, Vf-NVNC</td>
<td>13.5</td>
<td>15.0</td>
</tr>
<tr>
<td>Vref</td>
<td>Control supply voltage</td>
<td>Applied between Vref-U, Vref-V, Vref-W</td>
<td>13.0</td>
<td>15.0</td>
</tr>
<tr>
<td>ΔVCC, ΔVD</td>
<td>Control supply variation</td>
<td>-1</td>
<td>-</td>
<td>+1</td>
</tr>
<tr>
<td>tdead</td>
<td>Arm shoot-through blocking time</td>
<td>For each input signal</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>PWM</td>
<td>PWM input frequency</td>
<td>Tj ≤ 125°C, Tj ≤ 150°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PWIN(on)</td>
<td>Minimum input pulse width</td>
<td>(Note 1)</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>PWIN(off)</td>
<td>Minimum input pulse width</td>
<td>(Note 1)</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>VNC</td>
<td>VNC Variation</td>
<td>Between VNC-NU, NV, NW (including surge)</td>
<td>-5.0</td>
<td>-</td>
</tr>
<tr>
<td>Tj</td>
<td>Junction temperature</td>
<td>-30</td>
<td>-</td>
<td>150</td>
</tr>
</tbody>
</table>

Note 1: When inputting shorter pulse than PWIN(on), DIPIPM might not make response.
2: DIPIPM might make delayed response or no response for the input signal with off pulse width less than PWIN(off). Moreover, in case of rated current or more, DIPIPM might make delayed response even for input signal with off pulse more than PWIN(off). Please refer below about delayed response.

Delayed Response against Shorter Input Off Signal than PWIN(off) (P-side only, above rated current)

*) Some specifications are different between the rated current. For more detail, please refer the datasheet for each product.

About Control supply variation.
If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet the following specifications: dV/dt ≤ +/-1V/μs, Vripple≤2Vp-p
2.1.4 Mechanical Characteristics and Ratings

The mechanical characteristics and ratings are shown in Table 2-1-6. Please refer to Section 2.4 for the detailed mounting instruction of DIPIPM Ver.7.

Table 2-1-6 Mechanical characteristics and ratings of PSS15S93*6-AG (15A/600V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Reference</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting torque</td>
<td>Mounting screw: M3 (Note 1)</td>
<td>JEITA-ED-4701 Method 402 ll</td>
<td>0.59, 0.69, 0.78</td>
<td>N·m</td>
</tr>
<tr>
<td>Terminal pulling strength</td>
<td>Control terminal: Load 5N</td>
<td>JEITA-ED-4701 Method 402 I</td>
<td>10</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>Power terminal: Load 10N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal bending strength</td>
<td>Control terminal: Load 2.5N</td>
<td>JEITA-ED-4701 Method 402 III</td>
<td>2</td>
<td>times</td>
</tr>
<tr>
<td></td>
<td>Power terminal: Load 5N 90deg. bend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td>-</td>
<td>g</td>
</tr>
<tr>
<td>Heat-sink flatness</td>
<td>(Note 2)</td>
<td></td>
<td>-50, 100</td>
<td>μm</td>
</tr>
</tbody>
</table>

Note 1: Plain washers (ISO 7089–7094) are recommended.
Note 2: Measurement point of heat sink flatness
2.2 Protective Functions and Operating Sequence

DIPIPM Ver.7 has Short circuit protection (SC), Control supply Under Voltage protection (UV), Over Temperature protection (OT) and temperature output function (VOT) for protection function. The operating principle and sequence are described below.

2.2.1 Short Circuit Protection

1. General

DIPIPM Ver.7 uses external shunt resistor for the current detection as shown in Fig.2-2-1. The internal protection circuit inside the IC captures the excessive large current by comparing the CIN voltage generated at the shunt resistor with the referenced SC trip voltage, and perform protection automatically. The threshold voltage trip level of the SC protection Vsc(ref) is typ. 0.48V.

In case of SC protection happens, all the gates of N-side three phase IGBTs will be interrupted together with a fault signal output. To prevent DIPIPM erroneous protection due to normal switching noise and/or recovery current, it is necessary to set an RC filter (time constant: 1.5μs ~ 2μs) to the CIN terminal input (Fig.2-2-1, 2-2-2). Also, please make the pattern wiring around the shunt resistor as short as possible.

![Fig.2-2-1 SC protecting circuit](image)

SC protection Sequence

SC protection (N-side only with the external shunt resistor and RC filter)

a1. Normal operation: IGBT ON and carrying current.

a2. Short circuit current detection (SC trigger).

(It is recommended to set RC time constant 1.5-2.0μs so that IGBT shut down within 2.0μs when SC.)

a3. All N-side IGBTs gate are hard interrupted.

a4. All N-side IGBTs turn OFF.

a5. Fo outputs for tFo=minimum 20μs.

a6. Input = “L”. IGBT OFF

a7. Fo finishes output, but IGBTs don’t turn on until inputting next ON signal (L→H).

(IGBT of each phase can return to normal state by inputting ON signal to each phase.)

a8. Normal operation: IGBT ON and outputs current.

![Fig.2-2-2 Filter time constant setting](image)

![Fig.2-2-3 SC protection timing chart](image)
3. Determination of Shunt Resistance

(1) Shunt resistance

The value of current sensing resistance is calculated by the following expression:

\[R_{\text{Shunt}} = \frac{V_{\text{SC(ref)}}}{\text{SC}} \]

where \(V_{\text{SC(ref)}} \) is the referenced SC trip voltage.

The maximum SC trip level \(\text{SC(max)} \) should be set less than the IGBT minimum saturation current which is 1.7 times as large as the rated current. For example, the \(\text{SC(max)} \) of PSS15S93*6-AG should be set to 15x1.7=25.5A or less. The parameters \((V_{\text{SC(ref)}}, R_{\text{Shunt}}) \) tolerance should be considered when designing the SC trip level.

For example of PSS15S93*6-AG, there is +/-0.025V tolerance in the spec of \(V_{\text{SC(ref)}} \) as shown in Table 2-2-1.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>at (T_j=25^\circ)C, (V_D=15V)</td>
<td>0.455</td>
<td>0.480</td>
<td>0.505</td>
<td>V</td>
</tr>
</tbody>
</table>

Then, the range of SC trip level can be calculated by the following expressions:

\[R_{\text{Shunt(min)}} = \frac{V_{\text{SC(ref)}}}{\text{SC(max)}} \]
\[R_{\text{Shunt(typ)}} = \frac{R_{\text{Shunt(min)}}}{0.95} \]
\[R_{\text{Shunt(max)}} = R_{\text{Shunt(typ)}} \times 1.05 \]

*) This is the case that shunt resistance tolerance is within +/-5%.

So the SC trip level range is described as Table 2-2-2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>at (T_j=25^\circ)C</td>
<td>20.8</td>
<td>23.1</td>
<td>25.5</td>
<td>A</td>
</tr>
</tbody>
</table>

(e.g. 19.8mΩ \(R_{\text{shunt(min)}}=0.505V \) \(=V_{\text{SC(max)}} \) / 25.5A \(=\text{SC(max)} \))

There is the possibility that the actual SC protection level becomes less than the calculated value. This is considered due to the resonant signals caused mainly by parasitic inductance and parasitic capacity. It is recommended to make a confirmation of the resistance by prototype experiment.

(2) RC Filter Time Constant

It is necessary to set an RC filter in the SC sensing circuit in order to prevent malfunction of SC protection due to noise interference. The RC time constant is determined depending on the applying time of noise interference and the SC SOA of the DIPIPM.

When the voltage drop on the external shunt resistor exceeds the SC trip level, the time \(t_1 \) that the CIN terminal voltage rises to the referenced SC trip level can be calculated by the following expression:

\[V_{\text{SC}} = R_{\text{shunt}} \cdot I_c \cdot (1 - e^{-\frac{t_1}{\tau}}) \]
\[t_1 = -\tau \cdot \ln(1 - \frac{V_{\text{SC}}}{R_{\text{shunt}} \cdot I_c}) \]

\(V_{\text{SC}} \) : the CIN terminal input voltage, \(I_c \) : the peak current, \(\tau \) : the RC time constant

On the other hand, the typical time delay \(t_2 \) (from \(V_{\text{SC}} \) voltage reaches \(V_{\text{SC(ref)}} \) to IGBT gate shutdown) of IC is shown in Table 2-2-3.

<table>
<thead>
<tr>
<th>Item</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC transfer delay time</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>(\mu)s</td>
</tr>
</tbody>
</table>

Therefore, the total delay time from an SC level current happened to the IGBT gate shutdown becomes:

\[t_{\text{TOTAL}} = t_1 + t_2 \]
2.2.2 Control Supply UV Protection

1. General

The UV protection is designed to prevent unexpected operating behavior as described in Table 2-2-4. Both P-side and N-side have UV protecting function. However, fault signal (Fo) output only corresponds to N-side UV protection. Fo output continuously during UV state.

In addition, there is a noise filter (typ. 10μs) integrated in the UV protection circuit to prevent instantaneous UV erroneous trip. Therefore, the control signals are still transferred in the initial 10μs after UV happened.

Table 2-2-4 DIPIPM operating behavior versus control supply voltage

<table>
<thead>
<tr>
<th>Control supply voltage</th>
<th>Operating behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4V (P, N)</td>
<td>In this voltage range, built-in control IC may not work properly. Normal operating of each protection function (UV, Fo output etc.) is not also assured. Normally IGBT does not work. But external noise may cause DIPIPM malfunction (turns ON), so DC-link voltage need to start up after control supply starts-up.</td>
</tr>
<tr>
<td>4-UV_Dt (N), UVDBt (P)</td>
<td>UV function becomes active and output Fo (N-side only). Even if control signals are applied, IGBT does not work.</td>
</tr>
<tr>
<td>UV_Dt (N)-13.5V, UVDBt (P)-13.0V</td>
<td>IGBT can work. However, conducting loss and switching loss will increase, and result extra temperature rise at this state.</td>
</tr>
<tr>
<td>13.5-16.5V (N), 13.0-18.5V (P)</td>
<td>Recommended conditions.</td>
</tr>
<tr>
<td>16.5-20V (N), 18.5-20V (P)</td>
<td>IGBT works. However, switching speed becomes fast and saturation current becomes large at this state, increasing SC broken risk.</td>
</tr>
<tr>
<td>20V- (P, N)</td>
<td>The control circuit will be destroyed.</td>
</tr>
</tbody>
</table>

Ripple Voltage Limitation of Control Supply

If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet the following specifications:

\[\frac{dV}{dt} \leq \pm 1V/\mu s, \quad V_{ripple} \leq 2V_{p-p} \]

2. UV protection Sequence

[N-side UV Protection Sequence]

a1. Control supply voltage \(V_D \) rising: After the voltage level reaches UV_Dt, the circuits start to operate when next input is applied (L\(\rightarrow \)H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.)

a2. Normal operation: IGBT ON and carrying current.

a3. \(V_D \) level dips to under voltage trip level. (UV_Dt).

a4. All N-side IGBTs turn OFF in spite of control input condition.

a5. Fo outputs for \(t_{Fo} \)=minimum 20μs, but output is extended during \(V_D \) keeps below UV_Dt.

a6. \(V_D \) level reaches UV_Dt.

a7. Normal operation: IGBT ON and outputs current.

![Fig.2-2-4 Timing chart of N-side UV protection](image)

Publication Date: January 2021
[P-side UV Protection Sequence]

a1. Control supply voltage rises: After the voltage reaches V_{DBr}, the circuits start to operate when
next input is applied (L→H).

a2. Normal operation: IGBT ON and carrying current.

a3. V_{DB} level dips to under voltage trip level (V_{DBt}).

a4. IGBT of corresponding phase only turns OFF in spite of control input signal level,
but there is no Fo signal output.

a5. V_{DB} level reaches V_{DBr}.

Fig.2-2-5 Timing Chart of P-side UV protection
2.2.3 OT Protection (PSS**S93E6-AG only)

1. General

PSS**S93E6-AG have OT (over temperature) protection function by monitoring LVIC temperature rise. While LVIC temperature exceeds and keeps over OT trip temperature, error signal Fo outputs and all N-side IGBTs are shut down without reference to input signal. (P-side IGBTs are not shut down)

The specification of OT trip temperature and its sequence are described in Table 2-2-5 and Fig.2-2-6.

Table 2-2-5 OT trip temperature specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over temperature</td>
<td>OTt</td>
<td>V<sub>d</sub>=15V, At temperature of LVIC</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>protection</td>
<td>OT<sub>rh</sub></td>
<td>Trip/reset hysteresis</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

2. OT protection Sequence

[OT Protection Sequence]

a1. Normal operation: IGBT ON and outputs current.

a2. LVIC temperature exceeds over temperature trip level(OT_t).

a3. All N-side IGBTs turn OFF in spite of control input condition.

a4. Fo outputs for t_{Fo}=minimum 20μs, but output is extended during LVIC temperature keeps over OT_t.

a5. LVIC temperature drops to over temperature reset level.

a6. Normal operation: IGBT turns on by next ON signal (L→H).

(IGBT of each phase can return to normal state by inputting ON signal to each phase.)

Precaution about this OT protection function

(1) This OT protection will not work effectively in the case of rapid temperature rise like motor lock or over current. (This protection monitors LVIC temperature, so it cannot respond to rapid temperature rise of power chips.)

(2) If the cooling system is abnormal state (e.g. heat sink comes off, fixed loosely, or cooling fun stops) when OT protection works, exchange the DIPIPM and don’t reuse it. (The junction temperature of power chips may exceeded the maximum rating of Tj(175°C).)
2.2.4 Temperature output function V_{OT} (PSS**9S93F6-* only)

1. Usage of this function

This function measures the temperature of control LVIC by built in temperature sensor on LVIC. The heat generated at IGBT and FWDi transfers to LVIC through molding resin of package and outer heat sink. So LVIC temperature cannot respond to rapid temperature rise of those power chips effectively. (e.g. motor lock, short circuit) It is recommended to use this function for protecting from slow excessive temperature rise by such cooling system down and continuance of overload operation. (Replacement from the thermistor which was mounted on outer heat sink currently)

[Note]
In this function, DIPIPM cannot shutdown IGBT and output fault signal by itself when temperature rises excessively. When temperature exceeds the defined protection level, controller (MCU) should stop the DIPIPM.

2. V_{OT} characteristics

V_{OT} output circuit, which is described in Fig.2-2-10, is the output of OP amplifier circuit. The current capability of V_{OT} output is described as Table 2-2-6. The characteristics of V_{OT} output vs. LVIC temperature is linear characteristics described in Fig.2-2-14. There are some cautions for using this function as below.

<table>
<thead>
<tr>
<th>Table 2-2-6 Output capability</th>
<th>(Tc=-30°C ~100°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>1.7mA</td>
</tr>
<tr>
<td>Sink</td>
<td>0.1mA</td>
</tr>
</tbody>
</table>

Source: Current flow from V_{OT} to outside. Sink : Current flow from outside to V_{OT}.

- In the case of detecting lower temperature than room temperature
 It is recommended to insert 5.1kΩ pull down resistor for getting linear output characteristics at lower temperature than room temperature. When the pull down resistor is inserted between V_{OT} and V_{NC}(control GND), the extra current calculated by V_{OT} output voltage / pull down resistance flows as LVIC circuit current continuously. In the case of only using V_{OT} for detecting higher temperature than room temperature, it isn’t necessary to insert the pull down resistor.

- In the case of using with low voltage controller(MCU)
 In the case of using V_{OT} with low voltage controller (e.g. 3.3V MCU), V_{OT} output might exceed control supply voltage 3.3V when temperature rises excessively. If system uses low voltage controller, it is recommended to insert a clamp Di between control supply of the controller and this output for preventing over voltage.
In the case that the protection level exceeds control supply of the controller

In the case of using low voltage controller like 3.3V MCU, if it is necessary to set the trip V_{OT} level to control supply voltage (e.g. 3.3V) or more, there is the method of dividing the V_{OT} output by resistance voltage divider circuit and then inputting to A/D converter on MCU (Fig.2-2-13). In that case, sum of the resistances of divider circuit should be as much as 5kΩ. About the necessity of clamp diode, we consider that the divided output will not exceed the supply voltage of controller generally, so it will be unnecessary to insert the clump diode. But it should be judged by the divided output level finally.

![Figure 2-2-12: V_{OT} output circuit in the case with high protection level](image)

$DV_{OT} = V_{OT} \cdot \frac{R_2}{R_1 + R_2}$

$R_1 + R_2 \approx 5k\Omega$
As mentioned above, the heat of power chips transfers to LVIC through the heat sink and package, so the relationship between LVIC temperature: \(T_{ic} (\approx V_{OT} \text{ output}) \), case temperature: \(T_{c} \) (under the chip defined on datasheet), and junction temperature: \(T_{j} \) depends on the system cooling condition, heat sink, control strategy, etc.

For example, in case of using the heat sink (Table 2-2-7), their relationship example is described in Fig.2-2-14. This relationship may be different due to the cooling conditions. So when setting the threshold temperature for protection, it is necessary to get the relationship between them on your real system. And when setting threshold temperature \(T_{ic} \), it is important to consider the protection temperature assures \(T_{c} \leq 125^\circ C \) and \(T_{j} \leq 150^\circ C \).
Table 2-2-7 Outer heat sink

<table>
<thead>
<tr>
<th>Heat sink size (W x D x H)</th>
<th>Thermal resistance $R_{th(f-a)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 x 88 x 40 mm</td>
<td>2.20K/W</td>
</tr>
</tbody>
</table>

![Diagram of outer heat sink]

Table 2-2-7 Example of relationship of T_j, T_c, T_{ic}

(One IGBT chip turns on. DC current $T_a=25°C$. In this example, T_{ic} and T_c are almost same temperature.)

Procedure about setting the protection level by using Fig.2-2-15 is described as below.

Table 2-2-8 Procedure for setting protection level

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Setting value example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Set the protection T_j temperature</td>
<td>Set T_j to 120°C as protection level.</td>
</tr>
<tr>
<td>2) Get LVIC temperature T_{ic} that matches to above T_j of the protection level from the relationship of T_j-T_{ic} in Fig.2-2-15.</td>
<td>$T_{ic}=93°C$ (@$T_j=120°C$)</td>
</tr>
<tr>
<td>3) Get V_{OT} value from the VOT output characteristics in Fig.2-2-16 and the T_{ic} value which was obtained at phase 2).</td>
<td>$V_{OT}=2.84V$ (@$T_{ic}=93°C$) is decided as the protection level.</td>
</tr>
</tbody>
</table>

As above procedure, the setting value for V_{OT} output is decided to 2.84V. But V_{OT} output has some data spread, so it is important to confirm whether the protection temperature fluctuation of T_j and T_c due to the data spread of V_{OT} output is $T_j$$\leq150°C$ and $T_c$$\leq125°C$. Procedure about the confirmation of temperature fluctuation is described in Table 2-2-9.

Table 2-2-9 Procedure for confirmation of temperature fluctuation

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Confirmation example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Confirm the region of T_{ic} fluctuation at above V_{OT} from Fig.2-2-16.</td>
<td>$T_{ic}=87°C$-98.5°C (@$V_{OT}=2.84V$)</td>
</tr>
<tr>
<td>5) Confirm the region of T_j and T_c fluctuation at above region of T_{ic} from Fig.2-2-15.</td>
<td>$T_j=113°C$-126°C ($\leq150°C$ No problem) $T_c=87°C$-98.5°C ($\leq125°C$ No problem) In this example, T_{ic} and T_c are almost same temperature, so T_c fluctuation is also same that of T_{ic}</td>
</tr>
</tbody>
</table>
As mentioned above, the relationship between Tic, Tc and Tj depends on the system cooling condition and control strategy, and so on. So please evaluate about these temperature relationships on your real system when considering the protection level.

If necessary, it is possible to ship the sample with the individual data of V_{OT} vs. LVIC temperature.
2.3 Package Outlines

2.3.1 Package outlines

Fig.2-3-1 Long pin type package outline drawing
2.3.2 Marking

The laser marking specification of DIPIPM Ver.7 is described in Fig.2-3-4. Company name, Country of origin, Type name, Lot number, and 2D code are marked in the upper side of module.

![Fig.2-3-4 Laser marking view (Dimension in mm)](image)

The Lot number indicates production year, month, running number and country of origin. The detailed is described as below.

(Example) **C 0 9 AA1**

- **Running number**
- **Product month** (however O: October, N: November, D: December)
- **Last figure of Product year** (e.g. 2020)
- **Factory identification**
 - No mark : Manufactured at the factory in Japan
 - C : Manufactured at the factory A in China
 - H : Manufactured at the factory B in China
2.3.3 Terminal Description

Table 2-3-1 Terminal description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-A</td>
<td>(VNC)*2 Inner used terminal. Keep no connection. It has control GND potential.</td>
<td>1-B</td>
<td>(VP)*2 Inner used terminal. Keep no connection. It has control supply potential.</td>
</tr>
<tr>
<td>2</td>
<td>V_UFB</td>
<td>3</td>
<td>V_VF6B</td>
</tr>
<tr>
<td>4</td>
<td>V_VF6B</td>
<td>5</td>
<td>U_P</td>
</tr>
<tr>
<td>6</td>
<td>V_P</td>
<td>7</td>
<td>W_P</td>
</tr>
<tr>
<td>8</td>
<td>V_PP</td>
<td>9</td>
<td>V_NC*1 P-side control supply GND terminal (Connected with 16pin internally)</td>
</tr>
<tr>
<td>10</td>
<td>U_N</td>
<td>11</td>
<td>V_N</td>
</tr>
<tr>
<td>12</td>
<td>W_N</td>
<td>13</td>
<td>V_NN</td>
</tr>
<tr>
<td>14</td>
<td>F_O</td>
<td>15</td>
<td>CIN</td>
</tr>
<tr>
<td>16</td>
<td>V_NC*1</td>
<td>17</td>
<td>V_OT</td>
</tr>
<tr>
<td>18</td>
<td>NW</td>
<td>19</td>
<td>NV</td>
</tr>
<tr>
<td>20</td>
<td>NU</td>
<td>21</td>
<td>W</td>
</tr>
<tr>
<td>22</td>
<td>V</td>
<td>23</td>
<td>U</td>
</tr>
<tr>
<td>24</td>
<td>P</td>
<td>25</td>
<td>NC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-A</td>
<td>(VNC)*2 Same as on the left</td>
<td>1-B</td>
<td>(VP)*2 Same as on the left</td>
</tr>
<tr>
<td>2</td>
<td>V_UFB Same as on the left</td>
<td>3</td>
<td>V_VF6B Same as on the left</td>
</tr>
<tr>
<td>4</td>
<td>V_VF6B Same as on the left</td>
<td>5</td>
<td>U_P Same as on the left</td>
</tr>
<tr>
<td>6</td>
<td>V_P Same as on the left</td>
<td>7</td>
<td>W_P Same as on the left</td>
</tr>
<tr>
<td>8</td>
<td>V_PP Same as on the left</td>
<td>9</td>
<td>V_NC*1 Same as on the left</td>
</tr>
<tr>
<td>10</td>
<td>U_N Same as on the left</td>
<td>11</td>
<td>V_N Same as on the left</td>
</tr>
<tr>
<td>12</td>
<td>W_N Same as on the left</td>
<td>13</td>
<td>V_NN Same as on the left</td>
</tr>
<tr>
<td>14</td>
<td>F_O Same as on the left</td>
<td>15</td>
<td>CIN Same as on the left</td>
</tr>
<tr>
<td>16</td>
<td>V_NC*1 Same as on the left</td>
<td>17</td>
<td>V_OT No connection. (There isn't any connection inside DIPIPM)</td>
</tr>
<tr>
<td>18</td>
<td>NW Same as on the left</td>
<td>19</td>
<td>NV Same as on the left</td>
</tr>
<tr>
<td>20</td>
<td>NU Same as on the left</td>
<td>21</td>
<td>W Same as on the left</td>
</tr>
<tr>
<td>22</td>
<td>V Same as on the left</td>
<td>23</td>
<td>U Same as on the left</td>
</tr>
<tr>
<td>24</td>
<td>P Same as on the left</td>
<td>25</td>
<td>NC Same as on the left</td>
</tr>
</tbody>
</table>

*1) Connect only one V_NC terminal to the system GND and leave another one open.
*2) No.1-A and 1-B are inner used terminals, so it is necessary to leave no connection.
Table 2-3-2 Detailed description of input and output terminals

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| P-side drive supply positive terminal | V_{UFB-U}, V_{VFB-V}, V_{WFB-W} | • Drive supply terminals for P-side IGBTs.
• By mounting bootstrap capacitor, individual isolated power supplies are not needed for the P-side IGBT drive. Each bootstrap capacitor is charged by the N-side V_O supply when potential of output terminal is almost GND level.
• Abnormal operation might happen if the V_O supply is not aptly stabilized or has insufficient current capability due to ripple or surge. In order to prevent malfunction, a bypass capacitor with favorable frequency and temperature characteristics should be mounted very closely to each pair of these terminals.
• Inserting a Zener diode (24V/1W) between each pair of control supply terminals is helpful to prevent control IC from surge destruction. |
| P-side drive supply GND terminal | V_{P1}, V_{N1} | • Control supply terminals for the built-in HVIC and LVIC.
• In order to prevent malfunction caused by noise and ripple in the supply voltage, a bypass capacitor with favorable frequency characteristics should be mounted very closely to these terminals.
• Carefully design the supply so that the voltage ripple caused by noise or by system operation is within the specified minimum limitation.
• It is recommended to insert a Zener diode (24V/1W) between each pair of control supply terminals to prevent surge destruction. |
| N-side control supply terminal | V_{NC} | • Control ground terminal for the built-in HVIC and LVIC.
• Ensure that line current of the power circuit does not flow through this terminal in order to avoid noise influences.
• Connect only one V_{NC} terminal (9 or 16pin) to the GND, and leave another one open. |
• These terminals are internally connected to Schmitt trigger circuit.
• The wiring of each input should be as short as possible to protect the DIPIPM from noise operation interference.
• Use RC filter in case of signal oscillation. (Pay attention to threshold voltage of input terminal, because input circuit has pull down resistor (min 3.3kΩ)) |
| Short-circuit trip voltage detecting terminal | CIN | • For inverter part SC protection, input the potential of shunt resistor to CIN terminal through RC filter (for the noise immunity).
• The time constant of RC filter is recommended to be up to 2μs. |
| Fault signal output terminal | F_O | • Fault signal output terminal for N-side abnormal state (SC or UV).
• This output is open drain type. It is recommended to pull up F_O signal line to the 5V supply by 10kΩ when F_O signal is input to MCU directly (Check whether the V_{FO} satisfies the threshold level of input of MCU when selecting resistance).
• In the case of directly driving opto coupler by F_O output it is needed to set the pull-up resistance so that I_{FO} becomes under 5mA(maximum rating). And pulled up to 15V supply is recommended. (V_{FO} increases in proportion to increasing I_{FO}.) |
| Temperature output terminal | V_{OT} | • LVIC temperature is output by analog signal.
• This terminal is connected to the output of OP amplifier internally.
• It is recommended to connect 5.1kΩ pulldown resistor if output linearity is necessary under room temperature. |
| Inverter DC-link positive terminal | P | • DC-link positive power supply terminal.
• Internally connected to the collectors of all P-side IGBTs.
• To suppress surge voltage caused by DC-link wiring or PCB pattern inductance, smoothing capacitor should be located very closely to the P and N terminal of DIPIPM. It is also effective to add small film capacitor with good frequency characteristics. |
| Inverter DC-link negative terminal | NU, NV, NW | • Open emitter terminal of each N-side IGBT
• Usually, these terminals are connected to the power GND through individual shunt resistor. |
| Inverter power output terminal | U, V, W | • Inverter output terminals for connection to inverter load (e.g. motor).
• Each terminal is internally connected to the intermediate point of the corresponding IGBT half bridge arm. |

Note: Use oscilloscope to check voltage waveform of each power supply terminals and P&N terminals, the time division of OSC should be set to about 1μs/div. Please ensure the voltage (including surge) not exceed the specified limitation.
2.4 Mounting Method

This section shows the electric spacing and mounting precautions of DIPIPM Ver.7.

2.4.1 Electric Spacing

The electric spacing specification of DIPIPM Ver.7 is shown in Table 2-4-1.

<table>
<thead>
<tr>
<th></th>
<th>Clearance</th>
<th>Creepage</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between live terminals with high potential</td>
<td>2.50</td>
<td>3.00</td>
<td>mm</td>
</tr>
<tr>
<td>Between terminals and heat sink</td>
<td>1.45</td>
<td>1.50</td>
<td>mm</td>
</tr>
</tbody>
</table>

2.4.2 Mounting Method and Precautions

When installing the module to the heat sink, excessive or uneven fastening force might apply stress to inside chips. Then it will lead to a broken or degradation of the chips or insulation structure. The recommended fastening procedure is shown in Fig.2-4-1. When fastening, it is necessary to use the torque wrench and fasten up to the specified torque. And pay attention to the foreign particle on the contact surface between the module and the heat sink. Even if the fixing of heatsink was done by proper procedure and condition, there is a possibility of damaging the package because of tightening by unexpected excessive torque or tucking particle. For ensuring safety it is recommended to conduct the confirmation test (e.g., insulation inspection) on the final product after fixing the DIPIPM with the heatsink.

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting torque</td>
<td>Screw : M3</td>
<td>0.59</td>
<td>0.69</td>
<td>0.78</td>
<td>N·m</td>
</tr>
<tr>
<td>Flatness of outer heat sink</td>
<td>Refer Fig.2-4-2</td>
<td>-50</td>
<td>-</td>
<td>+100</td>
<td>Mm</td>
</tr>
</tbody>
</table>

Note: Recommend to use plain washer (ISO7089-7094) in fastening the screws.

In order to get effective heat dissipation, it is necessary to enlarge the contact area as much as possible to minimize the contact thermal resistance. Regarding the heat sink flatness (warp/concavity and convexity) on the module installation surface, the surface finishing-treatment should be within Rz12.

Evenly apply thermally-conductive grease with 100μ-200μm thickness over the contact surface between a module and a heat sink, which is also useful for preventing corrosion. Furthermore, the grease should be with stable quality and long-term endurance within wide operating temperature range. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease.

For reference, Rth(c-f) is about 0.3K/W (per 1/6 module, grease thickness: 20μm, thermal conductivity: 1.0W/m·K). When applying grease and fixing heat sink, pay attention not to take air into grease. It might lead to make contact thermal resistance worse or loosen fixing in operation.
Pay attention to the selection of thermal conductive grease. The grease thickness after fixing the heatsink may increase due to the properties of the grease (contained filler diameter, viscosity, amount of application and so on). And it may cause increase of contact thermal resistance or package crack. Please contact thermal conductive grease manufacturer for its detailed characteristics.

2.4.3 Soldering Conditions

The recommended soldering condition is mentioned as below.
(Note: The reflow soldering cannot be recommended for DIPIPM.)

(1) Flow (wave) Soldering

DIPIPM is tested on the condition described in Table 2-4-3 about the soldering thermostability, so the recommended conditions for flow (wave) soldering are soldering temperature is up to 265°C and the immersion time is within 11s.

However, the condition might need some adjustment based on flow condition of solder, the speed of the conveyer, the land pattern and the through-hole shape on the PCB, etc.
It is necessary to confirm whether it is appropriate or not for your real PCB finally.

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering thermostability</td>
<td>260±5°C, 10±1s</td>
</tr>
</tbody>
</table>

(2) Hand soldering

Since the temperature impressed upon the DIPIPM may change based on the soldering iron types (wattages, shape of soldering tip, etc.) and the land pattern on PCB, the unambiguous hand soldering condition cannot be decided.

As a general requirement of the temperature profile for hand soldering, the temperature of the root of the DIPIPM terminal should be kept 150°C or less for considering glass transition temperature (Tg) of the package molding resin and the thermal withstand capability of internal chips. Therefore, it is necessary to check the DIPIPM terminal root temperature, solderability and so on in your real PCB, when configure the soldering temperature profile. (It is recommended to set the soldering time as short as possible.)

For reference, the evaluation example of hand soldering with 50W soldering iron is described as below.

[Note]

For soldering iron, it is recommended to select one for semiconductor soldering (12~24V low voltage type, and the earthed iron tip) and with temperature adjustment function.
CHAPTER 3 SYSTEM APPLICATION GUIDANCE

3.1 Application Guidance

This chapter states the DIPIPM Ver.7 application method and interface circuit design hints.

3.1.1 System connection

C1: Electrolytic type with good temperature and frequency characteristics.
Note: the capacitance also depends on the PWM control strategy of the application system
C2: 0.22μF ceramic capacitor with good temperature, frequency and DC bias characteristics
C3: 0.1μF-0.22μF Film capacitor (for snubber)
D1: Zener diode 24V/1W for surge absorber

C : AC filter(ceramic capacitor 2.2nF - 6.5nF)
(Common-mode noise filter)

Fig.3-1-1 Application System block diagram
3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor)

Fig.3-1-2 shows a typical application circuit of interface schematic, in which control signals are transferred directly input from a controller (e.g. MCU, DSP).

1. If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation.
2. It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction.
3. Generally a 0.1-0.22 μF snubber capacitor C3 between the P-N1 terminals is recommended.
4. To prevent malfunction, the wiring of A, B, C should be as short as possible.
5. The point D at which the wiring to CIN filter is divided should be near the terminal of shunt resistor. NU, NV, NW terminals should be connected at near NU, NV, NW terminals.
6. All capacitors should be mounted as close to the terminals as possible. (C1: good temperature, frequency characteristic electrolytic type and C2:0.22μF, good temperature, frequency and DC bias characteristic ceramic type are recommended.)
7. Input drive is High-active type. There is a minimum 3.3kΩ pull-down resistor in the input circuit of IC. To prevent malfunction, the wiring of each input should be as short as possible. When using RC coupling circuit, make sure the input signal level meet the turn-on and turn-off threshold voltage.
8. Fo output is open drain type. Fo output will be max 0.95V(@IFO=1mA,25°C), so it should be pulled up to MCU or control power supply (e.g. 5V,15V) by a resistor that makes IFo up to 1mA. (In the case of pulled up to 5V, 10kΩ is recommended.)
9. Thanks to built-in HVIC, direct coupling to MCU without any optocoupler or transformer isolation is possible.
10. Two VNC terminals (9 & 16 pin) are connected inside DIPIPM, please connect either one to the 15V power supply GND outside and leave another one open.
11. If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet dV/dt ≤±1V/μs, Vripples≤2Vp-p.
3.1.3 Interface Circuit (Example of Optocoupler Isolated Interface)

Fig.3-1-3 Interface circuit example with optocoupler

Note:

1. High speed (high CMR) optocoupler is recommended.
2. Set the current limiting resistance to make Fo sink current \(I_{FO} \leq 5\,mA \) or less when the opto-coupler is driven by Fo output directly. To assure \(I_{FO} = 5\,mA \), it will be needed to pull up to 15V supply since Fo output may become max 4.75V(\(@I_{FO} = 5\,mA, 25^\circ C \)).
3. About comparator circuit at \(V_{OT} \) output, it is recommended to design the input circuit with hysteresis because of preventing output chattering.
3.1.4 External SC Protection Circuit with Using Three Shunt Resistors

When detecting short circuit using three shunt resistors, external protection circuits are required to compare detected voltages and monitor OR output by CIN terminal. Please refer the following circuit described in Fig.3-1-14.

![Fig.3-1-4 Interface circuit example](image)

Note:
1. It is necessary to set the time constant $RfCf$ of external comparator input so that IGBT stop within 2μs when short circuit occurs. SC interrupting time might vary with the wiring pattern, comparator speed and so on.
2. The threshold voltage V_{ref} should be set up the same rating of short circuit trip level ($V_{sc(ref)}$ typ. 0.48V).
3. Select the external shunt resistance so that SC trip-level is less than specified value specified in the datasheet of each product.
4. To avoid malfunction, the wiring A, B, C should be as short as possible.
5. The point D at which the wiring to comparator is divided should be near the terminal of shunt resistor.
6. OR output high level should be over 0.505V (=maximum $V_{sc(ref)}$).
7. GND of Comparator, V_{ref} circuit and Cf should be not connected to noisy power GND but to control GND wiring.

3.1.5 Circuits of Signal Input Terminals and Fo Terminal

(1) Internal Circuit of Control Input Terminals

DIPiPM is high-active input logic. A 3.3kΩ(min) pull-down resistor is built-in each input circuits of the DIPiPM as shown in Fig.3-1-5, so external pull-down resistor is not needed.

Furthermore, by lowering the turn on and turn off threshold value of input signal as shown in Table 3-1-1, a direct coupling to 3V class microcomputer or DSP becomes possible.

![Fig.3-1-5 Internal structure of control input terminals](image)

Table 3-1-1 Input threshold voltage ratings ($V_D=15V$, $T_I=25°C$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on threshold voltage</td>
<td>$V_{th(on)}$</td>
<td>$U_{P}, V_{P}, W_{P} - V_{NC}$ terminals</td>
<td>-</td>
<td>1.70</td>
<td>2.35</td>
<td>V</td>
</tr>
<tr>
<td>Turn-off threshold voltage</td>
<td>$V_{th(off)}$</td>
<td>$U_N, V_N, W_N - V_{NC}$ terminals</td>
<td>0.70</td>
<td>1.20</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage hysteresis</td>
<td>$V_{th(hys)}$</td>
<td>V_{P}, V_{N}</td>
<td>0.25</td>
<td>0.50</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

Note: There are specifications for the minimum input pulse width in DIPiPM Ver.7. DIPiPM might make no response if the input signal pulse width (both on and off) is less than the specified value. Please refer to the datasheet for the specification. (The specification of min. width is different due to the current rating.)
Fig.3-1-6 Control input connection

Note: The RC coupling (parts shown in the dotted line) at each input depends on user’s PWM control strategy and the wiring impedance of the printed circuit board.

The DIPIPM signal input section integrates a 3.3kΩ (min) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

(2) Internal Circuit of Fo Terminal

In case Fo output is connected to MCU or control power supply (e.g. 5V, 15V), it should be pulled up to MCU by a resistor not to exceed its input threshold voltage. The sink current of Fo output will be max 0.95V (@IFo=1mA, 25°C), so for example 10kΩ is recommended when pulled up to 5V.

In case the opto-coupler is driven by Fo output directly, set the current limiting resistance to make Fo sink current Ifo=5mA or less. To assure Ifo=5mA, it will be needed to pull up to 15V supply since Fo output may become max 4.75V (@IFo=5mA, 25°C). When sink current capability is not enough for driving coupler directly, additional buffer circuit will be necessary.

Fig.3-1-7 shows the typical V-I characteristics of Fo terminal.

Table 3-1-2 Electric characteristics of Fo terminal

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault output voltage</td>
<td>VfoH</td>
<td>$V_{SC}=0V, Fo=10k\Omega, 5V$ pulled-up</td>
<td>4.9</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>vfol</td>
<td>$V_{SC}=1V, Fo=1mA$</td>
<td>-</td>
<td>-</td>
<td>0.95</td>
<td>V</td>
</tr>
</tbody>
</table>

Fig.3-1-7 Fo terminal typical V-I characteristics ($V_o=15V, T_j=25^\circ C$)
3.1.6 Snubber Circuit

In order to prevent DIPIPM from destruction by extra surge, the wiring length between the smoothing capacitor and DIPIPM P terminal - N1 points (shunt resistor terminal) should be as short as possible. Also, a 0.1μ~0.22μF/630V snubber capacitor should be mounted in the DC-link and near to P, N1.

There are two positions ((1) or (2)) to mount a snubber capacitor as shown in Fig.3-1-8. Snubber capacitor should be installed in the position (2) so as to suppress surge voltage effectively. However, the charging and discharging currents generated by the wiring inductance and the snubber capacitor will flow through the shunt resistor, which might cause erroneous protection if this current is large enough.

In order to suppress the surge voltage maximally, the wiring at part-A (including shunt resistor parasitic inductance) should be as small as possible. A better wiring example is shown in location (3).

![Fig.3-1-8 Recommended snubber circuit location](image)

3.1.7 Recommended Wiring Method around Shunt Resistor

External shunt resistor is employed to detect short-circuit accident. A longer wiring between the shunt resistor and DIPIPM causes so much large surge that might damage built-in IC. To decrease the pattern inductance, the wiring between the shunt resistor and DIPIPM should be as short as possible and using low inductance type resistor such as SMD resistor instead of long-lead type resistor.

![Fig.3-1-9 Wiring instruction (In the case of using with one shunt resistor)](image)
Fig.3-1-10 Wiring instruction (In the case of using with three shunt resistor)

Influence of pattern wiring around the shunt resistor is shown below.

(1) Influence of the part-A wiring

The ground of N-side IGBT gate is V_{NC}. If part-A wiring pattern in Fig.3-1-11 is too long, extra voltage generated by the wiring parasitic inductance will result the potential of IGBT emitter variation during switching operation. Please install shunt resistor as close to the N terminal as possible.

(2) Influence of the part-B wiring

The part-B wiring affects SC protection level. SC protection works by detecting the voltage of the CIN terminals. If part-B wiring is too long, extra surge voltage generated by the wiring inductance will lead to deterioration of SC protection level. It is necessary to connect CIN and V_{NC} terminals directly to the two ends of shunt resistor and avoid long wiring.

(3) Influence of the part-C wiring pattern

C1R2 filter is added to remove noise influence occurring on shunt resistor. Filter effect will dropdown and noise will easily superimpose on the wiring if part-C wiring is too long. It is necessary to install the C1R2 filter near CIN, V_{NC} terminals as close as possible.

(4) Influence of the part-D wiring pattern

Part-D wiring pattern gives influence to all the items described above, maximally shorten the GND wiring is expected.

It is recommended to make the inductance of each phase (including the shunt resistor) under 10nH.

\[
\text{e.g. Inductance of copper pattern (width=3mm, length=17mm) is about 10nH.}
\]

Connect GND wiring from V_{NC} terminal to the shunt resistor terminal as close as possible.
3.1.8 Precaution for Wiring on PCB

Fig. 3-2-12 describes general precaution for PCB wiring design with super mini DIPIPM Ver.7 series.

Floating control supply V_{FB} and V_{FS} wire potential fluctuates between Vcc and GND potential at switching, so it may cause malfunction if wires for control (e.g., control input V_{IN}, control supply) are located near by or cross these wires. Particularly pay attention when using multi layered PCB.

The case example of trouble due to PCB pattern

<table>
<thead>
<tr>
<th>Case example</th>
<th>Matter of trouble</th>
</tr>
</thead>
</table>
| 1 | • Control GND pattern overlaps power GND pattern.
 • Ground loop pattern exists.
 • Large inductance of wiring between N and N1 terminal
 • Capacitors or zener diodes are nothing or located far from the terminals.
 • The input lines are located parallel and close to the floating supply lines for P-side drive. |
| 2 | The surge, generated by the wiring pattern and di/dt of noncontiguous big current flows to power GND, transfers to control GND pattern. It causes the control GND level fluctuation, so that the input signal based on the control GND fluctuates too. Then the arm short might occur.
 Stray current flows to GND loop pattern, so that the control GND level and input signal level (based on the GND) fluctuates. Then the arm short might occur.
 Long wiring pattern has big parasitic inductance and generates high surge when switching. This surge causes the matter as below.
 - HVIC malfunction due to VS voltage (output terminal potential) dropping excessively.
 - LVIC surge destruction |
| 3 | IC surge destruction or malfunction might occur.
 Stray current flows to GND loop pattern, so that the control GND level and input signal level (based on the GND) fluctuates. Then the arm short might occur.
 - HVIC malfunction due to VS voltage (output terminal potential) dropping excessively.
 - LVIC surge destruction |
| 4 | Cross talk noise might be transferred through the capacitance between these floating supply lines and input lines to DIPIPM. Then incorrect signals are input to DIPIPM input, and arm short (short circuit) might occur.
 - HVIC malfunction due to VS voltage (output terminal potential) dropping excessively.
 - LVIC surge destruction |

Fig. 3-1-12 Precaution for wiring on PCB

- **Supply GND for P-side driving**
- **Control GND**
- **Power supply**
- **Output (to motor)**
- **Locate snubber capacitor between P and N1 and as near by terminals as possible.**
- **It is recommended to connect control GND and power GND at only a point N1. (Not connect common broad pattern)**
- **Connect CIN filter’s capacitor to control GND (not to Power GND)**
- **Wiring to CIN terminal should be divided at near shunt resistor terminal and as short as possible.**
- **Wiring between NU, NV, NW and shunt resistor should be as short as possible.**
- **Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.**
- **Capacitor and Zener diode should be located at near terminals.**
3.1.9 Parallel operation of DIPIPM

Fig.3-1-13 shows the circuitry of parallel connection of two DIPIPMs. Route (1) and (2) indicate the gate charging path of low-side IGBT in DIPIPM No.1 & 2 respectively. In the case of DIPIPM 1, the parasitic inductance becomes large by long wiring and it might have a negative effect on DIPIPM's switching operation. (Charging operation of bootstrap capacitor for high-side might be affected too.) Also, such a wiring makes DIPIPM be affected by noise easily, then it might lead to malfunction. If more DIPIPMs are connected in parallel, GND pattern becomes longer and the influence to other circuit (protection circuit etc.) by the fluctuation of GND potential is conceivable, therefore parallel connection is not recommended.

Because DIPIPM doesn’t consider the fluctuation of characteristics between each phase definitely, it cannot be recommended to drive same load by parallel connection with other phase IGBT or IGBT of other DIPIPM.

3.1.10 SOA of DIPIPM Ver.7

The following describes the SOA (Safety Operating Area) of the DIPIPM Ver.7.

- V_{CES}: Maximum rating of IGBT collector-emitter voltage
- V_{CC}: Supply voltage applied on P-N terminals
- $V_{CC(surge)}$: Total amount of V_{CC} and surge voltage generated by the wiring inductance and the DC-link capacitor.
- $V_{CC(prot)}$: DC-link voltage that DIPIPM can protect itself.

![Fig.3-1-14 SOA at switching mode and short-circuit mode](image)

In Case of switching

V_{CES} represents the maximum voltage rating (600V) of the IGBT. By subtracting the surge voltage (100V or less) generated by internal wiring inductance from V_{CES} is $V_{CC(surge)}$, that is 500V. Furthermore, by subtracting the surge voltage (50V or less) generated by the wiring inductor between DIPIPM and DC-link capacitor from $V_{CC(surge)}$ derives V_{CC}, that is 450V.

In Case of Short-circuit

V_{CES} represents the maximum voltage rating (600V) of the IGBT. By subtracting the surge voltage (100V or less) generated by internal wiring inductor from V_{CES} is $V_{CC(surge)}$, that is, 500V. Furthermore, by subtracting the surge voltage (100V or less) generated by the wiring inductor between the DIPIPM and the electrolytic capacitor from $V_{CC(surge)}$ derives V_{CC}, that is, 400V.
3.1.11 SC SOA

Fig. 3-1-15~18 shows the typical SC SOA performance curves of this series.

Conditions: $V_{cc}=400V$, $V_{ces} \leq 600V$, $V_{cc(surge)} \leq 500V$ (surge included), 2m load.

$T_j=125^\circ C/150^\circ C$ at initial state, non-repetitive

In the case of PSS15S93*6-AG, it can shutdown safely an SC current that is about 5.8 times of its current rating under the conditions only if the IGBT conducting period is less than $2.7\mu s$. Since the SC SOA operation area will vary with the control supply voltage, DC-link voltage, and etc, it is necessary to set time constant of RC filter with a margin.

Fig. 3-1-15 Typical SC SOA curve of PSS15S93*6-AG

Fig. 3-1-16 Typical SC SOA curve of PSS20S93*6-AG
Fig.3-1-17 Typical SCOSA curve of PSS30S93*6-AG

Fig.3-1-18 Typical SCOSA curve of PSS40S93*6-AG
3.1.12 Power Life Cycles

When DIPIPM is in operation, repetitive temperature variation will happen on the IGBT junctions (ΔT_j). The amplitude and the times of the junction temperature variation affect the device lifetime.

Fig.3-1-19 shows the IGBT power cycle curve as a function of average junction temperature variation (ΔT_j). (The curve is a regression curve based on 3 points of $\Delta T_j=46$, 88, 98K with regarding to failure rate of 0.1%, 1% and 10%. These data are obtained from the reliability test of intermittent conducting operation)

Fig.3-1-19 Power cycle curve
3.2 Power Loss and Thermal Dissipation Calculation

3.2.1 Power Loss Calculation
Simple expressions for calculating average power loss are given below:

- **Scope**
 The power loss calculation intends to provide users a way of selecting a matched power device for their VVVF inverter application. However, it is not expected to use for limit thermal dissipation design.

- **Assumptions**
 1. PWM controlled VVVF inverter with sinusoidal output;
 2. PWM signals are generated by the comparison of sine waveform and triangular waveform.
 3. Duty amplitude of PWM signals varies between $\frac{1-D}{2} \sim \frac{1+D}{2}$ (%/100), (D: modulation depth).
 4. Output current various with $I_{cp}\cdot\sin x$ and it does not include ripple.
 5. Power factor of load output current is $\cos \theta$, ideal inductive load is used for switching.

- **Expressions Derivation**
 PWM signal duty is a function of phase angle x as $\frac{1+D\times\sin x}{2}$ which is equivalent to the output voltage variation. From the power factor $\cos \theta$, the output current and its corresponding PWM duty at any phase angle x can be obtained as below:

 $\text{Output current} = I_{cp} \times \sin x$
 $\text{PWM Duty} = \frac{1+D \times \sin(x + \theta)}{2}$

 Then, $V_{CE(sat)}$ and V_{EC} at the phase x can be calculated by using a linear approximation:

 $V_{ce(sat)} = V_{ce(sat)}(\@ I_{cp} \times \sin x)$
 $V_{ec} = (-1) \times V_{ec(\@ I_{cp} = I_{cp})} \times \sin x$

 Thus, the static loss of IGBT is given by:

 $\frac{1}{2\pi} \int_{0}^{\pi} (I_{cp} \times \sin x) \times V_{ce(sat)}(\@ I_{cp} \times \sin x) \times \frac{1 + D \sin(x + \theta)}{2} \cdot dx$

 Similarly, the static loss of free-wheeling diode is given by:

 $\frac{1}{2\pi} \int_{0}^{2\pi} ((-1) \times I_{cp} \times \sin x)((-1) \times V_{ec}(\@ I_{cp} \times \sin x) \times \frac{1 + D \sin(x + \theta)}{2} \cdot dx$

 On the other hand, the dynamic loss of IGBT, which does not depend on PWM duty, is given by:

 $\frac{1}{2\pi} \int_{0}^{\pi} (P_{sw(on)}(\@ I_{cp} \times \sin x) + P_{sw(off)}(\@ I_{cp} \times \sin x)) \times f_c \cdot dx$
FWDi recovery characteristics can be approximated by the ideal curve shown in Fig.3-2-1, and its dynamic loss can be calculated by the following expression:

\[
P_{SW} = \frac{I_{r} \times V_{cc} \times trr}{4}
\]

Recovery occurs only in the half cycle of the output current, thus the dynamic loss is calculated by:

\[
\frac{1}{2} \int_{\pi}^{2\pi} \frac{I_{r} (@ I_{c} \times \sin x) \times V_{cc} \times trr (@ I_{c} \times \sin x) \times f_{c} \times dx}{4}
\]

\[
= \frac{1}{8} \int_{\pi}^{2\pi} I_{r} (@ I_{c} \times \sin x) \times V_{cc} \times trr (@ I_{c} \times \sin x) \times f_{c} \times dx
\]

- Attention of applying the power loss simulation for inverter designs
 - Divide the output current period into fine-steps and calculate the losses at each step based on the actual values of PWM duty, output current, \(V_{CE(sat)} \), \(V_{EC} \), and \(P_{sw} \) corresponding to the output current. The worst condition is most important.
 - PWM duty depends on the signal generating way.
 - The relationship between output current waveform or output current and PWM duty changes with the way of signal generating, load, and other various factors. Thus, calculation should be carried out on the basis of actual waveform data.
 - \(V_{CE(sat)}, V_{EC} \) and \(P_{sw(on, off)} \) should be the values at \(T_{j}=125^\circ C \).
3.2.2 Temperature Rise Considerations and Calculation Example

Fig. 3-2-2 shows the typical characteristics of allowable motor rms current versus carrier frequency under the following inverter operating conditions based on power loss simulation results.

Conditions: $V_{CC}=300V$, $V_D=V_{DB}=15V$, $V_{CE(sat)}=\text{Typ.}$, Switching loss=Typ., $T_j=125°C$, $T_c=100°C$, $R_{th(j-c)}=\text{Max.}$, $R_{th(c-f)}=0.3K/W$ (per 1/6 module), $P.F=0.8$, 3-phase PWM modulation, 60Hz sine waveform output.

Fig. 3-2-2 Effective current-carrier frequency characteristics

Fig. 3-2-2 shows an example of estimating allowable inverter output rms current under different carrier frequency and permissible maximum operating temperature condition ($T_c=100°C$, $T_j=125°C$). The results may change for different control strategy and motor types. Anyway please ensure that there is no large current over device rating flowing continuously.

The Inverter loss can be calculated by the free power loss simulation software. The software can be downloaded at Mitsubishi Electric website. URL: http://www.mitsubishielectric.com/semiconductors/

Fig. 3-2-3 Loss simulator screen image
3.2.3 Installation of thermocouple

Installation of thermocouple for measurement of DIPIPM case temperature is shown below.

Point for installing thermocouple in heat sink is shown in Fig.3-2-4. In some control schemes, temperature measurement point at the following may not be highest case temperature. In such cases, it is necessary to change the measurement point to that under the highest power chip. (Refer previous figure of power chip position.)

Installation of thermocouple is shown in Fig. 3-2-5. After making a hole under the chip with largest loss into the heat sink, the thermocouple is inserted in this hole and fixed by hammering around the hole with a centerpunch. After fixing the thermocouple, please sandpaper the thermocouple installing surface to make flat surface.
3.3 Noise and ESD Withstand Capability

3.3.1 Evaluation Circuit of Noise Withstand Capability

DIPIPM Ver.7 series have been confirmed to be with over +/-2.0kV noise withstand capability by the noise evaluation under the conditions shown in Fig.3-3-1. However, noise withstand capability greatly depends on the test environment, the wiring patterns of control substrate, parts layout, and other factors; therefore, an additional confirmation on prototype is necessary.

![Fig.3-3-1 Noise withstand capability evaluation circuit](image)

Note:
C1: AC line common-mode filter 4700pF, PWM signals are input from microcomputer by using optocouplers, 15V single power supply, Test is performed with IM

Test conditions
Vcc=300V, Vd=15V, Ta=25°C, no load
Scheme of applying noise: From AC line (R, S, T), Period T=16ms, Pulse width tw=0.05-1μs, input in random.

3.3.2 Countermeasures and Precautions

DIPIPM improves noise withstand capabilities by means of reducing parts quantity, lowering internal wiring parasitic inductance, and reducing leakage current. But when the noise affects on the control terminals of DIPIPM (due to wiring pattern on PCB), the short circuit or malfunction of SC protection may occur. In that case, below countermeasures are recommended.

![Fig.3-3-2 Example of countermeasures for inverter part](image)

- Increase the capacitance of C2 and locate it as close to the terminal as possible.
- Insert the RC filter
- Increase the capacitance of C4 with keeping the same time constant R1·C4, and locate the C4 as close to the terminal as possible.
3.3.3 Static Electricity Withstand Capability

DIPIPM has been confirmed to be with +/-1kV or more withstand capability against static electricity by HBM method. The test circuits are shown in following Fig.3-3-3 and 4.

One-shot surge pulse is impressed between each DIPIPM terminals - V_{NC} or N terminals. The I-V characteristics change is checked to judge its destruction. Positive or negative surge voltage is applied at once.

![Fig.3-3-3 LVIC terminal Surge Test circuit](image)

![Fig.3-3-4 HVIC terminal Surge Test circuit](image)
CHAPTER 4 Bootstrap Circuit Operation

4.1 Bootstrap Circuit Operation

For three phase inverter circuit driving, normally four isolated control supplies (three for P-side driving and one for N-side driving) are necessary. But using floating control supply with bootstrap circuit can reduce the number of isolated control supplies from four to one (N-side control supply).

Bootstrap circuit consists of a bootstrap diode (BSD), a bootstrap capacitor (BSC) and a current limiting resistor. (Super mini DIPIPM Ver.7 series integrates BSD and limiting resistor and can make bootstrap circuit by adding outer BSC only.) It uses the BSC as a control supply for driving P-side IGBT. The BSC supplies gate charge when P-side IGBT turning ON and circuit current of logic circuit on P-side driving IC (Fig.4-1-2). Since a capacitor is used as substitute for isolated supply, its supply capability is limited. This floating supply driving with bootstrap circuit is suitable for small supply current products like DIPIPM.

Charge consumed by driving circuit is re-charged from N-side 15V control supply to BSC via current limiting resistor and BSD when voltage of output terminal (U, V or W) goes down to GND potential in inverter operation. But there is the possibility that enough charge doesn't perform due to the conditions such as switching sequence, capacitance of BSC and so on. Deficient charge leads to low voltage of BSC and might work under voltage protection (UV). This situation makes the loss of P-side IGBT increase by low gate voltage or stop switching. So it is necessary to consider and evaluate enough for designing bootstrap circuit. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual".

The BSD characteristics for Super mini DIPIPM Ver.7 series and the circuit current characteristics in switching situation of P-side IGBT are described as below.
4.2 Bootstrap Supply Circuit Current at Switching State

Bootstrap supply circuit current I_{DB} at steady state is maximum 0.3mA. But at switching state, because gate charge and discharge are repeated by switching, the circuit current exceeds 0.3mA and increases proportional to carrier frequency. For reference, Fig.4-2-1~3 show I_{DB} - carrier frequency f_c characteristics for each current rating product.

Conditions: $V_D=V_{DB}=15V$, $T_j=125^\circ C$ at which I_{DB} becomes larger, $V_{cc}=450V$

Fig.4-2-2 I_{DB} vs. Carrier frequency for PSS15S93*6-AG

Fig.4-2-3 I_{DB} vs. Carrier frequency for PSS20S93*6-AG

Fig.4-2-4 I_{DB} vs. Carrier frequency for PSS30S93*6-AG
4.3 Note for designing the bootstrap circuit

When each device for bootstrap circuit is designed, it is necessary to consider various conditions such as temperature characteristics, change by lifetime, variation and so on. Note for designing these devices are listed as below. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual".

(1) Bootstrap capacitor

Electrolytic capacitors are used for BSC generally. And recently ceramic capacitors with large capacitance are also applied. But DC bias characteristic of the ceramic capacitor when applying DC voltage is considerably different from that of electrolytic capacitor. (Especially large capacitance type) Some differences of capacitance characteristics between electrolytic and ceramic capacitors are listed in Table 4-3-1.

Table 4-3-1 Differences of capacitance characteristics between electrolytic and ceramic capacitors

<table>
<thead>
<tr>
<th></th>
<th>Electrolytic capacitor</th>
<th>Ceramic capacitor (large capacitance type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>- Aluminum type:</td>
<td>Different due to temp. characteristics rank</td>
</tr>
<tr>
<td>characteristics</td>
<td>- Low temp.: -10%</td>
<td>Low temp.: -5%~0%</td>
</tr>
<tr>
<td>(Ta:-20~ 85°C)</td>
<td>- High temp: +10%</td>
<td>High temp.: -5%~10%</td>
</tr>
<tr>
<td></td>
<td>- Conductive polymer</td>
<td>(in the case of B,X5R,X7R ranks)</td>
</tr>
<tr>
<td></td>
<td>aluminum solid type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Low temp.: -5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- High temp: +10%</td>
<td></td>
</tr>
<tr>
<td>DC bias</td>
<td>Nothing within rating</td>
<td>Different due to temp. characteristics, rating</td>
</tr>
<tr>
<td>characteristics</td>
<td>voltage</td>
<td>voltage, package size and so on</td>
</tr>
<tr>
<td>(Applying DC15V)</td>
<td></td>
<td>-70%~15%</td>
</tr>
</tbody>
</table>

DC bias characteristic of electrolytic capacitor is not matter. But it is necessary to note ripple capability by repetitive charge and discharge, life time which is greatly affected by ambient temperature and so on. Above characteristics are just example data which are obtained from the WEB, please refer to the capacitor manufacturers about detailed characteristics.
(2) Bootstrap diode

DIPIPM Ver.7 integrates bootstrap diode for P-side driving supply. This BSD incorporates current limiting resistor. The VF-IF characteristics (including voltage drop by built-in current limiting resistor) is shown in Fig.4-3-1, Fig.4-3-2, Table 4-3-2 and Table 4-3-3.

Fig.4-3-1 VF-IF curve for bootstrap Diode (rated current 15~20A, the right figure is enlarged view)

Table 4-3-2 Electric characteristics of built-in bootstrap diode (rated current 15A~20A)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap Di forward</td>
<td>VF</td>
<td>(I_F=10\text{mA including voltage drop by limiting resistor})</td>
<td>1.1</td>
<td>1.7</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td>Built-in limiting resistance</td>
<td>R</td>
<td>Included in bootstrap Di</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Fig.4-3-2 VF-IF curve for bootstrap Diode (rated current 30A~40A, the right figure is enlarged view)

Table 4-3-3 Electric characteristics of built-in bootstrap diode (rated current 30A~40A)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap Di forward</td>
<td>VF</td>
<td>(I_F=10\text{mA including voltage drop by limiting resistor})</td>
<td>0.9</td>
<td>1.3</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Built-in limiting resistance</td>
<td>R</td>
<td>Included in bootstrap Di</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>Ω</td>
</tr>
</tbody>
</table>
4.4 Initial charging in bootstrap circuit

In the case of applying bootstrap circuit, it is necessary to charge to the BSC initially because voltage of BSC is 0V at initial state or it may go down to the trip level of under voltage protection after long suspending period (even 1s). BSC charging is performed by turning on all N-side IGBT normally. When outer load (e.g. motor) is connected to the DIPIPM, BSC charging may be performed by turning on only one phase N-side IGBT since potential of all output terminals will go down to GND level through the wiring in the motor. But its charging efficiency might become lower due to some cause. (e.g. wiring resistance of motor)

There are mainly two procedures for BSC charging. One is performed by one long pulse, and another is conducted by multiple short pulses. Multi pulse method is used when there are some restriction like control supply capability and so on.

Initial charging needs to be performed until voltage of BSC exceeds recommended minimum supply voltage 13V. (It is recommended to charge as high as possible with consideration for voltage drop between the end of charging and start of inverter operation.)

After BSC was charged, it is recommended to input one ON pulse to the P-side input for reset of internal IC state before starting system. Input pulse width is needed to be longer than allowable minimum input pulse width PWIN(on). (e.g. 0.7μs or more for Super mini DIPIPM Ver.7. Refer the datasheet for each product.)
CHAPTER 5 Interface Demo Board

5.1 Super mini DIPIPM Ver.7 Interface Demo Board
This chapter describes the interface demo board (EVA11-SDIP) for Super mini DIPIPM Ver.7 series. Please use the demo board for not only first evaluation but also reference design of your actual PCB pattern.

(1) Demo Board Outline
The demo board can mount the minimum necessary components of Super mini DIPIPM Ver.7 interface shown in Fig.5-1-1.

![Diagram of EVA11-SDIP Interface Demo Board](image)

(2) Precautions of interface demo board evaluation
- EVA11-SDIP is a common interface demo board for Super mini DIPIPM series Ver.4~Ver.7. Depending on the product series and your usage, it is necessary to change the connection or some parts on the board. Refer its user guide in detail.
- SC protection of EVA11-SDIP hires comparator IC1 to detect output current with three shunt resistors. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating. For SC protection with one shunt resistor, insert jumper wires J1 and J2 to contact NU, NV and NW terminals.
- DIPIPM Ver.7 series have built-in bootstrap diode (BSD) with current limiting resistor, so remove bootstrap diodes D1-D3 not to work initial bootstrap circuit on the board.
- When driving DIPIPM with the interface board, connect the board to the signal source such as MCU as short as possible.
- This evaluation board is made for your quick and temporary evaluation and the following patterns and parts list are examples. We cannot guarantee the proper operation of this PCB in all case. When selecting parts and design patterns for your PCB, please comply with your design standard and consider life time, reliability and so on.
Super Mini DIPIPM Ver.7 Series APPLICATION NOTE

(2) Demo Board Photo (Board size: 60mmx72mm, Copper pattern thickness: 70µm)

- N terminal for DC link
- Snubber capacitor
- Output terminals: From above W, U, V
- P terminal for DC link
- Bootstrap diodes (BSD)
- Bootstrap capacitors
- Shunt resistors
- Overcurrent detection comparator
- Signal and GND terminals for 3 Shunt current detection
- Zener diode
- Terminals for Power supply and output signal (Fo, VOT) assigned from above:
 1. V_{OT}
 2. V_{nc}
 3. 15V
 4. 5V
 5. Fo
- Input signal terminals, assigned from above:
 1. WN
 2. VN
 3. UN
 4. WP
 5. VP
 6. UP

(Note) Mounted circuit parts and printing contents on the board are subject to be changed without notice.

Fig.5-1-2 Demo board EVA11-SDIP photo
5.2 Circuit Schematic, Parts List and Board pattern,

(1) Circuit Schematic

Note: Although Zener diodes are not installed to P-side three floating drive supplies (between \(V_{UFB-U} \), \(V_{VFB-V} \), \(V_{WFB-W} \)) on this demo board, it is highly recommended to add these zener diodes in actual system board.
(2) Parts List

Table 5-3-1 Parts list (only for reference)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type Name</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>RT8H052C</td>
<td>Overcurrent protection IC</td>
<td>ISAHAYA</td>
</tr>
<tr>
<td>Q1</td>
<td>ISA1235AC1</td>
<td>-0.2A -50V Transistor</td>
<td>ISAHAYA</td>
</tr>
<tr>
<td>ZD1</td>
<td>CMZB24</td>
<td>24V 1W Zener Diode</td>
<td>Toshiba</td>
</tr>
<tr>
<td>D1~3</td>
<td>D1FK60</td>
<td>0.8A 600V Diode</td>
<td>Shindengen</td>
</tr>
<tr>
<td>C1~3</td>
<td>UPW1H220MDD</td>
<td>22 μF 50V Al electrolytic capacitor</td>
<td>Nichicon</td>
</tr>
<tr>
<td>C4~8,10</td>
<td>GRM188R71H102K</td>
<td>1000pF 50V ceramic capacitor</td>
<td>Murata</td>
</tr>
<tr>
<td>C9</td>
<td>UPW1E101MED</td>
<td>100μF 25V Al electrolytic capacitor</td>
<td>Nichicon</td>
</tr>
<tr>
<td>C11</td>
<td>GRJ55DR72J224KWJ1</td>
<td>0.22μF 630V snubber capacitor</td>
<td>Murata</td>
</tr>
<tr>
<td>C12~20</td>
<td>GRM188R71H102K</td>
<td>1000pF 50V ceramic capacitor</td>
<td>Murata</td>
</tr>
<tr>
<td>C21,22</td>
<td>GRM188R71H104K</td>
<td>0.1μF 50V ceramic capacitor</td>
<td>Murata</td>
</tr>
<tr>
<td>R1</td>
<td>CR1/16W103F</td>
<td>1/16W 10KΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R2</td>
<td>CR1/16W512F</td>
<td>1/16W 5.1KΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R3</td>
<td>CR1/16W202F</td>
<td>1/16W 2KΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R4-1,2,3</td>
<td>SL2TTE33L0F</td>
<td>2W 33mΩ Current sensing resistor</td>
<td>KOA</td>
</tr>
<tr>
<td>R5~10</td>
<td>CR1/16W101F</td>
<td>1/16W 100Ω</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R11~13</td>
<td>CR1/16W100F</td>
<td>1/16W 10 Ω</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R14~16</td>
<td>CR1/16W152F</td>
<td>1/16W 1.5kΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R17</td>
<td>CR1/16W153F</td>
<td>1/16W 15kΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R18</td>
<td>CR1/16W162F</td>
<td>1/16W 1.6kΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R19</td>
<td>CR1/16W102F</td>
<td>1/16W 1kΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>R20</td>
<td>CR1/16W472F</td>
<td>1/16W 4.7kΩ</td>
<td>Hokuriku Denko</td>
</tr>
<tr>
<td>CN1</td>
<td>B6P-VH</td>
<td>6pin Socket</td>
<td>JST</td>
</tr>
<tr>
<td>CN2</td>
<td>B5P-VH</td>
<td>5pin Socket</td>
<td>JST</td>
</tr>
<tr>
<td>T2</td>
<td>B3P-VB-2</td>
<td>3-terminal connector</td>
<td>JST</td>
</tr>
<tr>
<td>T3-1,2</td>
<td>TP42097-21</td>
<td>Tab</td>
<td>Rhythm Kyoushin</td>
</tr>
<tr>
<td>J1,2</td>
<td>Jumper</td>
<td>3.5mm pitch</td>
<td></td>
</tr>
<tr>
<td>DIPIPM</td>
<td>PS*</td>
<td>Super Mini DIPIPM Ver.4~7</td>
<td>Mitsubishi</td>
</tr>
</tbody>
</table>

(Note) The evaluation board does not mount initially either C10, R3, J1, J2 or DIPIPM. These mounted parts are subject to be changed without notice.

(3) Pattern diagram

Fig.5-2-1 Demo board component layout (DIPIPM is mounted to back side.)
CHAPTER 6 PACKAGE HANDLING

6.1 Packaging Specification

Spacers are put on the top and bottom of the box. If there is some space on top of the box, additional buffer materials are also inserted.

Fig.6-1-1 Packaging Specification

Quantity:
12pcs per 1 tube

Total amount in one box (max):
Tube Quantity: 5 × 7 = 35pcs
IPM Quantity: 35 × 12 = 420pcs

When it isn't fully filled by tubes at top stage, cardboard spacers or empty tubes are inserted for filling the space of top stage.

Weight (max):
About 8.5g per 1pcs of DIPIPM
About 200g per 1 tube
About 8.3kg per 1 box
6.2 Handling Precautions

<table>
<thead>
<tr>
<th>Cautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
</tr>
<tr>
<td>· Put package boxes in the correct direction. Putting them upside down, leaning them or giving them uneven stress might cause electrode terminals to be deformed or resin case to be damaged.</td>
</tr>
<tr>
<td>· Throwing or dropping the packaging boxes might cause the devices to be damaged.</td>
</tr>
<tr>
<td>· Wetting the packaging boxes might cause the breakdown of devices when operating. Pay attention not to wet them when transporting on a rainy or a snowy day.</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>· We recommend temperature and humidity in the ranges 5-35°C and 45-75%, respectively, for the storage of modules. The quality or reliability of the modules might decline if the storage conditions are much different from the above.</td>
</tr>
<tr>
<td>Long storage</td>
</tr>
<tr>
<td>· When storing modules for a long time (more than one year), keep them dry. Also, when using them after long storage, make sure that there is no visible flaw, stain or rust, etc. on their exterior.</td>
</tr>
<tr>
<td>Surroundings</td>
</tr>
<tr>
<td>· Keep modules away from places where water (including dew condensation) or organic solvent may attach to them directly or where corrosive gas, explosive gas, fine dust or salt, etc. may exist. They might cause serious problems.</td>
</tr>
<tr>
<td>Flame resistance</td>
</tr>
<tr>
<td>· The epoxy resin and the case materials are flame-resistant type (UL standard 94-V0), but they are not noninflammable.</td>
</tr>
<tr>
<td>Static electricity</td>
</tr>
<tr>
<td>· ICs and power chips with MOS gate structure are used for the DIPIPM power modules. Please keep the following notices to prevent modules from being damaged by static electricity.</td>
</tr>
</tbody>
</table>

(1) Precautions against the device destruction caused by the ESD
When the ESD of human bodies, packaging and etc. are applied to terminal, it may damage and destroy devices. The basis of anti-electrostatic is to inhibit generating static electricity possibly and quick dissipation of the charged electricity.

· Containers that charge static electricity easily should not be used for transit and for storage.
· Terminals should be always shorted with a carbon cloth or the like until just before using the module. Never touch terminals with bare hands.
· Should not be taking out DIPIPM from tubes until just before using DIPIPM and never touch terminals with bare hands.
· During assembly and after taking out DIPIPM from tubes, always earth the equipment and your body. It is recommended to cover the work bench and its surrounding floor with earthed conductive mats.
· When the terminals are open on the printed circuit board with mounted modules, the modules might be damaged by static electricity on the printed circuit board.
· If using a soldering iron, earth its tip.
(2) Notice when the control terminals are open
· When the control terminals are open, do not apply voltage between the collector and emitter. It might cause malfunction.
· Short the terminals before taking a module off.
Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer’s compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer’s technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer’s research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.
Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
• Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).
• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
• The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.