

<IGBT Modules>

CM1200DW-40T

HIGH POWER SWITCHING USE INSULATED TYPE

- Dual switch (Half-bridge)
- Copper base plate (Nickel-plating)
- Ni-plating signal terminals
- RoHS Directive compliant
- UL Recognized under UL1557, File No.E323585

APPLICATION

Photovoltaic power converter, Energy storage system, Wind power converter, etc.

OPTION

- V_{CEsat} selection for parallel connection
- PC-TIM (Phase Change Thermal Interface Material) pre-apply

© Mitsubishi Electric Corporation

1

HIGH POWER SWITCHING USE INSULATED TYPE

INTERNAL CONNECTION **TERMINAL CODE** 1. C1 9. G1 2. C1 10. Es1 3. C2E1 11. NC 4. C2E1 12. G2 5. C2E1 13. Es2, TH2 14. TH1 6. E2 7. E2 15. NC 8. Cs

NOTE

Terminal 1 and 2, Terminal 3,4 and 5, Terminal 6 and 7, These terminals should be connected respectively when it is used.

HIGH POWER SWITCHING USE INSULATED TYPE

MAXIMUM RATINGS (T_{vj} =25 °C, unless otherwise specified)

Symbol	Item	Conditions	Rating	Unit	
V _{CES}	Collector-emitter voltage	G-E short-circuited	2000	V	
V_{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V	
Ic	Calla stan aumant	DC, T _C =77 °C (Note2, 4)	1200	^	
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	2400	A	
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	5555	W	
I _E (Note1)	First the management	DC (Note2)	1200	_	
I _{ERM} (Note1)	Emitter current	Pulse, Repetitive (Note3)	2400	A	
V _{isol}	Isolation voltage	Teminals to base plate, RMS, f=60Hz, AC 1min	4000	V	
T _{vj max}	Maximum junction temperature	Instaneous event (overload) (Note9)	175	°C	
T _{c max}	Maximum case temperature	(Note4,9)	125	°C	
T _{vj op}	Operating junction temperature	Continuous operation (Note9)	-40 ~ +150	°C	
T _{stg}	Storage temperature	-	-40 ~ +125		

Cumbal	Itam	Conditions		Limits			Unit
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =120 mA, V _{CE} =10 V	I _C =120 mA, V _{CE} =10 V		6.0	6.6	V
		I _C =1200 A (Note5)	T _{vj} =25 °C	-	2.15	2.50	V
		V _{GE} =15 V,	T _{vj} =125 °C	-	2.55	-	
	0.11	(Terminal)	T _{vj} =150 °C	-	2.65	-	
V _{CEsat}	Collector-emitter saturation voltage	I _C =1200 A (Note5)	T _{vj} =25 °C	-	2.10	2.35	
		V _{GE} =15 V,	T _{vj} =125 °C	-	2.50	-	V
		(Chip)	T _{vj} =150 °C	-	2.60	-	
Cies	Input capacitance		1	-	-	330	
Coes	Output capacitance	V _{CE} =10 V, V _{GE} =0V		-	-	5.7	nF
Cres	Reverse transfer capacitance		-	-	2.4		
Q _G	Gate charge	V _{CC} =1300 V, I _C =1200 A, V _{GE} =15 V		-	9.5	-	μC
t _{d(on)}	Turn-on delay time	V _{CC} =1300 V, I _E =1200 A, V _{GE} =±15 V,		-	-	900	_
tr	Rise time			-	-	160	
t _{d(off)}	Turn-off delay time	1	-	-	-	900	ns
tf	Fall time	R_G =0 Ω, Inductive load		-	-	1250	1
		I _E =1200 A (Note5)	T _{vj} =25 °C	-	2.25	3.20	
		G-E short-circuited	T _{vj} =125 °C	-	2.60	-	V
Note1)		(Terminal)	T _{vj} =150 °C	-	2.60	-	
V _{EC} (Note1)	Emitter-collector voltage	I _E =1200 A (Note5),	T _{vj} =25 °C	-	2.20	2.95	
		G-E short-circuited,	T _{vj} =125 °C	-	2.55	-	V
		(Chip)	T _{vj} =150 °C	-	2.55	-	
t _{rr} (Note1)	Reverse recovery time	V _{CC} =1300 V, I _E =1200 A, V _{GE} =±15 V,		-	-	900	ns
Q _{rr} (Note1)	Reverse recovery charge	$R_G=0 \Omega$, Inductive load	-	-	340	-	μC
Eon	Turn-on switching energy per pulse	V _{CC} =1300V, I _C =I _E =1200A,		-	270	-	
E _{off}	Turn-off switching energy per pulse	V_{GE} =±150V, I_{G} =1200A, V_{gE} =±15V, I_{G} =0 I_{G} , I_{G} =150°C, Inductive loard		-	580	-	mJ
E _{rr} (Note1)	Reverse recovery energy per pulse			_	430	_	1

HIGH POWER SWITCHING USE

INSULATED TYPE

NTC THERMISTOR PART

Symbol	Item	Conditions	Limits			Unit
		Conditions	Min.	Тур.	Max.	Offic
R ₂₅	Zero-power resistance	T _C =25 °C (Note4)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R ₁₀₀ =493 Ω, T _C =100 °C (Note4)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note6)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note4)	-	-	10	mW

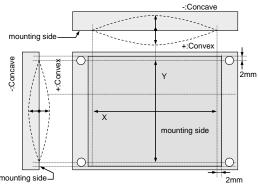
THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit	
		Conditions	Min.	Тур.	Max.	Offic	
$R_{th(j-c)Q}$	Thermal resistance	Junction to case, per IGBT switch (Note4)	-	-	27	K/kW	
$R_{th(j-c)D}$	THEITIAI TESISIAIICE	Junction to case, per FWD switch (Note4)	-	-	44	r\/KVV	
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1 module, Thermal grease applied (Note4, 7, 9)	-	10	-	K/kW	

MODULE

Cymphol	Item	Conditions		Limits			Unit
Symbol				item Conditions	Min.	Тур.	Max.
M_t		Main terminals	M 8 screw	7.0	10.5	14.0	N·m
Ms	0 1	Mounting to heat sink	M 6 screw	3.5	4.0	4.5	N·m
M _t		Auxiliary terminals	M 3 screw	0.4	0.5	0.6	N·m
ec	Flatness of base plate	On the centerline X, Y (Note8)		0	-	+200	μm

Symbol	Item	Conditions	Value	Unit	
m	mass	-	860	g	
ds	Creepage distance	Terminal to terminal	17.6	mm	
		Terminal to base plate	39.3		
da	Clearance	Terminal to terminal	8.5		
		Terminal to base plate	36.6	mm	
R _{CC'+EE'}	Internal lead resistance	Main terminals - chip, T _C =25 °C ^(Note4)	0.25	mΩ	
r _g	Internal gate resistance	Per switch	0.63	Ω	


^{*:} This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU and (EU)2015/863.

Note 1. Represent ratings and characteristics of the anti-parallel, emitter-collector free-wheeling diode (FWD).

- 2. Junction temperature (T_{vj}) should not increase beyond T_{vjmax} rating.
- 3. Pulse width and repetition rate should be such that the device junction temperature (Tvj) dose not exceed Tvjmax rating.
- 4. Case temperature (Tc) and heat sink temperature (Ts) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
- 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit.

 $\begin{array}{ll} \text{6.} & B(25/50) - \ln{(\frac{R_{25}}{R_{50}})}/{(\frac{1}{T_{25}} - \frac{1}{T_{50}})} \\ & R_{25}\text{: resistance at absolute temperature T}_{25} \, \text{[K]; T}_{25}\text{=}25 \, \text{[°C]+273.15=298.15 [K]} \\ & R_{50}\text{: resistance at absolute temperature T}_{50} \, \text{[K]; T}_{50}\text{=}50 \, \text{[°C]+273.15=323.15 [K]} \\ \end{array}$

- 7. Reference value. Thermally conductive grease of thermal conductivity $\lambda=0.9~\text{W/(m\cdot K)}$ and thickness $D_{\text{(C-S)}}=50~\mu\text{m}$.
- 8. The base plate (mounting side) flatness measurement points (X, Y) are shown in the following figure.

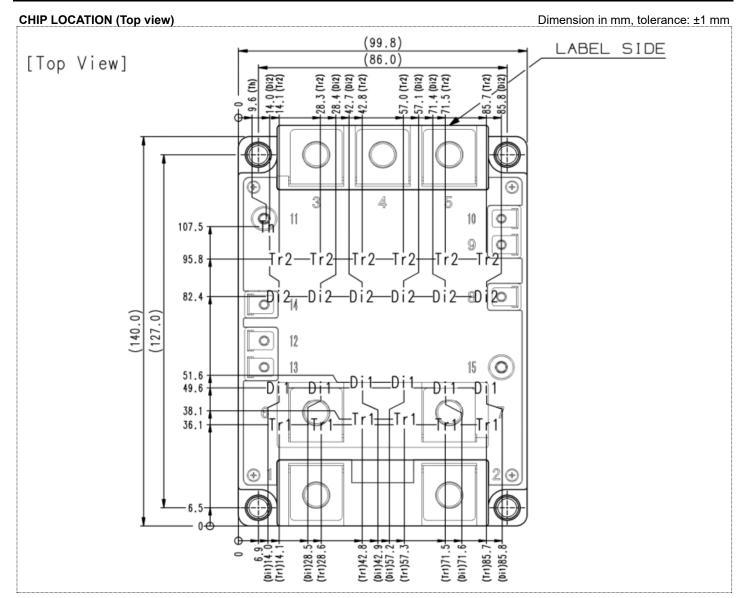
9. Long term performance related to thermal conductive grease (including but not limited to aspects such as the increase of thermal resistance due to pumping out, etc.) should be verified under user's specific application conditions. Each temperature condition (T_{vj max}, T_{vj op}, T_{C max}) must be maintained below the maximum rated temperature throughout consideration of the temperature rise even for long term usage.

<IGBT Modules>

CM1200DW-40T

HIGH POWER SWITCHING USE

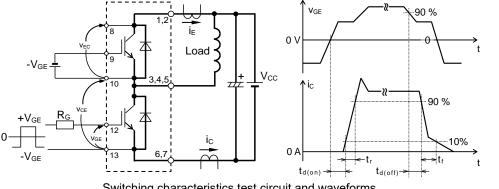
INSULATED TYPE

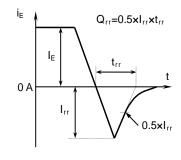

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Conditions		Limits			Unit
				Min.	Тур.	Max.	Unit
V _{CC}	(DC) Supply voltage	Applied across C1-E2 terminals		-	1300	1500	V
V_{GEon}	Gate-emitter drive voltage	Applied across G1-Es1/G2-Es2 terminals		13.5	15.0	16.5	V
R _G External gate resistance	External data registance	Per switch	on	0	-	6.8	Ω
	External gate resistance	Per Switch	off	0	-	15	Ω

Optimum operating conditions should be selected with careful confirmation for no occurrence of any maximum rating violation

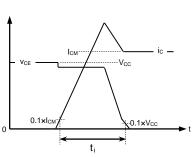
(T_{VI}, V_{CES}, etc.) or any unexpected malfunction (arm-short-through, oscillation, etc.) at the actual application conditions.

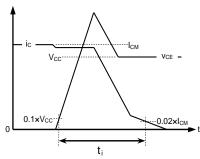

HIGH POWER SWITCHING USE INSULATED TYPE

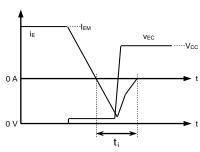


Tr1/Tr2: IGBT, Di1/Di2: FWD, Th: NTC thermistor

HIGH POWER SWITCHING USE **INSULATED TYPE**

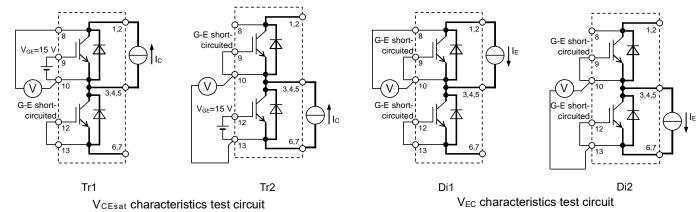

TEST CIRCUIT AND WAVEFORMS





Switching characteristics test circuit and waveforms

trr, Qrr characteristics test waveform


IGBT Turn-on switching energy

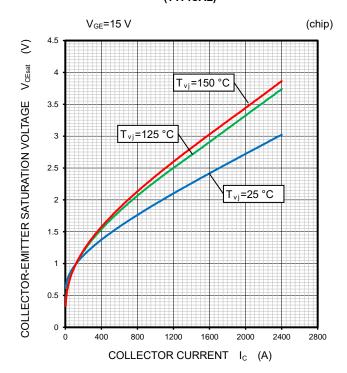
IGBT Turn-off switching energy

FWD Reverse recovery energy

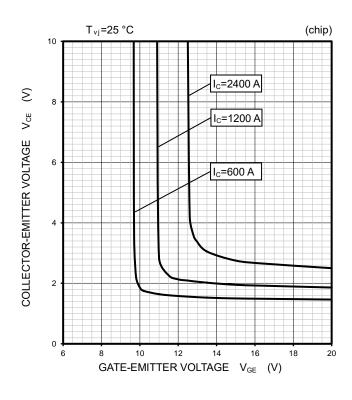
Switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

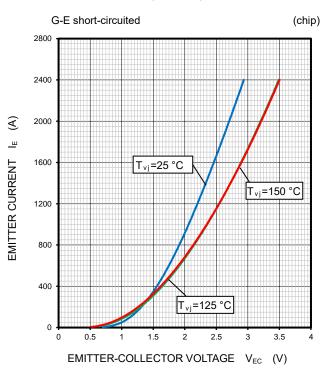
TEST CIRCUIT

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

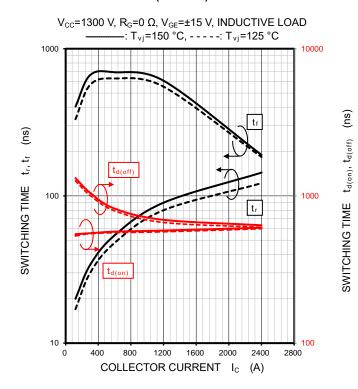
INVERTER PART


OUTPUT CHARACTERISTICS (TYPICAL)

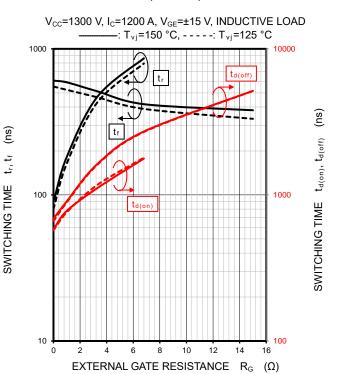

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER VOLTAGE CHARACTERISTICS (TYPICAL)

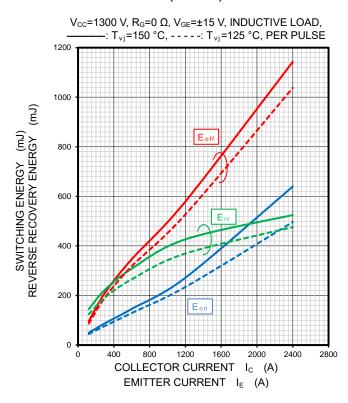
FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

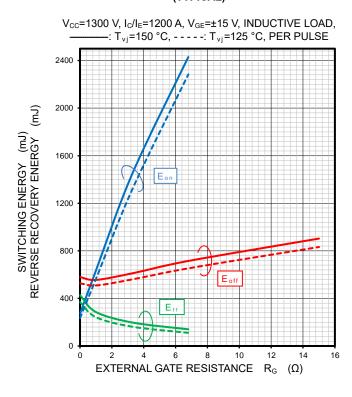


HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

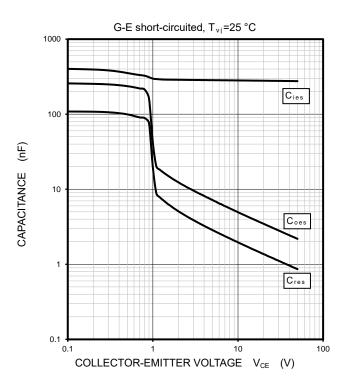
INVERTER PART


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

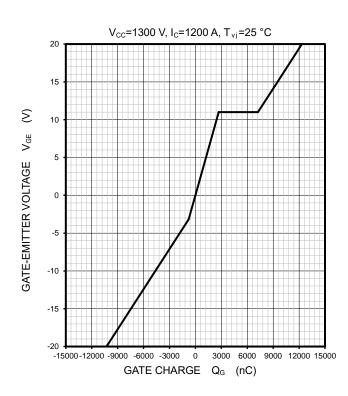

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

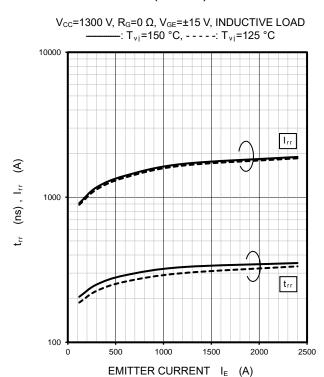
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

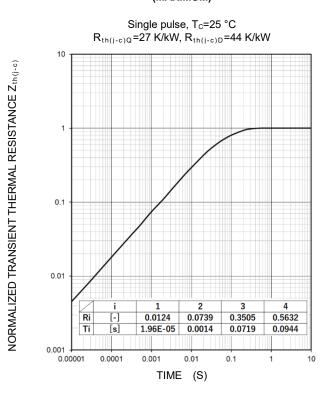


HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

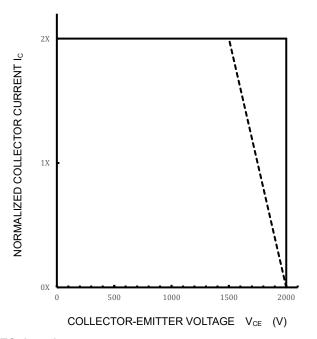
INVERTER PART


CAPACITANCE CHARACTERISTICS (TYPICAL)


GATE CHARGE CHARACTERISTICS (TYPICAL)

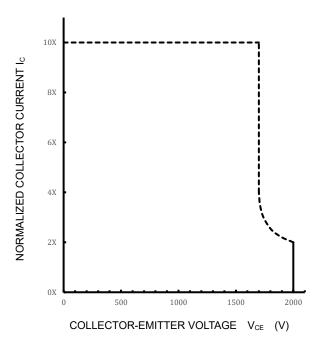
FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)


HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES

INVERTER PART


TURN-OFF SWITCHING SAFE OPERATIONG AREA (REVERSE BIAS SAFE OPERATING AREA) (MAXIMUM)

 $\begin{array}{c} V_{\text{CC}} \!\!\leq\! \! 1500 \text{ V, } R_{\text{G(OFF)}} \!\!=\! \! 0\text{--}15 \ \Omega, V_{\text{GE}} \!\!=\! \! \pm\! 15 \text{ V,} \\ -----: T_{\nu_j} \!\!=\! \! 25\text{--}150 \ ^{\circ}\text{C (Normal load operations (Continuous)} \\ -----: T_{\nu_j} \!\!=\! \! 175 \ ^{\circ}\text{C (Unusual load operations (Limited period)} \end{array}$

SHORT-CIRCUIT SAFE OPERATING AREA (MAXIMUM)

 $V_{\text{CC}} \leq 1500 \text{ V}, V_{\text{GE}} = \pm 15 \text{ V},$ $T_{\text{v}i} = 25 \sim 150 \text{ °C}, t_{\text{W}} \leq 6 \text{ µs}, \text{Non-Repetitive}$

NTC thermistor part

TEMPERATURE CHARACTERISTICS (TYPICAL)

Note: The characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

HIGH POWER SWITCHING USE INSULATED TYPE

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.