

< DIPIPM > DIPIPM + Series APPLICATION NOTE PSSxxMC1Fx, PSSxxNC1Fx

Table of contents

CHAPTER 1 : INTRODUCTION	
1.1 Feature of DIPIPM+	
1.2 Functions	
1.3 Applications	-
1.4 Line-up	
CHAPTER 2 : SPECIFICATIONS and CHARACTERISTICS	
2.1 Specification of DIPIPM+ 2.1.1 Maximum ratings	
2.1.2 Thermal Resistance	
2.1.3 Electric Characteristics and Recommended Conditions	9
2.1.4 Mechanical characteristics and specifications	
2.2 Protection functions and operating sequence	
2.2.1 Short circuit protection	
2.2.2 Control Supply UV Protection 2.2.3 Temperature output function Vot	
2.3 Package outline of DIPIPM+	
2.3.1 Package outline and PCB Through-hole Pattern	
2.3.2 Marking	
2.3.3 Terminal Description	
2.4 Mounting Method	
2.4.1 Electric Spacing of DIPIPM+	
2.4.2 Mounting Method and Precautions 2.4.3 Soldering Conditions	
CHAPTER 3 : SYSTEM APPLICATION GUIDANCE	20
3.1 Application guidance	
3.1.1 System connection	
3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor)	
3.1.3 Interface circuit (example of opto-coupler isolated interface)	
3.1.4 External SC protection circuit with using three shunt resistors	
3.1.5 Circuits of Signal Input Terminals and Fo Terminal 3.1.6 Snubber circuit	
3.1.7 Recommended wiring method around shunt resistor	
3.1.8 SOA of DIPIPM+ at switching state	
3.1.9 SCSOA	
3.1.10 Power Life Cycles	
3.2 Power loss and thermal dissipation calculation	
3.2.1 Power loss calculation 3.2.2 DIPIPM+ performance according to carreir frequency	
3.3 Noise and ESD withstand capability	
3.3.1 Evaluation circuit of noise withstand capability	
3.3.2 Countermeasures and precautions	
3.3.3 Static electricity withstand capability	
CHAPTER 4 : Bootstrap Circuit Operation	
4.1 Bootstrap Circuit Operation	
4.2 Bootstrap supply circuit current at switching state	
4.3 Note for designing the bootstrap circuit	
4.4 Initial charging in bootstrap circuit	
CHAPTER 5 : PACKAGE HANDLING	
5.1 Packaging Specification	
5.2 Handling Precautions	

CHAPTER 1 : INTRODUCTION

1.1 Feature of DIPIPM+

DIPIPM+ series is our latest transfer molding CIB type IPM(CIB: Converter Inverter Brake, IPM: Intelligent Power Module). It integrates the inverter, converter and brake parts to make up a compact inverter systems for commercial and industrial inverter application like commercial air conditioner, servo and general purpose inverter. We also offers DIPIPM+ without brake type.

General DIPIPM integrates a inverter part only, but recent market demand requires highly integrated IPM products including more functions and peripheral circuits. So we realized this All-in-One DIPIPM, "DIPIPM+". DIPIPM+ series is well designed transfer molding package from our long term histroy as the pioneer.

DIPIPM+ integrates main comportents for inverter circuit and it will contribute to reduce total cost by smaller mounting area for inverter circuit, shorter designing time and more reasonable assembly cost. It employs low-voltage (LV) and high voltage (HV) control ICs and their corresponding bootstrap circuit for IGBT driving and protection, as same as general DIPIPM series. So DIPIPM+ series enable same system design for its inverter part like general DIPIPM series.

By adopting same structure of heat radiation as Large DIPIPM series which has high thermal conductivity, it is possible to design system with high reliability.

Main features of this series are described as follows;

- Newly optimized CSTBT are integrated for improving performance
- · 1200V series covers from 5A to 35A and 600V has 50A rating product, DIPIPM+ has wide lineup
- · Easy to design a PCB pattern wiring by smart terminal layout.
- · Incorporating bootstrap diode(BSD) with current limiting resistor for P-side gate driving supply
- · Easy to use temperature output function of the sensor integrated on control IC

Fig.1-1 shows package photograph and Fig.1-2 shows the cross-sectional structure.

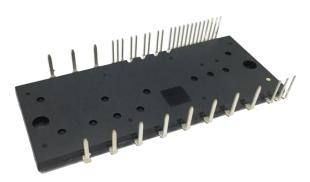


Fig.1-1. Package photograph

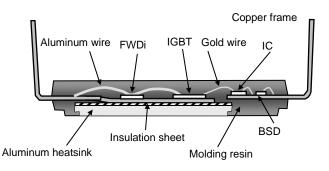


図 1-2 Cross-sectional structure

1.2 Functions

Inverter block

For P-side IGBT

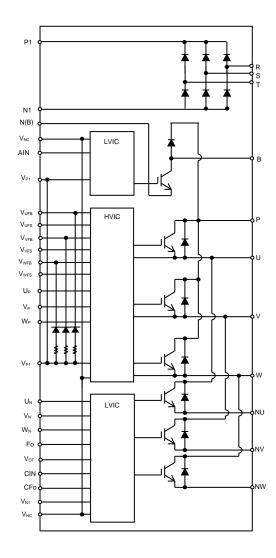
- Drive circuit
 - High voltage level shift circuit
- Control supply under voltage (UV)
- lockout circuit (without fault signal output)
- Built-in bootstrap diode (BSD) with current limiting resistor
- with current limiting re
- •For N-side IGBTs:
 - Drive circuit;
 - Short circuit (SC) protection circuit
 - Control supply under voltage (UV)
 - lockout circuit (with fault signal output) - Outputting LVIC temperature by analog signal
 - (No self over temperature protection)

(note) about SC protection By detecting voltage of external shunt resistor, DIPIPM+ works to protect.

- •Fault signal output
 - Corresponding to N-side IGBT SC protection and N-side UV protection.

Brake block

- •For IGBT
 - Drive circuit
 - UV protection circuit without fault signal


Common items

- •IGBT drive supply
 - Single DC15V power supply
- Control input supply
 - High active logic with 5V
- UL recognized
 - UL1557 File E323585

Fig. 1-3 Internal circuit block diagram for DIPIPM+ with Brake circuit

1.3 Applications

Motor drives for low power industrial equipment and commercial equipment such as air conditioners

1.4 Line-up

Line-ups are described as following table 1-1. and 1-2.

Rated current Rated voltage Motor ratings (note1) Type name Brake Isolation voltage PSS05MC1FT 5A 0.75kW/440VAC PSS10MC1FT 10A 1.5kW/440V_{AC} PSS15MC1FT 15A 1200V 2.2kW/440V_{AC} 2500Vrms^(note2) Yes 3.7kW/440V_{AC} PSS25MC1FT 25A PSS35MC1FT 35A 5.5kW/440V_{AC} PSS50MC1F6 50A 600V 3.7kW/220VAC

Table 1-1. DIPIPM+ with Brake circuit

Table 1-1. DIPIPM+ without Brake circuit

Type name	Rated current	Rated voltage	Motor ratings (note1)	Brake	Isolation voltage
PSS05NC1FT	5A		0.75kW/440V _{AC}		
PSS10NC1FT	10A	1.5kW/440V _{AC} 1200V 2.2kW/440V _{AC} 3.7kW/440V _{AC} 5.5kW/440V _{AC}			
PSS15NC1FT	15A		2.2kW/440V _{AC}	No	2500Vrms ^(note2)
PSS25NC1FT	25A		3.7kW/440V _{AC}	NO	2500 viins(1882)
PSS35NC1FT	35A		5.5kW/440V _{AC}		
PSS50NC1F6	50A	600V	3.7kW/220V _{AC}		

(note 1)

The motor ratings are described for industrial and general motor capability, and actual ratings are different with application condition.

(note 2)

Isolation voltage is tested under the condition of which all terminals are connected with conductive material and DIPIPM+ is applied 60Hz sinusoidal voltage between the terminals and heatsink for 1minute.

CHAPTER 2 : SPECIFICATIONS and CHARACTERISTICS

2.1 Specification of DIPIPM+

It is representatively described as follows with PSS25MC1FT (25A/1200V,CIB type). For the other products, please refer each data sheets in details.

2.1.1 Maximum ratings

Maximum ratings are described as following table 2-1-1. ($T_j = 25^{\circ}C$, unless otherwise noted)

Table 2-1-1 Maximum rating of PSS25MC1FT (25A/1200V,CIB type)

MAXIMUM RATINGS ($T_j = 25^{\circ}C$, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition		Ratings	Unit	
V _{cc}	Supply voltage	Applied between P-NU,NV,NW	900	V	(1)	
V _{CC(surge)}	Supply voltage (surge)	Applied between P-NU,NV,NW	1000	V	(2)	
V _{CES}	Collector-emitter voltage			1200	V	(3)
±lc	Each IGBT collector current	T _C = 25°C	(Note 1)	25	А	(4)
±I _{CP}	Each IGBT collector current (peak)	T _c = 25°C, less than 1ms		50	А	
Tj	Junction temperature			-30~+150	°C	(5)

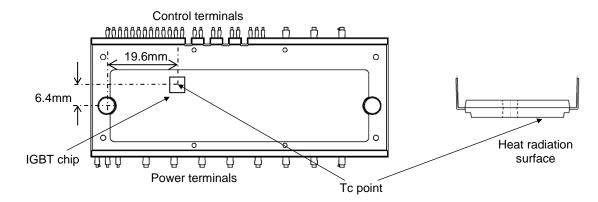
BRAKE PART

Symbol	Parameter	Conditio	Condition		
V _{cc}	Supply voltage	Applied between P-N(B)	Applied between P-N(B)		
V _{CC(surge)}	Supply voltage (surge)	Applied between P-N(B)		1000	V
V _{CES}	Collector-emitter voltage			1200	V
Ic	Each IGBT collector current	T _C = 25°C	(Note 1)	15	А
I _{CP}	Each IGBT collector current (peak)	T_{C} = 25°C, less than 1ms		30	Α
V _{RRM}	Repetitive peak reverse voltage			1200	V
I _F	Forward current	T _C = 25°C		15	Α
I _{FP}	Forward current (peak)			30	Α
Tj	Junction temperature			-30~+150	°C

CONVERTER PART

Symbol	Parameter	Parameter Condition		Unit
V _{RRM}	Repetitive peak reverse voltage		1600	V
lo	DC output current	3-phase full wave rectification	25	А
I _{FSM}	Surge forward current	Peak value of half cycle at 60Hz, Non-repetitive	315	А
l ² t	l ² t capability	Value for 1 cycle of surge current	416	A ² s
Tj	Junction temperature		-30~+150	°C

CONTROL (PROTECTION) PART


Symbol	Parameter		Condition	Ratings	Unit
VD	Control supply voltage	Applied between	V_{P1} - V_{NC} , V_{N1} - V_{NC}	20	V
V _{DB}	Control supply voltage	Applied between	$V_{\text{UFB}}\text{-}V_{\text{UFS}},V_{\text{VFB}}\text{-}V_{\text{VFS}},V_{\text{WFB}}\text{-}V_{\text{WFS}}$	20	V
V _{IN}	Input voltage	Applied between	$U_P, V_P, W_P, U_N, V_N, W_N, AIN-V_{NC}$	-0.5~V _D +0.5	V
V _{FO}	Fault output supply voltage	Applied between	Fo-V _{NC}	-0.5~V _D +0.5	V
I _{FO}	Fault output current	Sink current at Fo te	erminal	5	mA
V _{SC}	Current sensing input voltage	Applied between	CIN-V _{NC}	-0.5~V _D +0.5	V

Note1: Pulse width and period are limited due to junction temperature.

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit	
V _{CC(PROT)}	Self protection supply voltage limit (Short circuit protection capability)	V_D = 13.5~16.5V, Inverter Part T _i = 125°C, non-repetitive, less than 2µs	800	V	(6)
Tc	Module case operation temperature	(Note 2)	-30~+110	°C	1
T _{stg}	Storage temperature		-40~+125	°C	
V_{iso}	Isolation voltage	60Hz, Sinusoidal, AC 1min, between connected all pins and heat sink plate	2500	V _{rms}	(7)

Note2: Measurement point of Tc is described in below figure. (8)

No.	Symbol	Description
(1)	Vcc	The maximum voltage can be biased between P-N. A voltage suppressing circuit such as a brake
		circuit is necessary if P-N voltage exceeds this value.
(2)	$V_{CC(surge)}$	The maximum P-N surge voltage in switching status. If P-N voltage exceeds this voltage, a snubber circuit is necessary to absorb the surge under this voltage.
(3)	VCES	The maximum sustained collector-emitter voltage of built-in IGBT and FWDi.
(4)	+/- Ic	The allowable continuous current flowing at collect electrode (Tc=25°C) Pulse width and period
		are limited due to junction temperature.
(5)	Tj	The maximum junction temperature rating is 150°C. But for safe operation, it is recommended
()	,	to limit the average junction temperature up to 125°C (at Tc is less than 100°C). Repetitive
		temperature variation ΔT affects the life time of power cycle, so please refer life time curves for
		safety design.
(6)	VCC(PROT)	The maximum supply voltage for turning off IGBT safely in the case of an SC or OC faults. The
		power chip might not be protected and break down in the case that the supply voltage is higher
		than this specification.
(7)	Viso	Isolation voltage is the withstanding voltage between all terminals connected with conductive
		material and heatsink of heat radiation.
(8)	Tc position	Tc (case temperature) is defined to be the temperature just beneath the specified power chip.
	•	Please mount a thermocouple on the heat sink surface at the defined position to get accurate
		temperature information. Due to the control schemes such different control between P and N-side,
		there is the possibility that highest Tc point is different from above point. In such cases, it is
		necessary to change the measuring point to that under the highest power chip.

Power chips layout

Fig.2-1-1 indicates the position of the each power chips. (This figure is the view from laser marked side.) In case of PSSxxNC1Fx, Br-IGBT and Br-Di are not built-in.

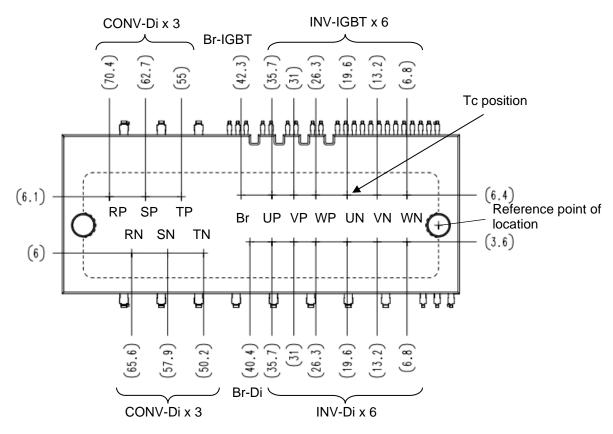


Fig. 2-1-1 Power chips layout (Unit : mm)

2.1.2 Thermal Resistance

Table 2-1-2 shows the thermal resistance between its chip junction and case.

Table 2-1-2. Thermal resistance of PSS25MC1FT (25A/1200V, CIB type)

Symbol	Parameter	Condition		Unit		
Symbol	Symbol Parameter	Condition	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}		Inverter IGBT part (per 1/6 module)	-	-	1.15	
R _{th(j-c)F}		Inverter FWD part (per 1/6 module)	-	-	1.65	
R _{th(j-c)Q}	Junction to case thermal resistance (Note 3)	Brake IGBT part (per 1module)	-	-	1.45	K/W
R _{th(j-c)F}		Brake Di part (per 1module)	-	-	1.65	
R _{th(j-c)R}		Converter part (per 1/6module)	-	-	1.10	

Note 3: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100μm~ +200μm on the contacting surface of DIPIPM and heat sink. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.25K/W (per 1chip, grease thickness: 20μm, thermal conductivity: 1.0W/m•K).

The above data shows static state thermal resistance. The thermal resistance goes into saturation in about 10 seconds. The unsaturated thermal resistance is called as transient thermal impedance which is shown in Fig.2-1-2. $Zth(j-c)^*$ is the normalized transient thermal impedance and formulation is described as $Zth(j-c)^* = Zth(j-c) / Rth(j-c)max$. For example, the IGBT transient thermal impedance at 0.2s is $1.15 \times 0.7 = 0.81 K/W$. The transient thermal impedance isn't used for constantly current, but for short period current as millisecond order. (e.g. motor starting, motor lock…e.t.c)

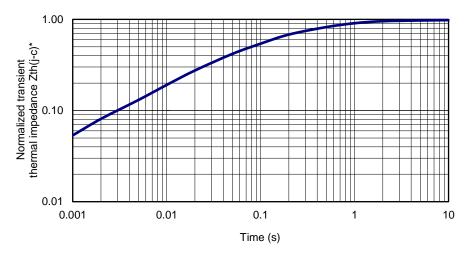


Fig. 2-1-2. Normalized transient thermal impedance

2.1.3 Electric Characteristics and Recommended Conditions

Table 2-1-3 shows the typical static characteristics and switching characteristics. (T_j = 25°C, unless otherwise noted)

Table 2-1-3 Static characteristics and switching characteristics of PSS25MC1FT(25A/1200V, CIB type)

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Sumbol	Deremeter	Condition		Limits				Unit
Symbol	Parameter			Min.	Тур.	Max.	Unit	
V _{CE(sat)}	Collector-emitter saturation	VD=VDB = 15V. VIN= 5V	$I_{c}=25A, T_{j}=25^{\circ}C$		-	1.50	2.20	V
V CE(sat)	voltage	$V_{D} = V_{DB} = 15V, V_{N} = 5V$	$I_{\rm C} = 25A$	λ, Τ _j = 125°C	-	1.80	2.45	v
V _{EC}	FWDi forward voltage	V _{IN} = 0V, -I _C = 25A			-	2.40	3.10	V
t _{on}		V _{CC} = 600V, V _D = V _{DB} = 15V		1.10	1.90	2.60	μs	
t _{C(on)}			-	0.60	0.90	μs		
t _{off}	Switching times		$I_C= 25A$, $T_j= 125^{\circ}C$, $V_{IN}= 0 \leftrightarrow 5V$ Inductive Load (upper-lower arm)	5A, T _j = 125°C, V _{IN} = 0↔5V	-	2.80	3.80	μs
t _{C(off)}		Inductive Load (upper-lower a		-	0.50	0.90	μs	
t _{rr}		The second se				0.60	-	μs
	Collector-emitter cut-off			T _j = 25°C	-	-	1	~^^
ICES	current	V _{CE} =V _{CES}		T _j = 125°C	-	-	10	mA

BRAKE PART

Sumbol	Parameter	Limits			Condition	Unit		
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit	
V	Collector-emitter saturation	$V_{D} = V_{DD} = 15V$ $V_{D} = 5V$	I _C = 15A	Α, Τ _j = 25°C	-	1.50	2.20	V
V _{CE(sat)}	voltage		$I_{\rm C} = 15A$	Α, Τ _j = 125°C	-	1.80	2.45	v
VF	Di forward voltage	$V_{IN}=0V, I_F=15A$			-	2.20	2.80	V
t _{on}					1.10	1.90	2.60	μs
t _{C(on)}					-	0.65	1.00	μs
t _{off}	Switching times	V _{CC} = 600V, V _D = V _{DB} = 15V I _C = 15A, T _i = 125°C, V _{IN} = 0↔5	V Induc	tive Load	-	2.60	3.60	μs
t _{C(off)}		10^{-10} , 1^{-120} , 1^{-120} , 1^{-120}	v, maac		-	0.40	0.95	μs
t _{rr}							-	μs
	Collector-emitter cut-off current V _{CE} =V _{CES}		T _j = 25°C	-	-	1	m۸	
ICES		V _{CE} =V _{CES}		T _j = 125°C	-	-	10	mA

CONVERTER PART

Symbol Parameter	Parameter Condition			Limits			
	Condition		Тур.	Max.	Unit		
I _{RRM}	Repetitive reverse current	V _R =V _{RRM} , Tj=125°C	-	-	7.0	mA	
V _F	Forward voltage drop	I _F =25A	-	1.1	1.4	V	

Definition of switching time and performance test topology are shown in Fig.2-1-3 and 2-1-4. Switching characteristics are measured by half bridge circuit with inductance load.

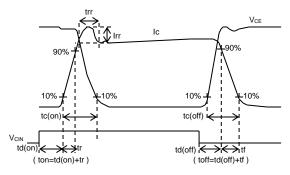


Fig. 2-1-3 Switching time definition

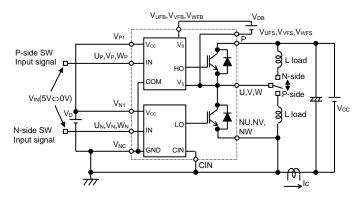


Fig. 2-1-4 Evaluation circuit (inductive load)

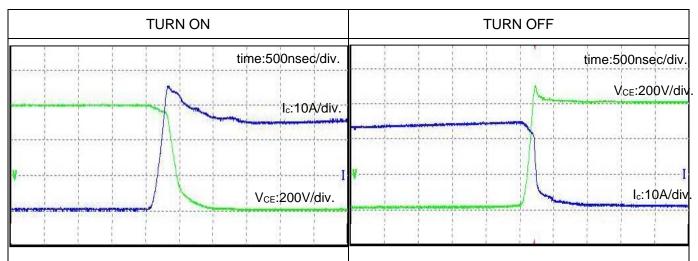


Fig. 2-1-5 Typical switching waveform for PSS25MC1FT (25A/1200V) inverter part Condition: V_{CC}=600V, V_D=V_{DB}=15V, Ic=25A, Tj=125°C, inductive load half bridge circuit

Table 2-1-4 shows the typical control part characteristics. ($T_j = 25^{\circ}C$, unless otherwise noted)

Table 2-1-4. Typical control part characteristics of PSS25MC1FT(25A/1200V, CIB type)

CONTROL (PROTECTION) PART

Cumbol	Parameter Condition		Limits			Unit		
Symbol	Parameter	Condi	Condition		Тур.	Max.	Unit	
			$V_D=15V, V_{IN}=0V$	-	-	5.70		
ID	Circuit current	Total of V_{P1} - V_{NC} , V_{N1} - V_{NC}	V _D =15V, V _{IN} =5V	-	-	5.70		
	Circuit current	Each part of VUFB-VUFS,	$V_D = V_{DB} = 15V, V_{IN} = 0V$	-	-	0.55	mA	
DB		VVFB-VVFS, VWFB-VWFS	$V_D = V_{DB} = 15V, V_{IN} = 5V$	-	-	0.55	1	
V _{SC(ref)}	Short circuit trip level	V _D = 15V	(Note 4)	0.455	0.480	0.505	V	
UV_{DBt}	Control supply under-voltage	Trip level		10.0	-	12.0	V	
UV_{DBr}	protection(UV) for P-side of inverter part		Reset level		-	12.5	V	
UV _{Dt}	Control supply under-voltage]	Trip level	10.3	-	12.5	V	
UV_{Dr}	protection(UV) for N-side of inverter part and brake part		Reset level	10.8	-	13.0	V	
V _{OT}	Temperature Output	Pull down R=5.1kΩ (Note 5) LVIC Temperature=100°C		2.89	3.02	3.14	V	
V_{FOH}	Fault output voltage	$V_{sc} = 0V$, F_0 terminal pulled up to 5V by $10k\Omega$		4.9	-	-	V	
V_{FOL}	Fault output voltage	$V_{SC} = 1V, I_{FO} = 1mA$		-	-	0.95	V	
t _{FO}	Fault output pulse width	In case of (Note 6,7)		1.6	2.4	-	ms	
I _{IN}	Input current	$V_{\rm IN} = 5V$		0.70	1.00	1.50	mA	
V _{th(on)}	ON threshold voltage				3.5	v		
$V_{\text{th(off)}}$	OFF threshold voltage	Applied between $U_P, V_P, W_P, U_N, V_N, W_N, AIN-V_{NC}$		0.8	-	—		
V _F	Bootstrap Di forward voltage	I _F =10mA including voltage drop by limiting resistor			0.9	1.3	V	
R	Built-in limiting resistance	Included in bootstrap Di		16	20	24	Ω	

Note 4 : SC protection works only for N-side IGBT in inverter part. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

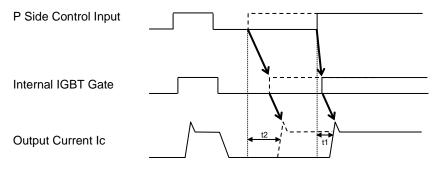
5 : DIPIPM don't shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protective level that user defined, controller (MCU) should stop the DIPIPM. Temperature of LVIC vs. VOT output characteristics is described in Section 2.2.3.

6 : Fault signal Fo outputs when SC or UV protection works for N-side IGBT in inverter part. The fault output pulsewidth t_{FO} is depended on the capacitance value of C_{FO} (C_{FO} = t_{FO} × 9.1 × 10⁻⁶ [F]).

7: UV protection also works for P-side IGBT in inverter part or brake part without fault signal Fo.

Table 2-1-5 shows recommended operation conditions. Please apply and use under the recommended conditions to operate DIPIPM+ series safely. ($T_j = 25^{\circ}C$, unless otherwise noted)

Table 2-1-5. Recommended operation conditions of PSS25MC1FT (25A/1200V, CIB type)


RECOMMENDED OPERATION CONDITIONS

Currente e l	Deveryotar	Condition			Limits		Unit
Symbol	Parameter	Condition		Min.	Тур.	Max.	
V _{cc}	Supply voltage	Applied between P-NU,NV,NW	Applied between P-NU,NV,NW			800	V
V _D	Control supply voltage	Applied between V_{P1} - V_{NC} , V_{N1} - V_{NC}		13.5	15.0	16.5	V
V _{DB}	Control supply voltage	Applied between VUFB-VUFS, VVFB-V	Applied between V _{UFB} -V _{UFS} ,V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}		15.0	18.5	V
$\Delta V_D, \Delta V_{DB}$	Control supply variation		-1	-	1	V/µs	
t _{dead}	Arm shoot-through blocking time	For each input signal	3.0	-	-	μs	
f _{PWM}	PWM input frequency	T _c ≤100°C, T _j ≤125°C	-	-	20	kHz	
PWIN(on)		I _C ≤1.7 times of rated current	(Note 8)	1.5	-	-	
		0≤V _{CC} ≤800V, 13.5≤V _D ≤16.5V,	Less than rated current	3.0	-	-]
PWIN(off)	Minimum input pulse width	$\begin{array}{ll} 13.0{\leq}V_{\text{DB}}{\leq}18.5V,\ -20{\leq}T_{\text{C}}{\leq}100^{\circ}\text{C},\\ \text{N line wiring inductance}\\ \text{less than 10nH} & (\text{Note 9}) \end{array}$	From rated current to 1.7 times of rated current	3.5	-	-	μs
V _{NC}	V _{NC} variation	Between V _{NC} - NU, NV, NW (includ	Between V _{NC} - NU, NV, NW (including surge)		-	+5.0	V
Ti	Junction temperature			-20	-	125	°C

Note 8: DIPIPM might not make response if the input signal pulse width is less than PWIN(on).

9: DIPIPM might make no response or delayed response (P-side IGBT only) for the input signal with off pulse width less than PWIN(off). Please refer below figure about delayed response.

About Delayed Response Against Shorter Input Off Signal Than PWIN(off) (P side only)

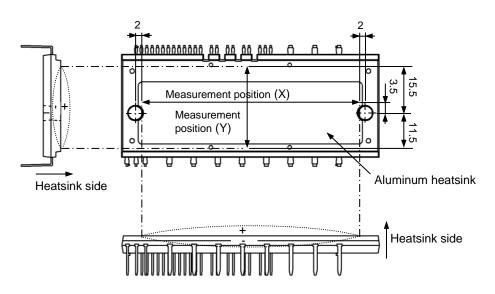
Real line…off pulse width>PWIN(off); turn on time t1 Broken line…off pulse width<PWIN(off); turn on time t2

[note] About control supply variation

If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet the following specifications: $dV/dt \le +/-1V/\mu s$, Vripple≤2Vp-p

2.1.4 Mechanical characteristics and specifications

Table 2-1-6 shows mechanical characteristics and specifications. Please also refer section 2.4 for mounting instruction of DIPIPM+.


Table 2-1-6. Mechanical characteristics and specifications of PSS25MC1FT (25A/1200V, CIB type)

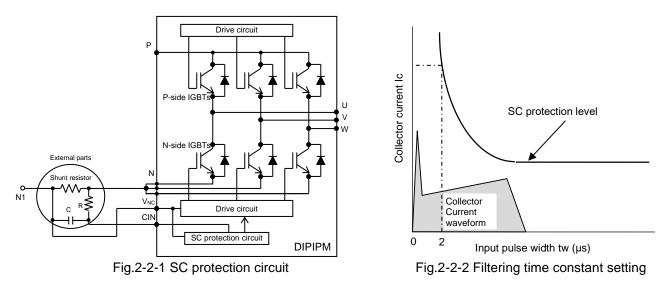
MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Condition		Limits			Unit
Parameter			Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M4 (Note 10)	0.98	1.18	1.47	N∙m	
Terminal pulling strength	20N load	JEITA-ED-4701	10	-	-	s
Terminal bending strength	90deg bending with 10N load	JEITA-ED-4701	2	-	-	times
Weight			-	40		g
Heat radiation part flatness		-50	-	+100	μm	

Note 10: Plain washers (ISO 7089~7094) are recommended.

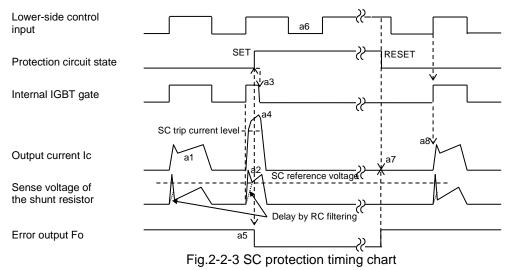
Note 11: Measurement positions of heat radiation part flatness are as below.

2.2 Protection functions and operating sequence


DIPIPM+ has two protection functions of short circuit (SC) and under voltage of control supply (UV). And it has also temperature output function of LVIC (VOT). The operating principle and sequence are described as follows.

2.2.1 Short circuit protection

(1) Outline


DIPIPM+ uses external shunt resistor for the current detection as shown in Fig.2-2-1. The internal protection circuit inside the IC captures the excessive large current by comparing the CIN voltage generated at the shunt resistor with the referenced SC trip voltage, and perform protection automatically. The threshold voltage trip level of the SC protection Vsc(ref) is 0.48V typical.

In case of SC protection works, all the gates of N-side three phase IGBTs will be interrupted together with a fault signal output. To prevent DIPIPM+ erroneous protection due to normal switching noise and/or recovery current, it is necessary to set an RC filter (time constant: $1.5\mu \sim 2\mu$ s) to the CIN terminal input (Fig.2-2-1, 2-2-2). Also, please make the pattern wiring around the shunt resistor as short as possible.

(2) SC protection sequence for only low-side with external shunt resistor and RC filter

- a1. Normal operation: IGBT ON and outputs current.
- a2. Short circuit current detection (SC trigger)
- (It is recommended to set RC time constant 1.5~2.0µs so that IGBT shut down within 2.0µs when SC.)
- a3. All N-side IGBT's gates are hard interrupted.
- a4. All N-side IGBTs turn OFF.
- a5. LVIC starts outputting fault signal (fault signal output time is controlled by external capacitor CFO)
- a6. Input = "L": IGBT OFF
- a7. Fo finishes output, but IGBTs don't turn on until inputting next ON signal (L \rightarrow H).
- (IGBT of each phase can return to normal state by inputting ON signal to each phase.)
- a8. Normal operation: IGBT ON and outputs current.

(3) Calculation of shunt resistance

The value of current sensing shunt resistance for current sensing is calculated by the following formulation:

 $R_{Shunt} = V_{SC(ref)}/SC$ where $V_{SC(ref)}$ is the SC trip voltage.

The maximum SC trip level SC(max) should be set less than the IGBT minimum saturation current which is 1.7 times as large as the rated current. For example, the SC(max) of PSS25MC1FT should be set to 25x1.7=42.5A. The parameters (V_{SC(ref)}, R_{Shunt}) dispersion should be considered when designing the SC trip level. The dispersion of DIPIPM+ series is +/-0.025V in the specification of V_{SC(ref)} as shown in Table 2-2-1.

Table 2-2-1 Specification for V_{SC(ref)}

Symbol	Condition	Min	Тур	Max	Unit
V _{SC(ref)}	Tj=25°C, V₀=15V	0.455	0.480	0.505	V

Therefore, the range of SC trip level can be calculated by the following descriptions with +/-5% dispersion of shunt resistor :

RShunt(min)=VSC(ref) max /SC(max)

where SC(max) is 1.7 times of rated current, and so 0.95 is due to -5% dispersion of shunt resistor that $R_{Shunt(typ)} = R_{Shunt(min)} / 0.95$

Therefore, $SC(typ) = V_{SC(ref) typ} / R_{Shunt(typ)}$. $R_{Shunt(max)} = R_{Shunt(typ)} \times 1.05^*$ *1.05 is due to +5% dispersion of shunt resistor

Therefore, SC(min)= V_{SC(ref)} min / R_{Shunt(max)}

In this case, SC trip level is 42.5A, Rshunt(min)= $0.505V / 42.5A = 11.9 \text{ m}\Omega$, Rshunt(typ)= $11.9\text{m}\Omega / 0.95 = 12.5 \text{ m}\Omega$, Rshunt(max)= $12.5 \text{ x} 1.05 = 13.1\text{m}\Omega$

When the both of SC trip level and shunt resistor will be maximum, typical and minimum, these will be described as follows;

SC(max) = 42.5 A (setting), SC (typ) = 0.480 / 12.5 = 38.4 A, SC(min) = 0.455 / 13.1 = 34.7 A From the above, the SC trip level range is described as Table 2-2-2.

Table 2-2-2 Operative SC Range

Condition	min.	typ.	max.	Unit			
Tj=25°C, V _D =15V	34.7	38.4	42.5	Α			

There is the possibility that the actual SC protection level becomes less than the calculated value. This is considered due to the resonant signals caused mainly by parasitic inductance and parasitic capacitance. It is recommended to make a confirmation of the resistance by prototype experiment.

(4) RC filter time constant

It is necessary to set an RC filter in the SC sensing circuit in order to prevent malfunction of SC protection due to noise interference. The RC time constant is determined depending on the applying time of noise interference and the SCSOA of the DIPIPM.

When the voltage drop on the external shunt resistor exceeds the SC trip level, The time (t1) that the CIN terminal voltage rises to the referenced SC trip level can be calculated by the following expression:

$$V_{SC} = R_{shunt} \cdot I_c \cdot (1 - \varepsilon^{-\frac{11}{\tau}})$$

$$t1 = -\tau \cdot \ln(1 - \frac{V_{SC}}{R_{shunt}} \cdot I_c})$$

Where Vsc is the CIN terminal input voltage, Ic is the peak current, τ is the RC time constant.

On the other hand, the typical time delay t2 (from Vsc voltage reaches Vsc(ref) to IGBT gate shutdown) of IC is shown in Table 2-2-3.

Table 2-2-3 Internal time delay of IC

Item	Min	typ	max	Unit			
IC transfer delay time	-	-	1.0	μs			

Therefore, the total delay time from an SC level current happened to the IGBT gate shutdown becomes: $t_{\text{TOTAL}} = t1 + t2$

2.2.2 Control Supply UV Protection

The UV protection is designed to prevent unexpected operating behavior as described in Table 2-2-4. Both Pside, N-side of inverter part and Brake part have UV protecting function. However fault signal(Fo) output only corresponds to N-side UV protection. Fo output continuously during UV state.

In addition, there is a noise filter (typ. 10µs) integrated in the UV protection circuit to prevent instantaneous UV erroneous trip. Therefore, the control signals are still transferred in the initial 10µs after UV happened.

Control supply voltage (V _D , V _{DB})	Operating behavior
0-4.0V (P, N)	In this voltage range, built-in control IC may not work properly. Normal operating of each protection function (UV, Fo output etc.) is not also assured. Normally IGBT does not work. But external noise may cause DIPIPM malfunction (turns ON), so DC-link voltage need to start up after control supply starts-up.
4.0-UV _{Dt} (N), UV _{DBt} (P)	UV function becomes active and output Fo (N-side only). Even if control signals are applied, IGBT does not work.
UV _{Dt} (N)-13.5V UV _{DBt} (P)-13.0V	IGBT can work. However, conducting loss and switching loss will increase, and result extra temperature rise at this state,.
13.5-16.5V (N) 13.0-18.5V (P)	Recommended conditions.
16.5-20.0V (N) 18.5-20.0V (P)	IGBT works. However, switching speed becomes fast and saturation current becomes large at this state, increasing SC broken risk.
20.0V- (P, N)	The control circuit might be destroyed.

Table 2-2-4 DIPIPM o	perating behavior versus	control supply voltage
	peraling benavior versus	control supply voltage

(note) Ripple Voltage Limitation of Control Supply

If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem happens, line ripple voltage should meet the following specifications:

 $dV/dt \le +/-1V/\mu s$, Vripple $\le 2Vp-p$

- (1) N-side UV Protection Sequence
 - a1. Control supply voltage V $_{D}$ exceeds under voltage reset level (UV_{Dr}), but IGBT turns ON by next ON signal (L \rightarrow H).(IGBT of each phase can return to normal state by inputting ON signal to each phase.)
 - a2. Normal operation: IGBT ON and carrying current.
 - a3. V_D level dips to under voltage trip level. (UV_{Dt}).
 - a4. All N-side IGBTs turn OFF in spite of control input condition.
 - a5. Fo outputs for the period set by the capacitance CFO, but output is extended during VD keeps below UVDr.
 - a6. V_D level reaches UV_{Dr}.
 - a7. Normal operation: IGBT ON and outputs current.

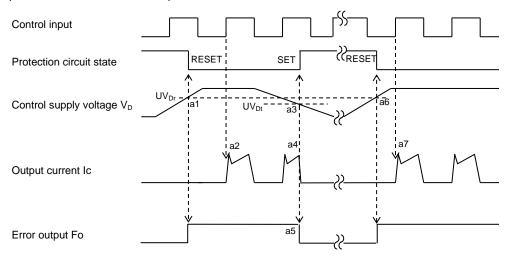
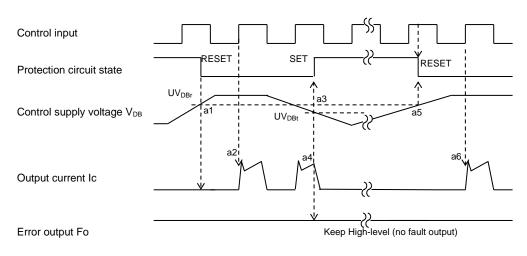
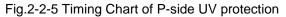




Fig.2-2-4 Timing Chart of N-side UV protection

- (2) P-side UV Protection Sequence
 - a1. Control supply voltage V_{DB} rises. After the voltage reaches under voltage reset level UV_{DBr}, IGBT turns on by next ON signal ($L\rightarrow$ H).
 - a2. Normal operation: IGBT ON and outputs current.
 - a3. V_{DB} level drops to under voltage trip level (UV_{DBt}).
 - a4. IGBT of the corresponding phase only turns OFF in spite of control input signal level, but there is no F₀ signal output.
 - a5. V_{DB} level reaches UV_{DBr}.
 - a6. Normal operation: IGBT ON and outputs current.

(3) Brake UV Protection Sequence (with Brake product only : PSSxxMC1Fx)

- a1. Control supply voltage V_D rises. After the voltage reaches under voltage reset level UV_{Dr}, IGBT turns on by next ON signal (L \rightarrow H).
- a2. Normal operation: IGBT ON and collector current.
- a3. V_D level drops to under voltage trip level (UV_{Dt}).
- a4. IGBT of the corresponding phase only turns OFF in spite of control input signal level, but there is no F_0 signal output.
- a5. V_D level reaches UV_{Dr}.
- a6. Normal operation: IGBT ON and outputs current.

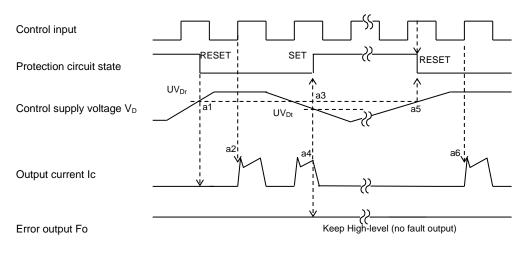


Fig.2-2-6 Timing Chart of brake circuit UV protection

2.2.3 Temperature output function Vot

(1) Usage of this function

This function measures the temperature of control LVIC by built in temperature sensor on LVIC.

The heat generated at IGBT and FWDi transfers to LVIC through molding resin of package and outer heat sink. So LVIC temperature cannot respond to rapid temperature rise of those power chips effectively. (e.g. motor lock, short circuit). It is recommended to use this function for protecting from slow excessive temperature rise by such cooling system down and continuance of overload operation. (Replacement from the thermistor which was mounted on outer heat sink currently)

(note)

In this function, DIPIPM cannot shutdown IGBT and output fault signal by itself when temperature rises excessively. When temperature exceeds the defined protection level, controller (MCU) should stop the DIPIPM.

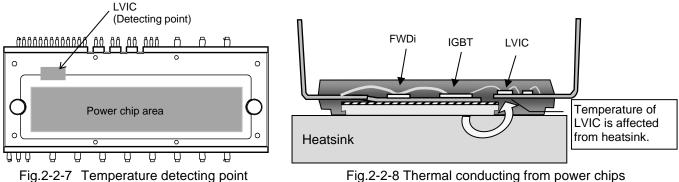


Fig.2-2-8 Thermal conducting from power chips

(2) VOT characteristics

VOT output circuit, which is described in Fig.2-2-9, is the output of OP amplifier circuit. The current capability of VOT output is described as Table 2-2-5. The characteristics of VOT output vs. LVIC temperature is linear characteristics described in Fig.2-2-11. There are some cautions for using this function as follows.

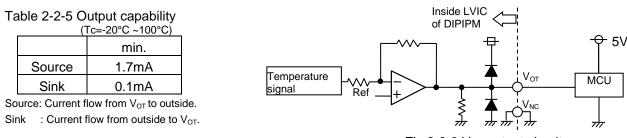


Fig.2-2-9 Vot output circuit

(note) In the case of detecting lower temperature than room temperature

It is recommended to insert 5.1kΩ pull down resistor for getting linear output characteristics at lower temperature than room temperature. When the pull down resistor is inserted between V_{OT} and V_{NC}(control GND), the extra current calculated by Vot output voltage / pull down resistance flows as LVIC circuit current continuously. In the case of only using Vot for detecting higher temperature than room temperature, it isn't necessary to insert the pull down resistor.

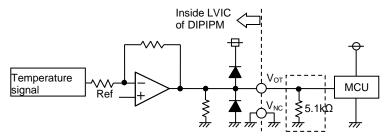


Fig.2-2-10 Vot output circuit in the case of detecting low temperature

Please handle the following characteristics of VOT output vs. LVIC temperature as reference data to set over temperature protection. These curves are based on theoretical designed value excluding specified value in the target specification.

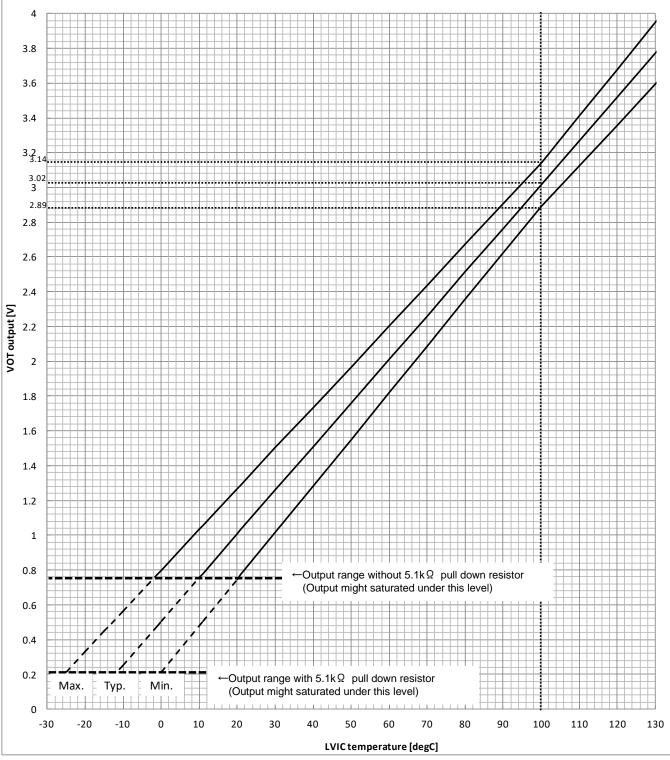


Fig.2-2-11 Vot output vs. LVIC temperature

The heat of power chips transfers to LVIC through the heat sink and package, so the relationship between LVIC temperature: $Tic(=V_{OT} \text{ output})$, case temperature: Tc(under the chip defined on datasheet), and junction temperature: Tj depends on the system cooling condition, heat sink, control strategy, etc. So when setting the threshold temperature for protection, it is necessary to get the relationship between them on your real system. And when setting threshold temperature Tic, it is important to consider the protection temperature keeps Tj \leq 150°C.

2.3 Package outline of DIPIPM+

2.3.1 Package outline and PCB Through-hole Pattern

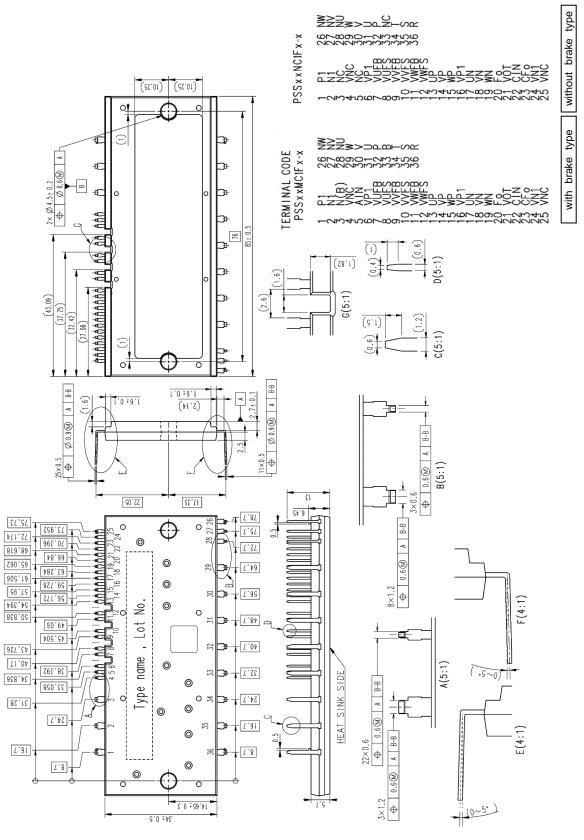


Fig. 2-3-1 Package outline drawing (Dimension in mm)

Fig 2-3-2 shows the layout of recommended through-hole locations and diameters for DIPIPM+.

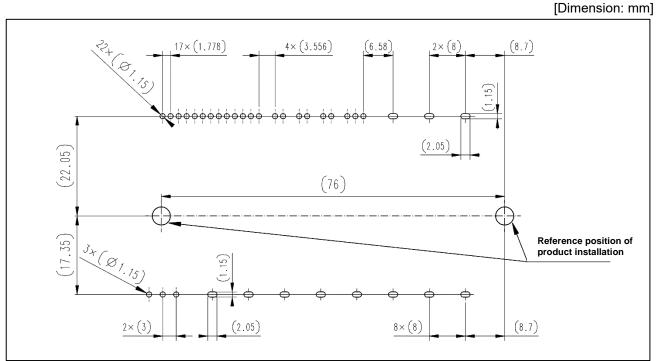


Fig.2-3-2 PCB through-hole pattern of DIPIPM+ (Reference Figure)

2.3.2 Marking

The laser marking specifications of DIPIPM+ are described in Fig.2-3-2. Company name, Country of origin, Type name, Lot number, and 2D code are marked on the surface of module.

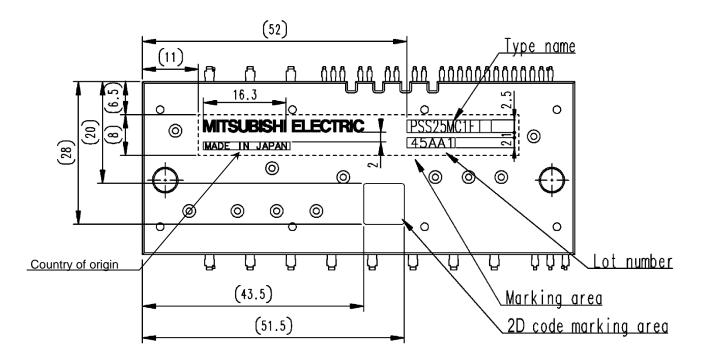
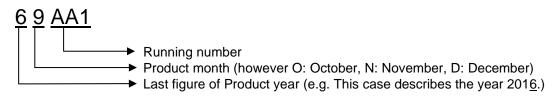



Fig.2-3-3 Laser marking view PSSxxxC1Fx (Dimension in mm)

The Lot number indicates production year, month, running number and country of origin. The detailed is described as below.

(Example)

2.3.3 Terminal Description

Table 2-3-1 Terminal Description

	PSSxxMC1Fx	PSSxxNC1Fx	Description
	With Brake	Without Brake	Description
1	P1	÷	Output terminal for converter (+)
2	N1	÷	Output terminal for converter (-)
3	N(B)	(NC)	IGBT emitter terminal for brake
4	V _{NC} *1)	÷	Control supply GND terminal (Brake part)
5	AIN	(NC)	Brake part control input terminal
6	V _{P1} *2)	\leftarrow	Control supply positive terminal (+)
7	Vufb	\leftarrow	U-phase P-side drive supply positive terminal
8	VUFS	÷	U-phase P-side drive supply GND terminal
9	Vvfb	÷	V-phase P-side drive supply positive terminal
10	Vvfs	÷	V-phase P-side drive supply GND terminal
11	Vwfb	÷	W-phase P-side drive supply positive terminal
12	Vwfs	÷	W-phase P-side drive supply GND terminal
13	UP	\leftarrow	U-phase P-side control input terminal
14	VP	÷	V-phase P-side control input terminal
15	WP	÷	W-phase P-side control input terminal
16	V _{P1} *2)	\leftarrow	Control supply positive terminal (+)
17	UN	\leftarrow	U-phase N-side control input terminal
18	V _N	\leftarrow	V-phase N-side control input terminal
19	W _N	÷	W-phase N-side control input terminal
20	Fo	÷	Fault signal output terminal
21	Vot	÷	Temperature output terminal
22	CIN	÷	SC current trip voltage detecting terminal
23	CFo	÷	Fault pulse output width setting terminal
24	V _{N1}	\leftarrow	N-side control supply positive terminal (+)
25	V _{NC} ^{*1)}	÷	GND terminal for brake control supply
26	NW	\leftarrow	WN-phase IGBT emitter terminal
27	NV	\leftarrow	VN-phase IGBT emitter terminal
28	NU	\leftarrow	UN-phase IGBT emitter terminal
29	W	\leftarrow	W-phase output terminal
30	V	\leftarrow	V-phase output terminal
31	U	\	U-phase output terminal
32	Р	\leftarrow	Inverter DC-link positive terminal
33	В	(NC)	Brake terminal
34	Т	\leftarrow	AC input terminal
35	S	\	AC input terminal
36	R	÷	AC input terminal

(note)

NC: No connection

1) Two V_{NC} terminals (GND terminal for control supply) are connected mutually inside of DIPIPM+, please connect either terminal to GND and make the other terminal leave no connection.

2) Two V_{P1} terminals are connected mutually inside, please connect either terminal to supply and make the other terminal leave no connection.

Table 2-3-2 Detailed	d description of i	nput and output terminals
Item	Symbol	Description
P-side drive	Vufb- Vufs	Drive supply terminals for P-side IGBTs.
supply	VVFB- VVFS	By mounting bootstrap capacitor, individual isolated power supplies are not
positive terminal	Vwfb- Vwfs	needed for the P-side IGBT drive. Each bootstrap capacitor is charged by the
•		N-side V _D supply when potential of output terminal is almost GND level.
P-side drive		 Abnormal operation might happen if the V_D supply is not aptly stabilized or
supply		has insufficient current capability due to ripple or surge. In order to prevent
GND terminal		malfunction, a bypass capacitor with favorable frequency and temperature
		characteristics should be mounted very closely to each pair of these
		terminals.
		 Inserting a Zener diode (24V/1W) between each pair of control supply
		terminals is helpful to prevent control IC from surge destruction.
P-side control	V _{P1}	Control supply terminals for the built-in HVIC and LVIC.
supply terminal		• V_{P1} , and V_{N1} should be connected externally on PCB. In order to prevent
		malfunction caused by noise and ripple in the supply voltage, a bypass
		capacitor with good frequency characteristics should be mounted very close
N-side control	V _{N1}	to these terminals.
supply terminal		• Please design the supply carefully so that the voltage ripple caused by
		operation keep within the specification. $(dV/dt \le +/-1V/\mu s, Vripple \le 2Vp-p)$
		• It is recommended to insert a Zener diode (24V/1W) between each pair of
		control supply terminals to prevent surge destruction.
N-side control	V _{NC}	Control ground terminal for the built-in HVIC and LVIC.
GND terminal		Please make sure that line current of the power circuit does not flow through
		this terminal in order to avoid noise influences.
Control input	Up,Vp,Wp	Control signal input terminals. This is Voltage input type.
terminal	UN, VN, WN	• These terminals are internally connected to Schmitt trigger circuit and pulled
	AIN	down by min $3.3k\Omega$ resistor internally
		The wiring of each input should be as short as possible to protect the DIPIPM
		from noise interference.
		· Please use RC coupling in case of signal oscillation. Pay attention to
		threshold voltage of input terminal, because input circuit has pull down
		resistor.
Short-circuit trip	CIN	For short circuit protection, input the potential of external shuint resistor to
voltage detecting		CIN terminal through RC filter (for the noise immunity).
terminal		 The time constant of RC filter is recommended to be up to 2µs.
Fault signal	Fo	Fault signal output terminal for N-side abnormal state(SC or UV).
output terminal		• This output is open drain type. It is recommended to pull up Fo signal line to
		the 5V supply by 10k Ω when Fo signal is input to MCU directly (Check
		whether the V_{FO} satisies the threshold level of input of MCU when selecting
		resistance).
		 In the case of directly driving opto coupler by Fo output it is needed to set the
		pull-up resistance so that IFO becomes under 5mA(maximum rating). And
		pulled up to 15V supply is recommended.(VFO increases in propotion to
	<u>^</u>	increasing I _{FO})
Fault pulse output	CFO	The terminal is for setting the fault pulse output width. An external capacitor should be connected between this terminal and Vue
width setting		 An external capacitor should be connected between this terminal and V_{NC}. When 22nF capacitor is connected, then the Fo pulse width becomes 2.4ms.
terminal		Because of $C_{FO} = t_{FO} \times 9.1 \times 10^{-6}$ (F)
Temperature	Voт	• LVIC temperature is ouput by analog signal. It is ouput of OP amplifer
output terminal	VOI	internally.
Juipur terminai		• It is recommended to connect 5.1k Ω pulldown resistor if output linearlity is
		necessary under room temperature.
Inverter DC-link	Р	DC-link positive power supply terminal.
positive terminal		 Internally connected to the collectors of all P-side IGBTs.
		• To suppress surge voltage caused by DC-link wiring or PCB pattern
		inductance, smoothing capacitor should be inserted very closely to the P
		terminal. It is also effective to add small film capacitor with good frequency
		characteristics for snubber.

(Continue)		
Item	Symbol	Description
Inverter DC-link	NU, NV, NW	 Emitter terminal of each N-side IGBT
negative terminal		 Usually, these terminals are connected to the power GND through individual shunt resistor.
		 If common emitter circuit (one shunt control) is applied, connect these terminals together at the point as close from the package as possible.
Inverter power	U, V, W	 Inverter output terminals for connection to inverter load (e.g. AC motor).
output terminal		 Each terminal is internally connected to the intermidiate point of the corresponding IGBT half bridge arm.
AC power supply	R, S, T	 AC power supply input terminal
input terminal		
Converter positive	P1	Converter positive output terminal
output terminal		
Converter GND	N1	Converter GND terminal
terminal		

(note)

Use oscilloscope to check voltage waveform of each power supply terminals and P and N terminals, the time division of OSC should be set to about 1μ s/div. Please ensure the voltage (including surge) not exceed the specified limitation.

If there is a surge more than threshold of ratings or superimposed noise, it is necessary to take some counter noise measurements; revising pattern, replacing capacitor, apply zener diode, enhancing filtering and so on.

2.4 Mounting Method

This section are described the electric spacing and mounting precautions of DIPIPM+.

2.4.1 Electric Spacing of DIPIPM+

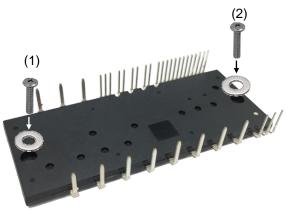

The electric spacing specification of DIPIPM+ is shown in Table 2-4-1.

Table 2-4-1 Minimum insulation distance(minimum value)

Clearance(mm)		Creepage(mm)		
Between power terminals	5.7	Between power terminals	6.0	
Between control terminals	2.3	Between control terminals	6.2	
Between terminals and heat sink	2.5	Between terminals and heat sink	4.1	

2.4.2 Mounting Method and Precautions

When installing the module to the heat sink, excessive or uneven fastening force might apply stress to inside chips. Then it will lead to a broken or degradation of the chips or insulation structure. The recommended fastening procedure is shown in Fig.2-4-1. When fastening, it is necessary to use the torque wrench and fasten up to the specified torque. And pay attention not to have any foreign particle on the contact surface between the module and the heat sink. Even if the fixing of heatsink was done by proper procedure and condition, there is a possibility of damaging the package because of tightening by unexpected excessive torque or tucking particle. For ensuring safety it is recommended to conduct the confirmation test (e.g. insulation inspection) on the final product after fixing the DIPIPM with the heatsink.

Temporary fastening (1) \rightarrow (2) Permanent fastening (1) \rightarrow (2) **Note:** Generally, the temporary fas

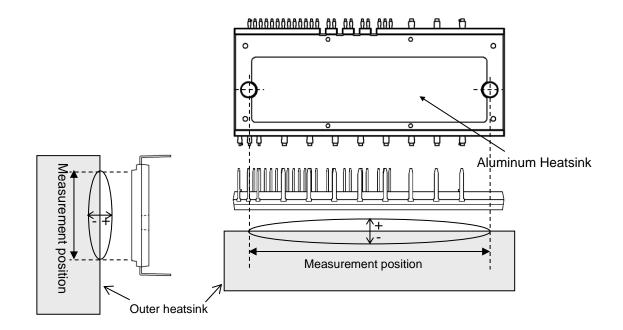

Note: Generally, the temporary fastening torque is set to 20-30% of the maximum torque rating. Not care the order of fastening (1) or (2), but need to fasten alternately.

Fig.2-4-1 Recommended screw fastening order

Table 2-4-2 Mounting torque and heat sink flatness specifications

Item	Condition	Min.	Тур.	Max.	Unit
Mounting torque	Screw : M4	0.98	-	1.47	N∙m
Flatness of outer heat sink	Refer Fig.2-4-2	-50	-	+100	μm

(note): Recommend to use plain washer (ISO7089-7094) in fastening the screws.

In order to get effective heat dissipation, it is necessary to enlarge the contact area as much as possible to minimize the contact thermal resistance. Regarding the heat sink flatness (warp/concavity and convexity) on the module installation surface, the surface finishing-treatment should be within Rz12.

Evenly apply thermally-conductive grease with 100µ-200µm thickness over the contact surface between a module and a heat sink, which is also useful for preventing corrosion. Furthermore, the grease should be with stable quality and long-term endurance within wide operating temperature range. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.25K/W (per chip, grease thickness: 20µm, thermal conductivity: 1.0W/m·k). When applying grease and fixing heat sink, pay attention not to take air into grease. It might lead to make contact thermal resistance worse or loosen fixing in operation.

2.4.3 Soldering Conditions

The recommended soldering condition is mentioned as below. (Note: The reflow soldering cannot be recommended for DIPIPM.)

(1) Flow (wave) Soldering

DIPIPM is tested on the condition described in Table 2-4-3 about the soldering thermostability, so the recommended conditions for flow (wave) soldering are soldering temperature is up to 265°C and the immersion time is within 11s.

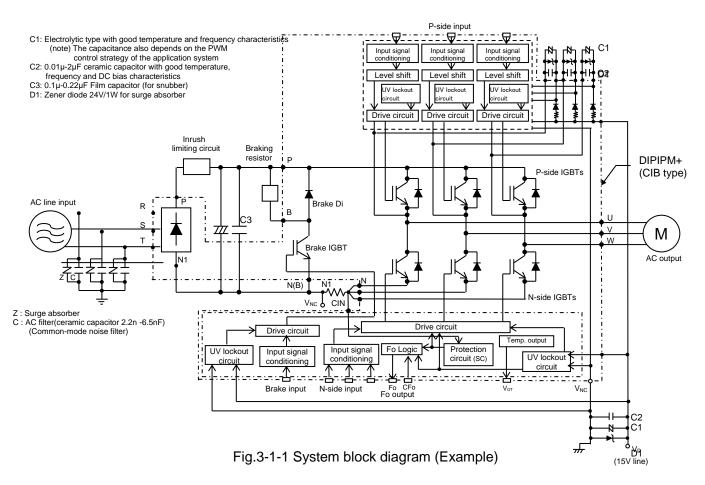
The actual condition might need some adjustment based on its flow condition of solder, the speed of the conveyer, the land pattern and the through hole shape on the PCB, etc. It is necessary to confirm whether it is appropriate or not for your real PCB finally.

Table 2-4-3 Reliability test specification

Item	Condition
Soldering thermostability	260±5°C, 10±1s

(2) Hand soldering

Since the temperature impressed upon the DIPIPM may changes based on the soldering iron types (wattages, shape of soldering tip, etc.) and the land pattern on PCB, the unambiguous hand soldering condition cannot be decided.


As a general requirement of the temperature profile for hand soldering, the temperature of the root of the DIPIPM terminal should be kept less than 150°C for considering glass transition temperature (Tg) of the package molding resin and the thermal withstand capability of internal chips. Therefore, it is necessary to check the DIPIPM terminal root temperature, solderability and so on in your real PCB, when configure the soldering temperature profile. (It is recommended to set the soldering time as short as possible.)

CHAPTER 3 : SYSTEM APPLICATION GUIDANCE

3.1 Application guidance

This chapter states the DIPIPM+ application method and interface circuit design hints.

3.1.1 System connection

3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor) Fig.3-1-2 shows a typical application circuit of interface schematic, in which control signals are transferred directly input from a controller (e.g. MCU).

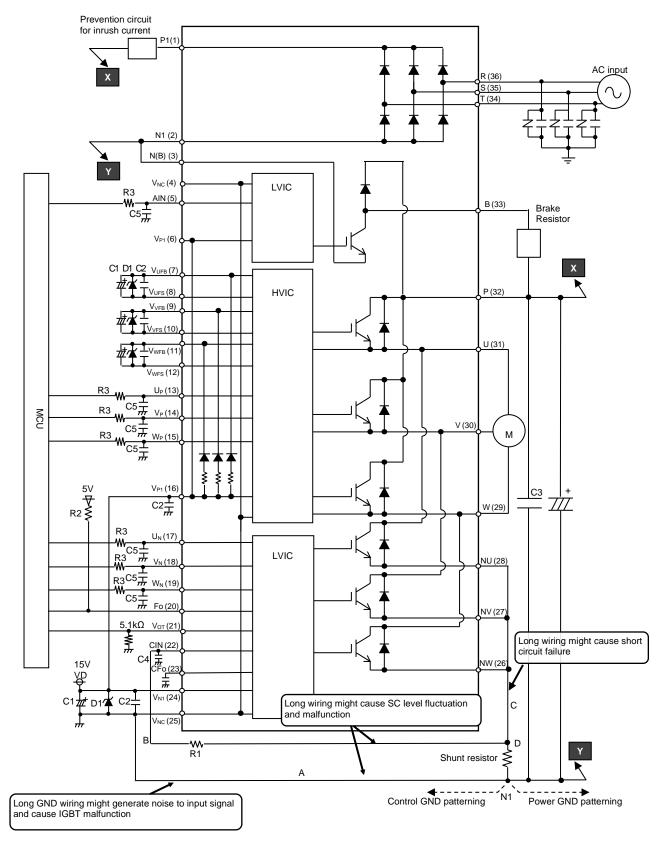


Fig.3-1-2 Interface circuit example in the case of using with one shunt resistor

Note for the previous application circuit:

- (1) If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1 (near the terminal of shunt resistor).
- (2) It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction.
 (3) To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22µF snubber capacitor C3 between the P-N1 terminals is recommended.
- (4) R1, C4 of RC filter for preventing protection circuit malfunction is recommended to select tight tolerance, temp-compensated type. The time constant R1C4 should be set so that SC current is shut down within 2µs. (1.5µs~2µs is recommended generally.) SC interrupting time might vary with the wiring pattern, so the enough evaluation on the real system is necessary.
- (5) To prevent malfunction, the wiring of A, B, C should be as short as possible.
- (6) The point D at which the wiring to CIN filter is divided should be near the terminal of shunt resistor. NU, NV, NW terminals should be connected each other at near those three terminals when it is used by one shunt operation. Low inductance SMD type with tight tolerance, temp-compensated type is recommended for shunt resistor.
- (7) All capacitors should be mounted as close to the terminals as possible. (C1: good temperature, frequency characteristic electrolytic type and C2:0.01µ-2µF, good temperature, frequency and DC bias characteristic ceramic type are recommended.)
- (8) Input logic is High-active. There is a 3.3kΩ(min.) pull-down resistor in the input circuit of IC. To prevent malfunction, the input wiring should be as short as possible. When using RC coupling, make the input signal level meet the turn-on and turn-off threshold voltage.
- (9) Fo output is open drain type. Fo output will be max 0.95V(@I_{FO}=1mA,25°C), so it should be pulled up to MCU or control power supply (e.g. 5V,15V) by a resistor that makes I_{FO}up to 1mA. (In the case of pulled up to 5V, 10kΩ is recommended.) About driving opto coupler by Fo output, please refer the application note of this series.
- (10) Fo pulse width can be set by the capacitor connected to CFO terminal. $C_{FO}(F) = 9.1 \times 10^{-6} \times t_{FO}$ (Required Fo pulse width).
- (11) If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet dV/dt ≤+/-1V/µs, Vripple ≤ 2Vp-p.
- (12) For DIPIPM, it isn't recommended to drive same load by parallel connection with other phase IGBT or other DIPIPM.
- (13) No.4 and No.25 V_{NC} terminals (GND terminal for control supply) are connected mutually inside of DIPIPM+ and also No.6 and No.16 V_{P1} terminals are connected mutually inside, please connect either No.4 or No.25 terminal to GND and also connect either No.6 or No.16 terminal to supply and make the unused terminal leave no connection.

3.1.3 Interface circuit (example of opto-coupler isolated interface)

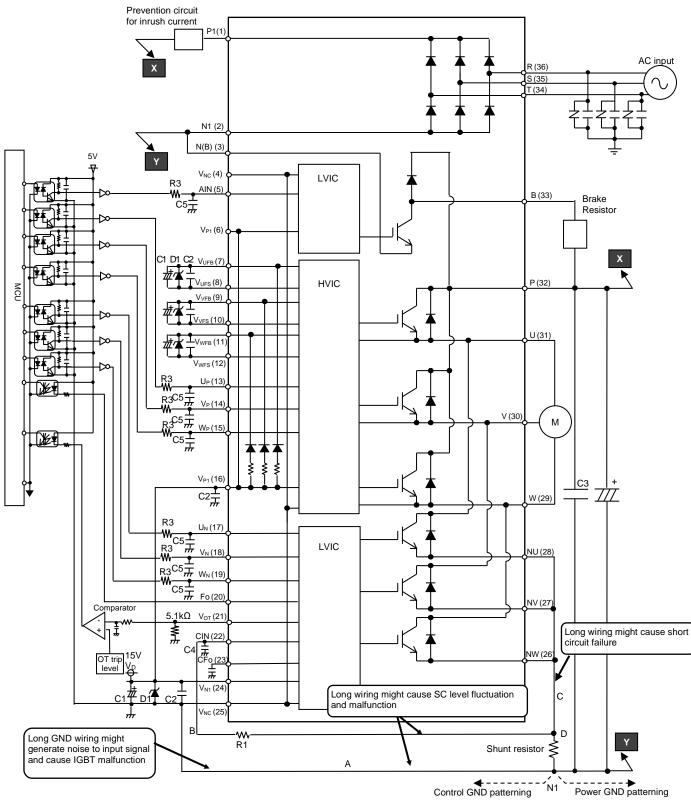


Fig.3-1-3 Interface circuit example with opto-coupler

(note)

- (1) High speed (high CMR) opto-coupler is recommended.
- (2) Set the current limiting resistance to make Fo sink current I_{FO}=5mA or less when the opto-coupler is driven by Fo output directly. To assure I_{FO}=5mA, it will be needed to pull up to 15V supply since Fo output may be max 4.75V (@I_{FO}=5mA, 25°C).
 (3) To prevent malfunction, it is strongly recommended to insert RC filter (e.g. R3=100Ω and C5=1000pF) and confirm the input
- (3) To prevent malfunction, it is strongly recommended to insert RC filter (e.g. R3=100Ω and C5=1000pF) and confirm the input signal level to meet turn-on and turn-off threshold voltage.
 (4) About some strength to be a strength is is associated to design the input signal level to meet turn-on and turn-off threshold voltage.
- (4) About comparator circuit at V_{OT} output, it is recommended to design the input circuit with hysteresis because of preventing output chattering.

3.1.4 External SC protection circuit with using three shunt resistors

When using three shunt resistor, protection circuit is described as following Fig.3-1-4.

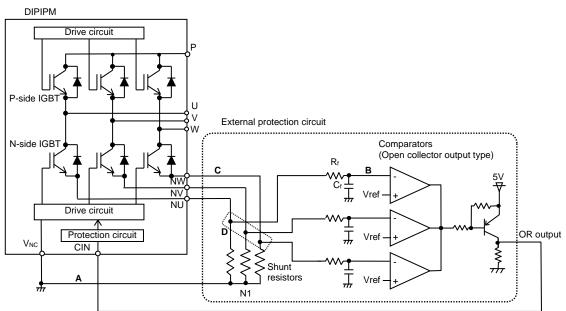


Fig.3-1-4 Interface circuit example

(note)

- It is necessary to set the time constant R_fC_f of external comparator input so that IGBT stop within 2µs when short circuit occurs.
- (2) SC interrupting time might vary with the wiring pattern, comparator speed and so on.
- (3) The threshold voltage Vref should be set up the same rating of short circuit trip level (Vsc(ref) typ. 0.48V).
- (4) Select the external shunt resistance so that SC trip-level is less than specified value.
- (5) To avoid malfunction, the wiring A, B and C should be designed as short as possible.
- (6) The point D at which patterns are branched to each comparator should be closer to the terminal of shunt resistor.
- (7) OR output high level should be more than 0.505V (=maximum Vsc(ref)).
- (8) GND of Comparator, GND of Vref circuit and Cf should be connected to control GND wiring. (not to power GND)

3.1.5 Circuits of Signal Input Terminals and Fo Terminal

(1) Internal Circuit of Control Input Terminals

DIPIPM is high-active input logic. $3.3k\Omega(min)$ pull-down resistor is built-in each input circuits of the DIPIPM as shown in Fig.3-1-5, so external pull-down resistor is not needed.

Furthermore, the turn-on and turn-off threshold voltage of input signal are as shown in Table 3-1-1.

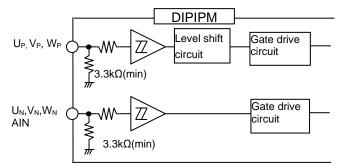


Fig.3-1-5 Internal structure of control input terminals

Table 3-1-1 input threshold voltage ratings(1)=25 C)								
Item	Symbol	Condition	Min.	Тур.	Max.	Unit		
Turn-on threshold voltage	Vth(on)	U _P ,V _P ,W _P -V _{NC} terminals,	—	-	3.5	V		
Turn-off threshold voltage	Vth(off)	U _N ,V _N ,W _N -V _{NC} terminals, AIN-V _{NC} terminal	0.8	—	_	V		

Table 3-1-1 Input threshold voltage ratings(Tj=25°C)

(note)

- (1) The wiring of each input should be patterned as short as possible. If the pattern is long and the noise is imposed on the pattern (e.g. Fig3-1-6), it may be effective to insert RC filter.
- (2) There are limits for the minimum input pulse width in the DIPIPM. The DIPIPM might make no response or delayed response, if the input pulse width (both on and off) is shorter than the specified value. (Table 3-1-2)

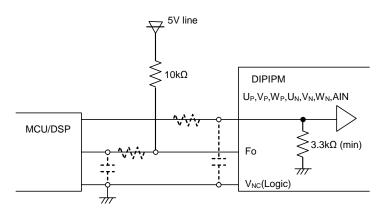
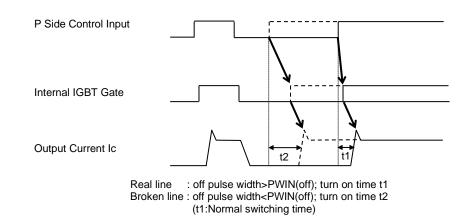
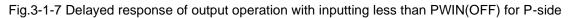


Fig.3-1-6 Control input connection

(note)


- (1) The RC coupling (parts shown as broken line) at each input depends on user's PWM control strategy and the wiring impedance of the printed circuit board.
- (2) The DIPIPM signal input section integrates a 3.3kΩ(min) pull-down resistor. Therefore, when using an external filtering resistor, please be careful to the signal voltage drop at input terminal.


Table 3-1-2	Allowable minimu	Im input pulse width
	7 110 11 4010 11111111	

Item	Symbol	Condition		Min. value	Unit
PWIN(on)		Up to 1.7 times of rated current		1.5	
Allowable		$0 \le V_{CC} \le 800V$ (for 1200V series) or $0 \le V_{CC} \le 350V$ (for 600V series),	Up to rated current	3	
minimum input pulse width	PWIN(off)	13.5≤V _D ≤16.5V, 13.0≤V _{DB} ≤18.5V, -20° C ≤Tc≤100° C, N line wiring inductance less than 10nH	From rated current to 1.7 times of rated current	3.5	μs

(note)

- (1) Input signal with ON pulse width less than PWIN(on) might make no response.
- (2) IPM might make no response or delayed response for the input OFF signal with pulse width less than PWIN(off). (Delay occurs for p-side only.) Please refer the following Fig.3-1-7 of delayed response.

(2) Internal circuit of Fo terminal

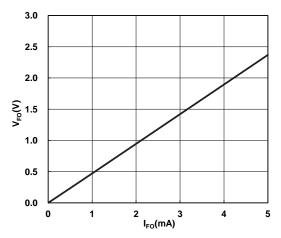
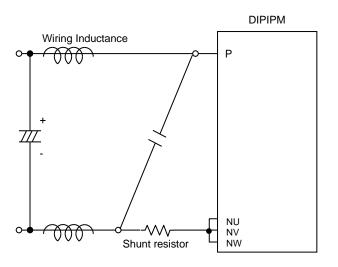
Fo terminal is an open drain type. When Fo output is input into MCU(controller) directly, it is necessary to note the dependency of V_{FO} on I_{FO} (V_{FO}=max0.95V @I_{FO}=1mA, 25°C) and set pull up resistance so that Fo signal level fits to the input threshold voltage of MCU. In the case of pulling up to 5V supply, it is recommended to pull up by $10k\Omega$ resistor.

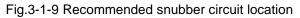
When the opto-coupler is driven by Fo output directly, the maximum Fo sink current becomes 5mA or less. To assure $I_{FO}=5mA$, it will be needed to pull up to 15V supply since Fo output may be max 4.75V (@ $I_{FO}=5mA$, 25°C).

If max 5mA coupler driving current is not enough, it is necessary to apply buffer circuit for increasing driving current.

Table 3-1-3 shows the typical V-I characteristics of Fo terminal.

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Fault output voltage	VFOH	Vsc=0V, Fo=10kΩ 5V Pulled-up	4.9	1	-	V
	V_{FOL}	V _{SC} =1V, I _{FO} =1mA		-	0.95	V


Fig.3-1-8 Fo terminal typical V-I characteristics ($V_D=15V$, $T_j=25^{\circ}C$)

3.1.6 Snubber circuit

In order to prevent DIPIPM from destruction by extra surge, the wiring length between the smoothing capacitor and P terminal (DIPIPM) – N1 points (shunt resistor terminal) should be designed as short as possible. Also, a 0.1μ ~ 0.22μ F snubber capacitor with high withstanding voltage should be mounted in the DC-link and close to P and N1.

In order to suppress the surge voltage maximally, the wiring at part-A (including shunt resistor parasitic inductance) should be designed as small as possible as shown in Fig.3-1-9.

3.1.7 Recommended wiring method around shunt resistor

External shunt resistor is necessary to detect short-circuit accident. If applied a longer patterning between the shunt resistor and DIPIPM, it causes so much large surge that might damage built-in IC. To decrease the pattern inductance, the wiring between the shunt resistor and DIPIPM should be connected as short as possible and using low inductance resistor such as SMD (Surface Mounted Device) resistor instead of long-lead resistor.

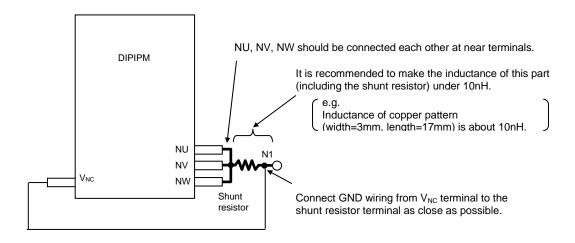


Fig.3-1-10 Wiring instruction (In the case of using with one shunt resistor)

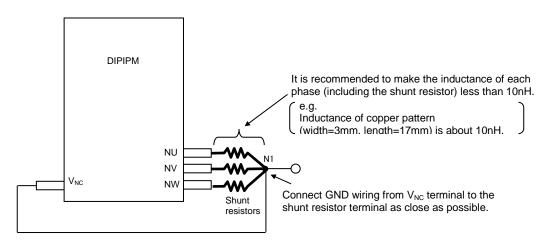


Fig.3-1-11 Wiring instruction (In the case of using with three shunt resistors)

Influence of pattern wiring around the shunt resistor is shown below.

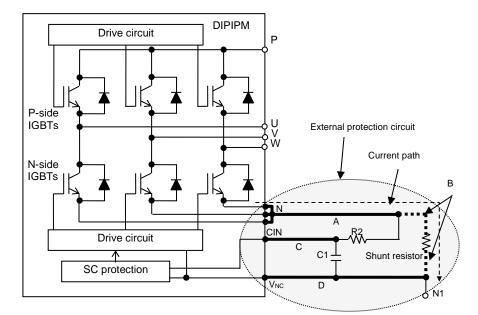


Fig.3-1-12 External protection circuit

(1) Influence of the part-A wiring

The ground of N-side IGBT gate is V_{NC} . If part-A wiring pattern in Fig.3-1-12 is too long, extra voltage generated by the wiring parasitic inductance will result the potential of IGBT emitter variation during switching operation. It is necessary to locate shunt resistor as close to the N terminal as possible.

(2) Influence of the part-B wiring

The part-B wiring in Fig.3-1-12 affects SC protection level. SC protection works by detecting the voltage of the CIN terminals. If part-B wiring is too long, extra surge voltage generated by the wiring inductance will lead to deterioration of SC protection level. It is necessary to connect CIN and V_{NC} terminals directly to the two ends of shunt resistor and avoid long wiring.

(3) Influence of the part-C wiring pattern

C1R2 filter is added to remove noise influence occurring on shunt resistor. Filter effect will dropdown and noise will easily superimpose on the wiring if part-C wiring in Fig.3-1-12 is too long. It is necessary to install the C1R2 filter near CIN, V_{NC} terminals as close as possible.

(4) Influence of the part-D wiring pattern

Part-D wiring pattern in Fig.3-1-12 gives influence to all the items described above, maximally shorten the GND wiring is expected.

3.1.8 SOA of DIPIPM+ at switching state

- The SOA (Safety Operating Area) of DIPIPM+ series are described as follows;
 - VCES : Maximum rating of IGBT collector-emitter voltage
 - Vcc : DC-link voltage applied on P-N terminals
 - V_{CC(surge)} : Voltage between P and N terminals including surge voltage which will be generated due to wiring inductance between DIPIPM and DC-link capacitor at switching state.
 - V_{CC(PROT)} : Maximum DC-link voltage in which DIPIPM can protect itself when short circuit happens.

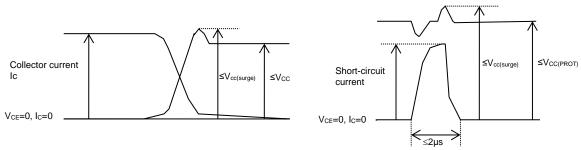


Fig.3-1-13 SOA at switching mode and short-circuit mode

In case of switching

 V_{CES} is the maximum voltage rating of IGBTs for 1200V (or 600V) as withstanding voltage. $V_{CC(surge)}$ is specified to maximum 1000V (or 500V) subtracted 200V or less (or 100V or less) of surge voltage by internal wiring inductance of DIPIPM+ from V_{CES} . Furthermore, also V_{CC} is specified to maximum 900V (or 450V) because it should be considered about surge voltage by wiring inductance between DIPIPM+ terminals and DC-link capacitor, then the maximum Vcc is subtracted 100V (or 50V) from $V_{CC(surge)}$ as the margin.

In case of short-circuit

 V_{CES} and V_{CC} (surge) are same definition as the case of switching. Vcc is specified to 800V (or 400V) because it should be considered about larger surge voltage by wiring inductance at the turning off short-circuit current, then maximum Vcc is subtracted 200V (or 100V) from $V_{CC(surge)}$ as the margin.

(note)

The above value in parentheses is for 600V rating products.

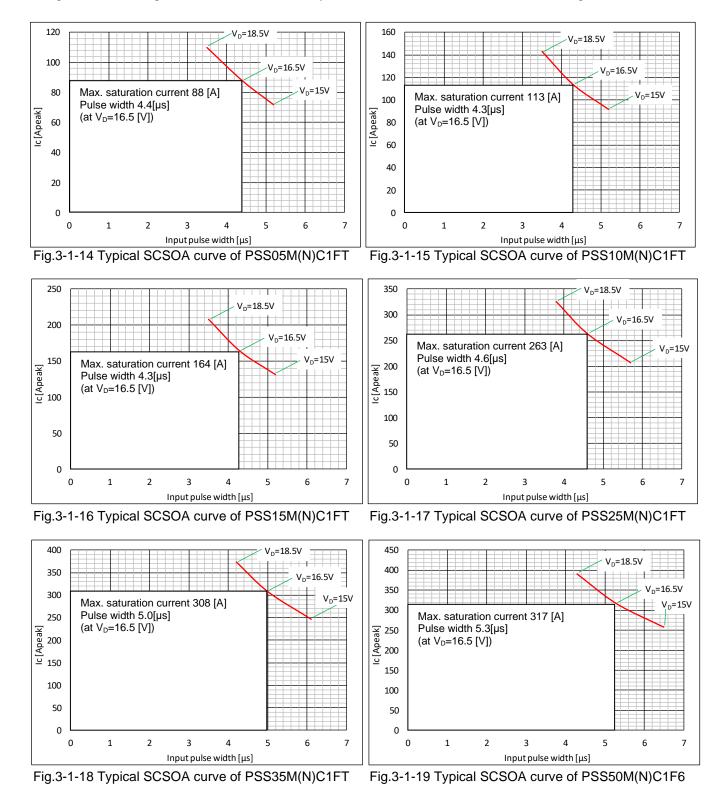

3.1.9 SCSOA

Fig.3-1-14~19 show the typical SCSOA performance curves of each products.

The measurement condition is described as follows;

(1) for 1200V series, V_{CC}=800V, Tj=125°C at initial state, V_{CC(surge)}≤1000V(surge included), non-repetitive,2m load.
 (2) for 600V series, V_{CC}=400V, Tj=125°C at initial state, V_{CC(surge)}≤500V(surge included), non-repetitive,2m load.

Please refer Fig.3-1-17 for PSS25MC1FT(25A/1200V CIB type), for instance. It shows DIPIPM+ can safely shut down an SC current which is about 10 times of its current rating under above conditions, when the IGBT shuts off by 4.6µs at VD=16.5V. Since the SCSOA (Short Circuit Safety Operating Area) will vary with the control supply voltage, DC-link voltage, and so on, it is necessary to set time constant of RC filter with a margin.

3.1.10 Power Life Cycles

When DIPIPM is in operation, repetitive temperature variation will happen on the IGBT junctions (Δ Tj). The amplitude and the times of the junction temperature variation affect the device lifetime.

Fig.3-1-20 shows the IGBT power cycle curve as a function of average junction temperature variation (Δ Tj). (The curve is a regression curve based on 3 points of Δ Tj=46, 88, 98K with regarding to failure rate of 0.1%, 1% and 10%. These data are obtained from the reliability test of intermittent conducting operation)



Fig.3-1-20 Power cycle curve

3.2 Power loss and thermal dissipation calculation

3.2.1 Power loss calculation

Simple expressions for calculating average power loss are given as follows;

Scope

The power loss calculation intends to provide users a way of selecting a matched power device for their VVVF inverter application. However, it is not expected to use for limit thermal dissipation design.

- Assumptions
 - (1) PWM controlled VVVF inverter with sinusoidal output;
 - (2) PWM signals are generated by the comparison of sine waveform and triangular waveform.
 - (3) Duty amplitude of PWM signals varies between $\frac{1-D}{2} \sim \frac{1+D}{2}$ (%/100), (D: modulation depth).
 - (4) Output current various with Icp-sinx and it does not include ripple.
 - (5) Power factor of load output current is $\cos\theta$, ideal inductive load is used for switching.
- Expressions Derivation

PWM signal duty is a function of phase angle *x* as $\frac{1+D \times \sin x}{2}$ which is equivalent to the output voltage variation. From the power factor $\cos\theta$, the output current and its corresponding PWM duty at any phase angle *x* can be

obtained as below:

$$Output \ current = Icp \times \sin x$$

$$PWM \quad Duty = \frac{1 + D \times \sin(x + \theta)}{2}$$

Then, $V_{CE(sat)}$ and V_{EC} at the phase *x* can be calculated by using a linear approximation:

$$Vce(sat) = Vce(sat)(@ Icp \times \sin x)$$
$$Vec = (-1) \times Vec(@ Iecp(= Icp) \times \sin x)$$

Thus, the static loss of IGBT is given by:

$$\frac{1}{2\pi} \int_0^{\pi} (Icp \times \sin x) \times Vce(sat) (@Icp \times \sin x) \times \frac{1 + D\sin(x + \theta)}{2} \bullet dx$$

Similarly, the static loss of free-wheeling diode is given by:

$$\frac{1}{2\pi} \int_{\pi}^{2\pi} ((-1) \times Icp \times \sin x)((-1) \times Vec(@Icp \times \sin x) \times \frac{1 + D\sin(x + \theta)}{2} \bullet dx$$

On the other hand, the dynamic loss of IGBT, which does not depend on PWM duty, is given by:

$$\frac{1}{2\pi} \int_0^{\pi} (Psw(on)(@Icp \times \sin x) + Psw(off)(@Icp \times \sin x)) \times fc \bullet dx$$

FWDi recovery characteristics can be approximated by the ideal curve shown in Fig.3-2-1, and its dynamic loss can be calculated by the following expression:

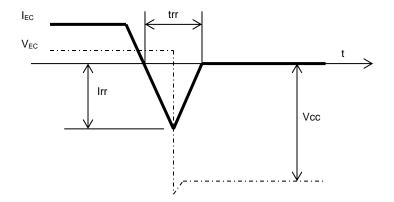
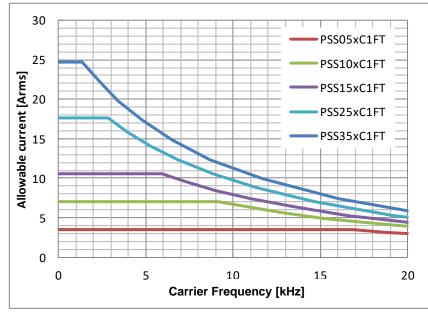


Fig.3-2-1 Ideal FWDi recovery characteristics curve

$$Psw = \frac{Irr \times Vcc \times trr}{4}$$


Recovery occurs only in the half cycle of the output current, thus the dynamic loss is calculated by:

$$\frac{1}{2} \int_{\pi}^{2\pi} \frac{Irr(@Icp \times \sin x) \times Vcc \times trr(@Icp \times \sin x)}{4} \times fc \bullet dx$$
$$= \frac{1}{8} \int_{\rho}^{2\pi} Irr(@Icp \times \sin x) \times Vcc \times trr(@Icp \times \sin x) \times fc \bullet dx$$

- Attention of applying the power loss simulation for inverter designs
 - Divide the output current period into fine-steps and calculate the losses at each step based on the actual values of PWM duty, output current, V_{CE(sat)}, V_{EC}, and Psw corresponding to the output current. The worst condition is most important.
 - PWM duty depends on the signal generating way.
 - The relationship between output current waveform or output current and PWM duty changes with the way of signal generating, load, and other various factors. Thus, calculation should be carried out on the basis of actual waveform data.
 - $V_{CE(sat)}$, V_{EC} and Psw(on, off) should be the values at $T_j=125^{\circ}C$.


3.2.2 DIPIPM+ performance according to carreir frequency

Fig.3-2-2 shows the typical characteristics of allowable effective current vs. carrier frequency under the following inverter operating conditions based on power loss simulation results for DIPIPM+ 1200V series. And Fig.3-2-3 shows for PSS50xC1F6.

[Calculation condition for PSSxxxC1FT] V_{CC}=600V, V_D=V_{DB}=15V, V_{CE(sat)}=Typ., Switching loss=Typ., T_j=125°C, T_c=100°C, Δ T_{j-c}=25K R_{th(j-c)}=Max. P.F=0.8, 3-phase PWM modulation, 60Hz sine waveform output

Fig.3-2-2 Effective current-carrier frequency characteristics

[Calculation condition for PSS50xC1F6] $V_{CC}=300V$, $V_{D}=V_{DB}=15V$, $V_{CE(sat)}=Typ$., Switching loss=Typ., $T_j=125^{\circ}C$, $T_c=100^{\circ}C$, $\Delta T_{j-c}=25K$ $R_{th(j-c)}=Max$. P.F=0.8, 3-phase PWM modulation, 60Hz sine waveform output

Fig.3-2-3 Effective current-carrier frequency characteristics

Fig.3-2-2 and Fig.3-2-3 show one of the example of estimating allowable inverter output effective current with different carrier frequency and allowable maximum operating temperature condition ($T_c=100^{\circ}$ C. $T_j=125^{\circ}$ C). The results may change for different control strategy and motor types. Anyway please ensure that there is no large current over device rating flowing continuously.

The inverter loss can be calculated by the free power loss simulation software which is uploaded on the web site. URL: http://www.MitsubishiElectric.com/semiconductors/

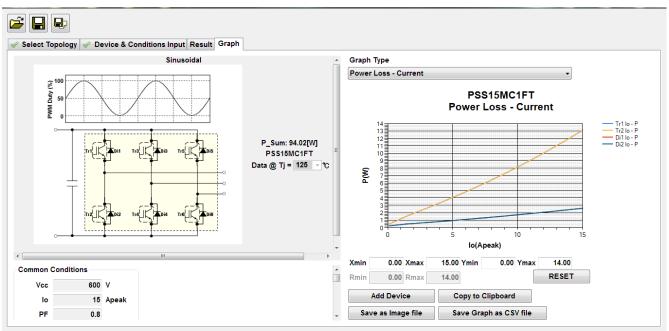


Fig.3-2-4 Loss simulator screen image

3.3 Noise and ESD withstand capability

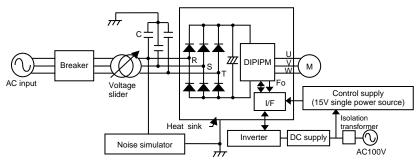
3.3.1 Evaluation circuit of noise withstand capability

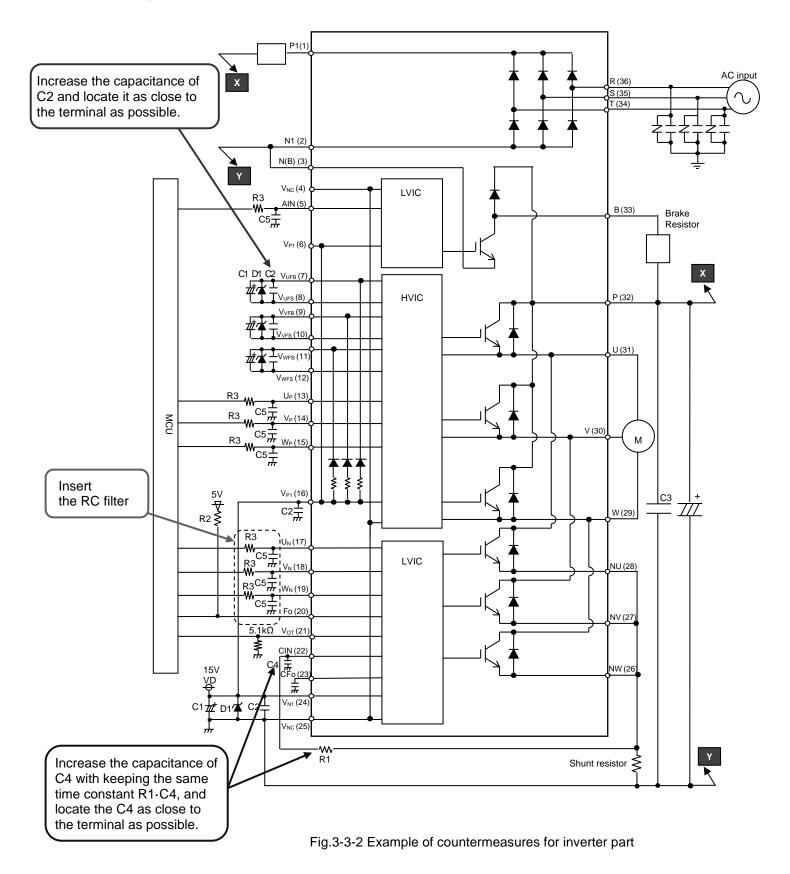
DIPIPM+ series have been confirmed to be with over +/-2.0kV noise withstand capability by the noise evaluation under the conditions shown in Fig.3-3-1. However noise withstand capability greatly depends on the test environment, the wiring patterns of control substrate, parts layout and other factors, it is recommended to conduct enough evaluation using prototype product.

[Condition]

- (1) For 1200V series; V_{CC}=600V, V_D=15V, T_a=25°C, no load
- (2) For 600V series; V_{CC}=300V, V_D=15V, T_a=25°C, no load

Scheme of applying noise: From AC line (R, S, T), Period T=16ms, Pulse width tw=0.05-1µs, input in random.




Fig.3-3-1 Noise withstand capability evaluation circuit

(note)

C1: AC line common-mode filter 4700pF, PWM signals are input from microcomputer by using opto-couplers, 15V single power supply, Test is performed with IM

3.3.2 Countermeasures and precautions

DIPIPM+ series are improved of noise withstand capabilities by means of reducing parts quantity, lowering internal wiring parasitic inductance, and reducing leakage current. But when the noise affects on the control terminals of DIPIPM (due to wiring pattern on PCB), the short circuit or malfunction of SC protection may occur. In that case, below countermeasures are recommended.

3.3.3 Static electricity withstand capability

Typical static electricity withstand capability by Machine Model($R=0\Omega$, C=200pF) is described as follows and the result is described as following Table 3-3-1 and 2.

Conditions: Surge voltage increases by degree and one surge pulse is impressed at each surge voltage. (Limit voltage of surge simulator: ±4.0kV, Judged by change in V-I characteristic)

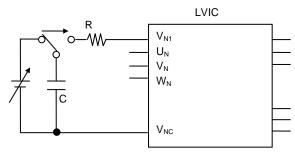


Fig.3-3-3 Surge test circuit example (V $_{\rm N1}$ terminal) terminal)

. .

- -

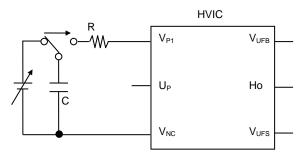


Fig.3-3-4 Surge test circuit example (VP1

Table 3-3-1 PSSxxxC1Fx Typical ESD capability (MM)

.

[Control part for Inverter]				
Evaluated terminals	+ Polarity	- Polarity	Unit	
VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	2.7	2.7		
UP, VP, WP-V _{NC}	0.7	0.9		
V _{P1} -V _{NC(PC)}	3.0	3.5		
UN, VN, WN-V _{NC}	0.8	0.8		
V _{N1} -V _{NC}	4.0 or more	4.0 or more	kV	
Fo-V _{NC}	0.8	1.2		
CIN-V _{NC}	0.8	1.0		
V _{OT} -V _{NC}	0.9	1.4]	
CFo-V _{NC}	1.1	1.2		

[Power part for Inverter]

Evaluated terminals	+ Polarity	- Polarity	Unit	
P-NU,NV,NW	4.0 or more	4.0 or more	kV	
U-NU, V-NV, W-NW	4.0 or more	4.0 or more	٣V	

[Power part for Converter]

Evaluated terminals	+ Polarity	- Polarity	Unit
P1-N1	4.0 or more	4.0 or more	kV
R, S, T-N1	4.0 or more	4.0 or more	ĸv

Table 3-3-2 PSSxxMC1Fx Typical ESD capability (MM)

[Control part for Brake]

Evaluated terminals	+ Polarity	- Polarity	Unit	
V _{P1} -V _{NC}	3.0	3.5	k V	
AIN-V _{NC}	0.8	0.8	ĸv	

[Power part for Brake]

Evaluated terminals	+ Polarity	- Polarity	Unit
P-N(B)	4.0 or more	4.0 or more	
B-N(B)	4.0 or more	4.0 or more	kV
P-B	2.7	4.0 or more	

CHAPTER 4 : Bootstrap Circuit Operation

4.1 Bootstrap Circuit Operation

For three phase inverter circuit driving, it requires four isolated control supplies for driving three P-side ICs and one N-side IC. But using floating control supply with bootstrap circuit can reduce the number of isolated control supplies from four to one, it requires N-side control supply only.

Bootstrap circuit consists of a bootstrap diode(BSD), a bootstrap capacitor(BSC) and a current limiting resistor. DIPIPM+ series integrates BSD and limiting resistor, so it can make bootstrap circuit by adding outer BSC only. The BSC works as a control supply for driving P-side IGBT. The BSC supplies gate charge when P-side IGBT turning ON and circuit current of logic circuit on P-side driving IC. (Fig.4-1-2) Since a capacitor is used as substitute for isolated supply, its supply capability is limited. This floating supply driving with bootstrap circuit is suitable for small supply current products like DIPIPM.

Charge consumed by driving circuit is re-charged from N-side 15V control supply to BSC via current limiting resistor and BSD when voltage of output terminal (U, V or W) goes down to GND potential in inverter operation. The BSC cannot be charged enough depending on its switching condition, BSC capacitance and so on. Deficient charge leads to too low voltage of BSC and might work "under voltage protection" (UV). This situation makes the loss of P-side IGBT increase by low gate voltage or stop switching. So it is necessary to consider and evaluate enough for designing bootstrap circuit. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual"

The BSD characteristics for DIPIPM+ series and the circuit current characteristics in switching situation of P-side IGBT are described as follows.

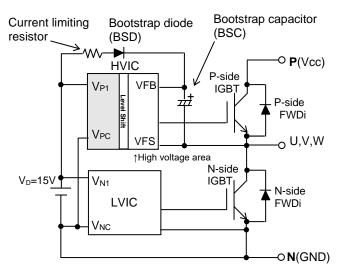
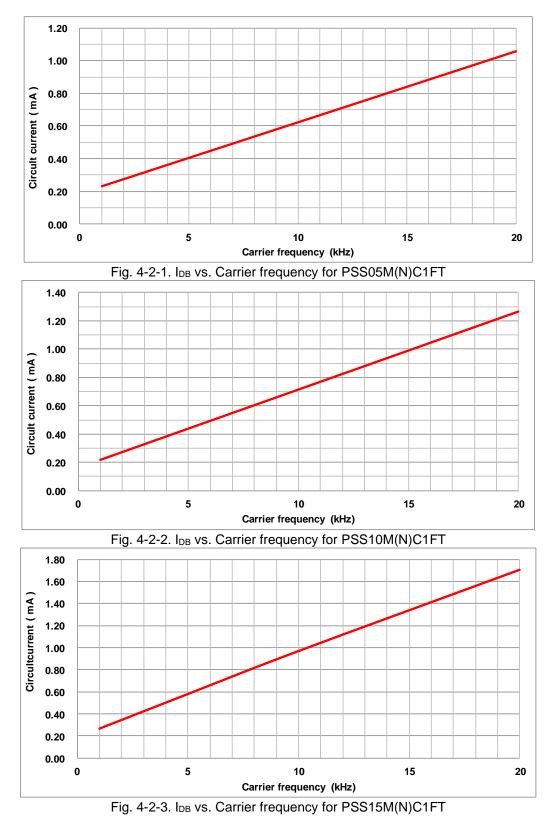
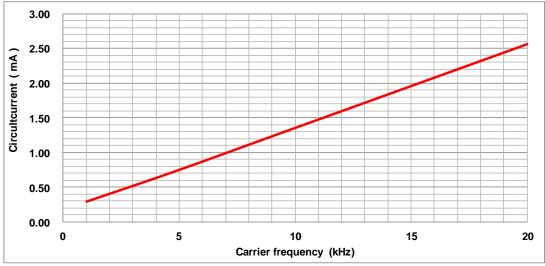
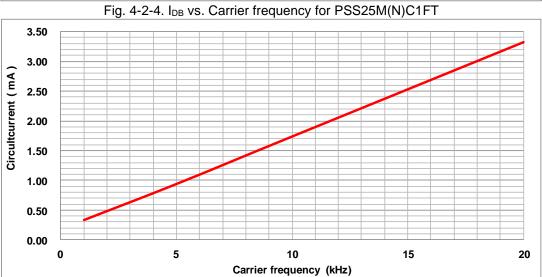


Fig.4-1-1 Bootstrap Circuit Diagram


Fig.4-1-2 Bootstrap Circuit Diagram


4.2 Bootstrap supply circuit current at switching state


Bootstrap supply circuit current I_{DB} at steady state is 0.55mA maximum. At switching state, the circuit current exceeds 0.55mA and increases proportional to carrier frequency, because gate charge and discharge are repeated at each switching state. Fig.4-2-1~6 show typical I_{DB} vs. carrier frequency fc characteristics for DIPIPM+ series.

[Condition]

- (1) For 1200V series, V_{CC}=800V, V_D=V_{DB}=15V, Tj=125°C, Duty=50%
- (2) For 600V series, Vcc=400V, VD=VDB=15V, Tj=125°C, Duty=50%

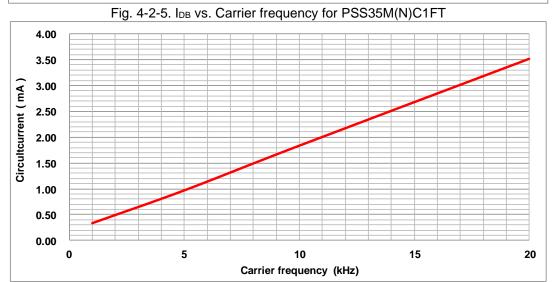


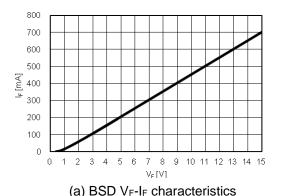
Fig. 4-2-6. IDB vs. Carrier frequency for PSS50M(N)C1F6

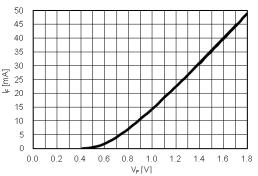
4.3 Note for designing the bootstrap circuit

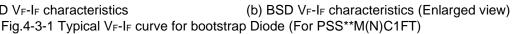
When each device for bootstrap circuit is designed, it is necessary to consider various conditions such as temperature characteristics, change by lifetime, variation and so on. Note for designing these devices are listed as below. For more detail information about driving by the bootstrap circuit, refer the DIPIPM application note "Bootstrap Circuit Design Manual"

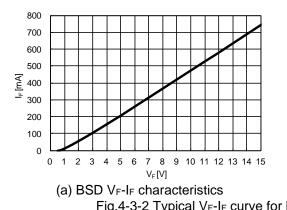
(1) Bootstrap capacitor

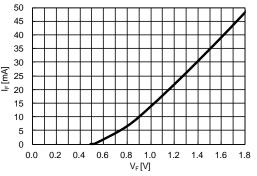
BSC employs electrolytic capacitors in general, and recently ceramic capacitor with large capacitance is also applied to it. Please note that DC bias characteristic is considerably different between electrolytic capacitor and of ceramic capacitor when applying DC voltage. Its characteristics especially differ with large capacitance type. Table 4-3-1 shows example of difference between the above two capacitors.


	of capacitance characteristics between cleet	relytic and ceramic capacitore	
	Electrolytic capacitor	Ceramic capacitor	
		(large capacitance type)	
Temperature	Aluminum type:	Different due to temp. characteristics rank	
characteristics	Low temp.: -10% High temp: +10%	Low temp.: -5%~0%	
(Ta:-20~ 85°C)	Conductive polymer aluminum solid type:	High temp.: -5%~-10%	
(1820~ 05 C)	Low temp.: -5% High temp: +10%	(in the case of B,X5R,X7R ranks)	
DC bias characteristics (Applying DC15V)	Nothing within rating voltage	Different due to temp. characteristics, rating voltage, package size and so on -70%~-15%	


Table 4-3-1 Differences of	of capacitance	e characteristics betwee	en electrolytic and	ceramic capacitors
	n oupuonunoe		in cicculory tic unc	ocramic oupdoitors


DC bias characteristic of electrolytic capacitor is no problem, however, it is necessary to note its ripple capability by repetitive charge and discharge, its ambient temperature which affects the capacitor's life time greatly, and so on. These above characteristics are just example data which are quoted from the WEB site, so it is recommended to inquiry to the capacitor manufacturers about detailed characteristics.


(2) Bootstrap diode


DIPIPM+ integrates bootstrap diodes for P-side driving supply. This BSD incorporates current limiting resistor (typ. 20Ω). The V_F-I_F characteristics (including voltage drop by built-in current limiting resistor) are shown in Fig.4-3-1, 2 and Table 4-3-2.

D VF-IF characteristics (b) BSD VF-IF characteristics (Enlarged view) Fig.4-3-2 Typical VF-IF curve for bootstrap Diode (For PSS**M(N)C1F6)

Tabl	Table 4-3-2 Electric characteristics of built-in bootstrap diode						
	ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
	Bootstrap Di forward voltage	Vf	I _F =10mA including voltage drop by limiting resistor	Ι	0.9	1.3	V
	Built-in limiting resistance	R	Included in bootstrap Di	16	20	24	Ω

4.4 Initial charging in bootstrap circuit

In case of applying bootstrap circuit, it is necessary to charge to the BSC initially because voltage of BSC is 0V at initial state or it may drop down to the trip level of under voltage protection after long suspending period (even 1s). BSC charging is performed by turning on all N-side IGBT normally. When outer load (e.g. motor) is connected to the DIPIPM, BSC charging may be performed by turning on only one phase N-side IGBT since potential of all output terminals will go down to GND level through the wiring in the motor. But its charging efficiency might become lower due to some cause. (e.g. wiring resistance of motor)

There are mainly two procedures for BSC charging. One is performed by one long pulse, and another is conducted by multiple short pulses. Multi pulse method is used when there are some restriction like control supply capability and etc.

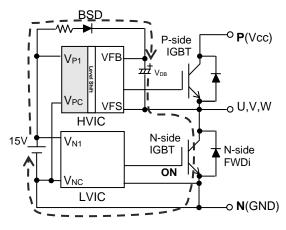
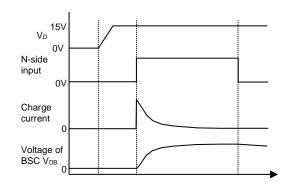
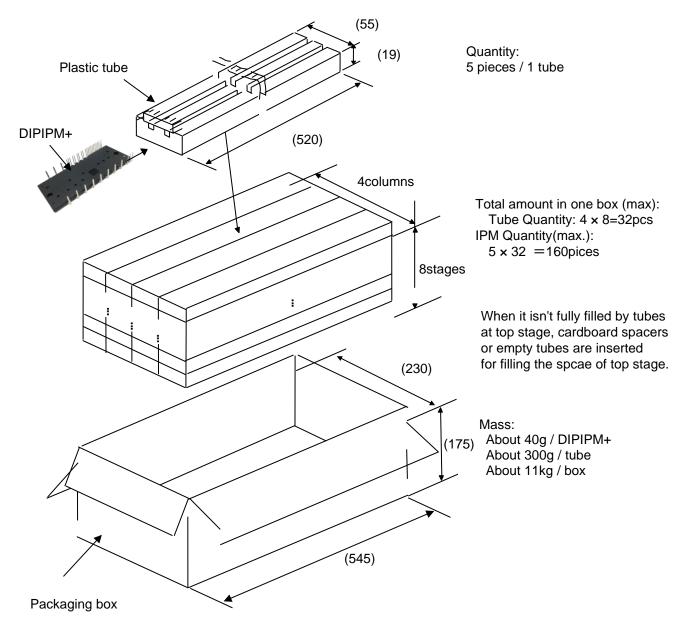


Fig.4-4-1 Initial charging root




Fig .4-4-2 Example of waveform by one charging pulse

Initial charging needs to be performed until voltage of BSC exceeds 13V, recommended minimum supply voltage. (It is recommended to charge higher than 13V with consideration for voltage drop from the end of charging to start time of inverter operation.)

After BSC was charged, it is recommended to input one ON pulse to the P-side input for reset of internal IC state before starting system. Input pulse width is needed to be longer than allowable minimum input pulse width PWIN(on). (1.5µs or more for DIPIPM+. Please refer the datasheet for each product in detail.)

CHAPTER 5 : PACKAGE HANDLING

5.1 Packaging Specification

Spacers are put on the top and bottom of the box. If there is some space on top of the box, additional buffer materials are also inserted.

Fig.5-1 Packaging Specification

< DIPIPM > DIPIPM+ Series Application note

5.2 Handling Precautions

	⚠ Cautions
Transportation	 Put package boxes in the correct direction. Putting them upside down, leaning them or giving them uneven stress might cause electrode terminals to be deformed or resin case to be damaged. Throwing or dropping the packaging boxes might cause the devices to be damaged. Wetting the packaging boxes might cause the breakdown of devices when operating. Pay attention not to wet them when transporting on a rainy or a snowy day.
Storage	• We recommend temperature and humidity in the ranges 5-35°C and 45-75%, respectively, for the storage of modules. The quality or reliability of the modules might decline if the storage conditions are much different from the above.
Long storage	• When storing modules for a long time (more than one year), keep them dry. Also, when using them after long storage, make sure that there is no visible flaw, stain or rust, etc. on their exterior.
Surroundings	• Keep modules away from places where water or organic solvent may attach to them directly or where corrosive gas, explosive gas, fine dust or salt, etc. may exist. They might cause serious problems.
Flame resistance	• The epoxy resin and the case materials are flame-resistant type (UL standard 94-V0), but they are not noninflammable.
Static electricity	 ICs and power chips with MOS gate structure are used for the DIPIPM power modules. Please keep the following notices to prevent modules from being damaged by static electricity. (1)Precautions against the device destruction caused by the ESD The ESD of human bodies and packaging and/or excessive voltage applied across the gate to emitter may damage and destroy devices. The basis of anti-electrostatic is to inhibit generating static electricity possibly and quick dissipation of the charged electricity. Containers that charge static electricity easily should not be used for transit and for storage. Terminals should be always shorted with a carbon cloth or the like until just before using the module. Never touch terminals with bare hands. Should not be taking out DIPIPM from tubes until just before using DIPIPM and never touch terminals with bare hands. During assembly and after taking out DIPIPM from tubes, always earth the equipment and your body. It is recommended to cover the work bench and its surrounding floor with earthed conductive mats. When the terminals are open on the printed circuit board. If using a soldering iron, earth its tip. (2)Notice when the control terminals are open When the control terminals are open, do not apply voltage between the collector and emitter. It might cause malfunction. Short the terminals before taking a module off.

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

The company names and the product names described herein are the trademarks or registered trademarks of the respective companies.

© MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.