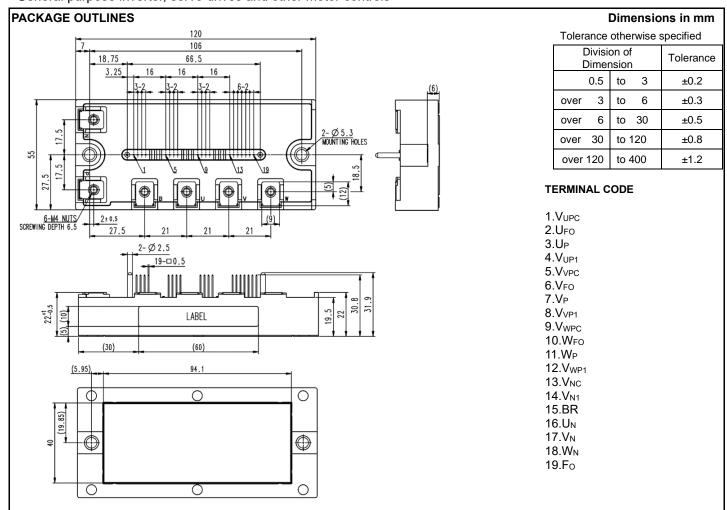


<Intelligent Power Modules>

PM50RG1B120

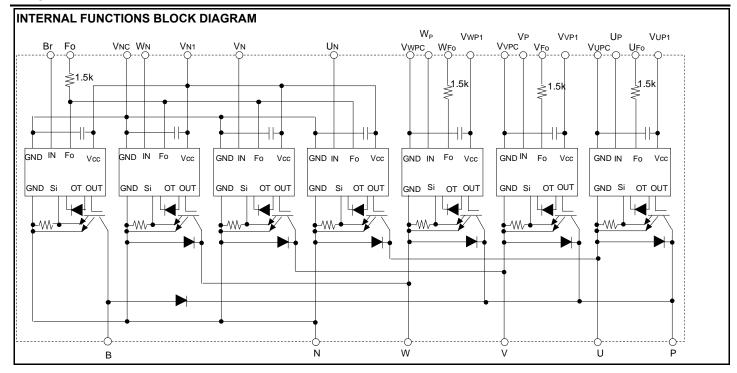
FLAT-BASE TYPE INSULATED PACKAGE

FEATURE


- a) Adopting Full-Gate CSTBT™ chip.
- b) The over-temperature protection which detects the chip surface temperature of CSTBTTM is adopted.
- c) Error output signal is available from each protection upper and lower arm of IPM.
- d) Outputting an error signal corresponding to the abnormal state (error mode identification)

UL Recognized under UL1557, File No. E323585
This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU and (EU)2015/863.

APPLICATION


Publication date: December, 2020

General purpose inverter, servo drives and other motor controls

HIGH POWER SWITCHING USE

INSULATED TYPE

MAXIMUM RATINGS (Tvj = 25°C, unless otherwise noted)

INVERTER PART

SymbolParameterConditionsRatings V_{CES} Collector-Emitter Voltage $V_D=15 \text{ V, V}_{CIN}=15 \text{ V}$ 1200 I_C C_D C_D C_D 50 I_{CRM} Pulse100 P_{tot} Total Power Dissipation $T_C=25 ^{\circ}C$ 378 I_E Emitter Current $T_C=25 ^{\circ}C$ 50 I_{ERM} (Free-wheeling Diode Forward current)Pulse100 T_{VJ} Junction Temperature(Note5) $-20 \sim +150$		A PAIX		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter Conditions	Ratings	Unit
I _{CRM} Collector Current Pulse 100 P _{tot} Total Power Dissipation T _C =25 °C 378 I _E Emitter Current T _C =25 °C 50 I _{ERM} (Free-wheeling Diode Forward current) Pulse 100	V _{CES}	Collector-Emitter Voltage V _D =15 V, V _{CIN} =15 V	1200	V
I _{CRM} Pulse 100 P _{tot} Total Power Dissipation T _c =25 °C 378 I _E Emitter Current T _c =25 °C 50 I _{ERM} (Free-wheeling Diode Forward current) Pulse 100	С		50	_
I _E Emitter Current T _C =25 °C 50 I _{ERM} (Free-wheeling Diode Forward current) Pulse 100	CRM		100	A
I _{ERM} (Free-wheeling Diode Forward current) Pulse 100	o _{tot}	Total Power Dissipation T _C =25 °C	378	W
	E	Emitter Current T _C =25 °C	50	_
Tvj Junction Temperature (Note5) -20 ~ +150	ERM	(Free-wheeling Diode Forward current) Pulse	100	Α
	Гvј	Junction Temperature (Note5)	-20 ~ +150	°C

^{*:} Tc measurement point is just under the chip.

BRAKE PART

Symbol	Parameter	Conditions	Ratings	Unit
V _{CES}	Collector-Emitter Voltage	V _D =15 V, V _{CIN} =15 V	1200	V
Ic	Callanton Commant	T _C =25 °C	25	^
I _{CRM}	Collector Current	Pulse	50	A
P _{tot}	Total Power Dissipation	T _C =25 °C	260	W
V _{R(DC)}	Diode Rated Reverse DC Voltage	T _C =25 °C	1200	V
I _F	Diode Forward Current	T _C =25 °C	25	Α
Tvj	Junction Temperature	(Note5)	-20 ~ +150	°C

^{*:} To measurement point is just under the chip.

CONTROL PART

Symbol	Parameter	Conditions	Ratings	Unit
V_D	Supply Voltage	Applied between: V _{UP1} -V _{UPC} , V _{VP1} -V _{VPC} , V _{WP1} -V _{WPC} , V _{N1} -V _{NC}	20	V
V_{CIN}	Input Voltage	Applied between: U_P - V_{UPC} , V_P - V_{VPC} , W_P - V_{WPC} , U_N , V_N , W_N , W_N , W_N	20	V
V_{FO}	Fault Output Supply Voltage	Applied between: U _{FO} -V _{UPC} , V _{FO} -V _{VPC} , W _{FO} -V _{WPC} , Fo-V _{NC}	20	V
I _{FO}	Fault Output Current	Sink current at U _{FO} , V _{FO} , W _{FO} , Fo terminals	20	mA

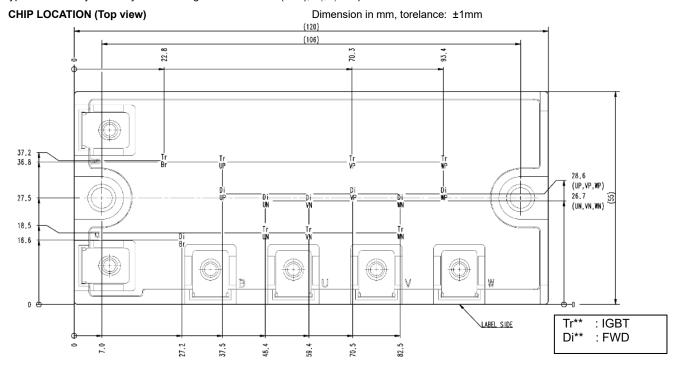
HIGH POWER SWITCHING USE

INSULATED TYPE

TOTAL SYSTEM

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC(PROT)}	Supply Voltage Protected by SC	V _D =13.5 V∼16.5 V, Inverter Part, Tvj=+125°C start	800	V
T_{stg}	Storage Temperature	-	-40 ~ +125	°C
Tc	Operating Case Temperature	(Note5)	-20 ~ +125	°C
V _{isol}	Isolation Voltage	60Hz, Sinusoidal, Charged part to Base plate, AC 1min, RMS	2500	V

^{*:} Tc measurement point is just under the chip.


THERMAL RESISTANCE

Publication date: December, 2020

Symbol	Parameter	O and distance		Limits		
		Conditions	Min.	Тур.	Max.	Unit
$R_{th(j-c)Q}$		Inverter, Junction to case, IGBT, per 1 element (Note1)	-	-	0.33	
$R_{th(j-c)D}$	Thermal Resistance	Inverter, Junction to case, FWD, per 1 element (Note1)	-	-	0.51	K/W
$R_{th(j-c)Q}$	Thermal Resistance	Brake, Junction to case, IGBT, per 1 element (Note1)	-	-	0.48	N/VV
R _{th(j-c)D}		Brake, Junction to case, FWD, per 1 element (Note1)	-	-	0.78	
R _{th(c-s)}	Contact Thermal Resistance	Case to heat sink, per 1 module,	_	14.4	_	K/kW
	Contact Thermal Nesistance	Thermal grease applied (Note.1, 2, 5)	_	1-77		IVICVV

Note1. If you use this value, $R_{\text{th(s-a)}}\,\text{should}$ be measured just under the chips.

Note2. Typical value is by thermally conductive grease of λ =0.9W/(m·K), D_(C-S)=50 μ m.

<Intelligent Power Modules>

PM50RG1B120

HIGH POWER SWITCHING USE

INSULATED TYPE

ELECTRICAL CHARACTERISTICS (Tvj= 25°C, unless otherwise noted)

INVERTER PART

Come le el	Danamatan.	Conditions				Limits		I Imia
Symbol	Symbol Parameter Conditions				Min.	Тур.	Max.	Unit
		V 45 V 1 50 A	Te Te	Terminal	-	-	1.75	
\ <u>/</u>	Collector-Emitter Saturation Voltage	V _D =15 V, I _C =50 A	Tvj=25 °C	Chip	-	1.3	-	V
V _{CEsat}	•	\/ =0\/ Dulood (Fig.1)	Tvj=125 °C	Terminal	-	-	2.0	V
		V _{CIN} =0 V, Pulsed, (Fig.1)	1 Vj - 125 C	Chip	-	1.5	-	
		V _D =15 V, I _E =50 A,	Tvj=25 °C	Terminal	-	-	2.35	
V _{EC}	Emitter-Collector Voltage	V _D -13 V, I _E -30 A,	1 Vj-25 C	Chip	-	1.75	1	V
VEC		V _{CIN} = 15 V, pulsed, (Fig.2)	Tvj=125 °C	Terminal	-	-	2.6	v
		V _{CIN} - 13 V, pulseu, (Fig.2)		Chip	-	1.95	•	
ton		V _D =15 V, V _{CIN} =0 V↔15 V,			0.3	0.7	1.2	
t _{rr}		V _{cc} =600 V, I _c =50A, Tvj=125 °C,			-	0.13	0.4	
t _{c(on)}	Switching Time				-	0.2	0.4	μs
t _{off}		Inductive Load			-	1.0	2.8	
t _{c(off)}		(Fig.3, 4)			-	0.4	1.2	
	Collector-Emitter Cut-off Current	V _{CE} =V _{CES} , V _D =15 V,		Tvj=25 °C	-	-	1	m 1
I _{CES}		Collector-Emitter Cut-off Current	Coin=15 V (Fig.5)		Tvj=125 °C	-	-	10

BRAKE PART

Symbol	Parameter	Conditions			Limits			Unit
Symbol	Farameter	Condition	Conditions			Тур.	Max.	Offic
		V _D =15 V, I _C =25 A	Tvj=25 °C	Terminal	-	-	1.7	
	Collector Emitter Seturation Voltage	VD-13 V, 16-23 A		Chip	-	1.3	-	V
V_{CEsat}	Collector-Emitter Saturation Voltage	V _{CIN} =0 V, Pulsed, (Fig.1)	Tvj=125 °C	Terminal	-	-	1.95	\ \
		V _{CIN} -0 V, Fulsed, (Fig. 1)	Vj = 125 C	Chip	-	1.5	-	
			Tvj=25 °C	Terminal	-	-	2.35	
\/	Diode Forward Voltage		Vj-25 C	Chip	-	1.75	-	V
V_{FM}	Diode Forward Voltage	I _F =25A	Tvj=125 °C	Terminal	-	-	2.6	'
		I Vj=1		Chip	-	1.95	-	
	Collector-Emitter Cut-off Current	\\ -\\ \\ -15\\\\ -15\\\\	5)	Tvj=25 °C	-	-	1	mA
I _{CES}	Collector-Emitter Cut-oil Current	$V_{CE}=V_{CES}$, $V_{D}=15$ V, $V_{CIN}=15$ V (Fig.5)		Tvj=125 °C	-	-	10	IIIA

HIGH POWER SWITCHING USE

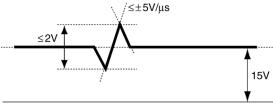
INSULATED TYPE

ELECTRICAL CHARACTERISTICS (Tvj = 25°C, unless otherwise noted)

CONTROL PART

Cumb of	Parameter	Conditions			Limits		
Symbol	Parameter	Conditions	Conditions		Тур.	Max.	Unit
		V -15 V V -15 V	V _{P1} -V _{PC}	-	4	6	
	Circuit Current	V _D =15 V, V _{CIN} =15 V	V _{N1} -V _{NC}	-	16	24	m 1
I _D	Circuit Current	V_D =15 V, V_{CIN} =0 V \longleftrightarrow 15 V, V_{CC} =800 V	V _{P1} -V _{PC}	-	16	20	mA
		I _C =0A, Tvj=125 °C, f _C ≤20kHz	V _{N1} -V _{NC}	-	59	71	
$V_{th(ON)}$	Input ON Threshold Voltage	Applied between:		1.2	1.5	1.8	V
$V_{th(OFF)}$	Input OFF Threshold Voltage	U_P - V_{UPC} , V_P - V_{VPC} , W_P - V_{WPC} , U_N , V_N , W_N ,	Br-V _{NC}	1.7	2.0	2.3	V
00	Short Circuit Trip Level		Inverter	100	-	-	
SC		-20≤Tvj≤125 °C, V _D =15 V (Fig.3, 6)	Brake	50	-	-	Α
t _{d(SC)}	Short Circuit Current Delay Time	V _D =15 V, Tvj=125 °C (Fig.3, 6)	V _D =15 V, Tvj=125 °C (Fig.3, 6)		2.0	-	μs
ОТ	O T	Data Attanza antina af IODT alia aurica	Trip level	150	-	-	°C
OT _(hys)	Over Temperature Protection	Detect temperature of IGBT chip surface	Hysteresis	-	20	-	
UV _t	Supply Circuit		Trip level	11.0	12.0	12.7	.,
UV _r	Under-Voltage Protection	-	Reset level	-	12.5	-	V
I _{FO(H)}	Facility Control of Community	V 45 V V 45 V (N-4-0)		-	-	0.01	^
I _{FO(L)}	Fault Output Current	put Current V _D =15 V, V _{FO} =15 V (Note3)		-	10	15	mA
			ОТ	-	8.0	-	
t _{FO}	Fault Output Pulse Width	V _D =15 V (Note3)	UV	-	4.0	-	ms
			SC	-	2.0	-	

Note3. Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it.


MECHANICAL RATINGS AND CHARACTERISTICS

Cumbal	Parameter	Conditions	Limits			l lmit
Symbol		Conditions	Min.	Тур.	Max.	Unit
Ms	Mounting Torque	Mounting part screw: M5	2.5	3.0	3.5	N•m
Mt	Mounting Torque	Main terminal part screw : M4	1.5	1.7	2.0	INTIII
m	mass	-	-	260	-	g

RECOMMENDED CONDITIONS FOR USE

Symbol	Parameter	Conditions	Recommended value	Unit
V _{CC}	Supply Voltage	Applied across P-N terminals	≤ 800	V
V _D	Control Supply Voltage	Applied between : V _{UP1} -V _{UPC} , V _{VP1} -V _{WPC} , V _{N1} -V _{NC} (Note4)	15.0±1.5	V
V _{CIN(ON)}	Input ON Voltage	Applied between :	≤ 0.8	
$V_{CIN(OFF)}$	Input OFF Voltage	$U_{P}\text{-}V_{UPC},V_{P}\text{-}V_{VPC},W_{P}\text{-}V_{WPC},U_{N},V_{N},W_{N},Br\text{-}V_{NC}$	≥ 9.0] v
f _{PWM}	PWM Input Frequency	Using Application Circuit of Fig. 8	≤ 20	kHz
t _{dead}	Arm Shoot-through Blocking Time	For IPM's each input signals (Fig.7)	≥ 2.5	μs

Note4. With ripple satisfying the following conditions: dv/dt swing $\leq \pm 5$ $V/\mu s$, Variation ≤ 2 V peak to peak

GND

Publication date: December, 2020

Note5. Long term performance related to thermal conductive material such as thermal grease (including but not limited to aspects such as the increase of thermal resistance due to pumping out, etc.) should be verified under your specific application conditions. Each temperature condition (Tvj, Tc) must be maintained below the maximum rated temperature throughout consideration of the temperature rise even for long term usage.

HIGH POWER SWITCHING USE

INSULATED TYPE

PRECAUTIONS FOR TESTING

- 1. Before applying any control supply voltage (V_D), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state.
 - After this, the specified ON and OFF level setting for each input signal should be done.
- 2. When performing "SC" tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above V_{CES} rating of the device.

(These test should not be done by using a curve tracer or its equivalent.)

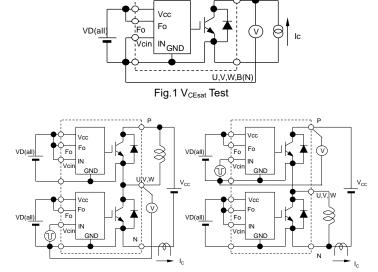
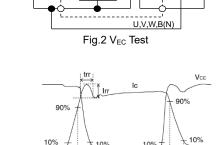



Fig.3 Switching time and SC test circuit

tc(on)

(ton = td(on) + tr)

td(on)

Fig.4 Switching time test waveform

tc(off)

(toff = td(off) + tf)

td(off)

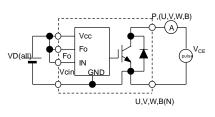


Fig.5 I_{CES} Test

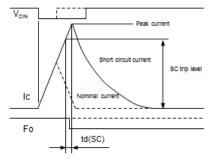
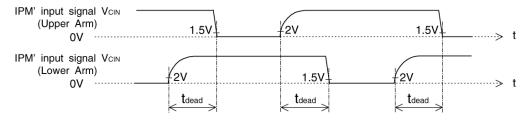
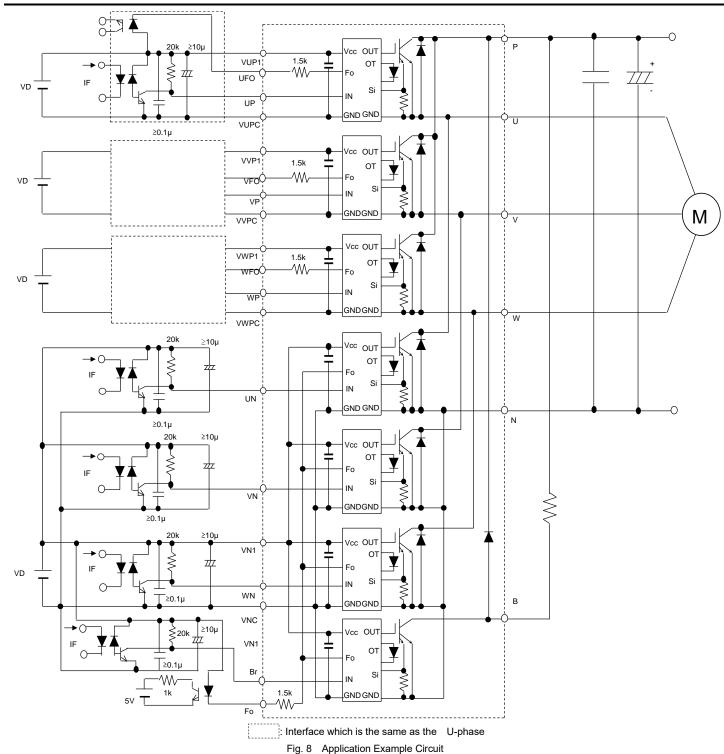



Fig.6 SC test waveform

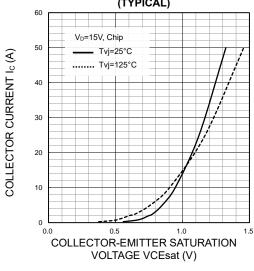


1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value

Fig. 7 Dead time measurement point example

HIGH POWER SWITCHING USE

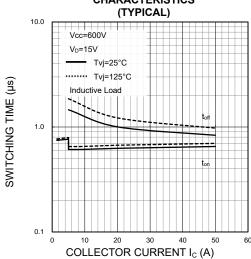
INSULATED TYPE

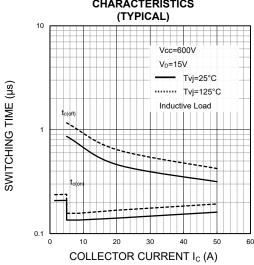


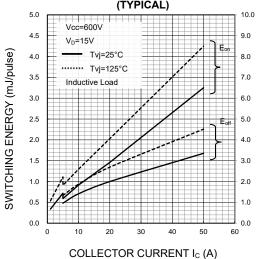
NOTES FOR STABLE AND SAFE OPERATION;

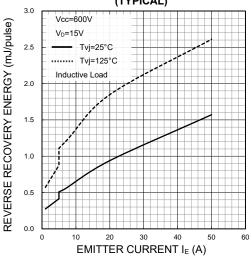

- Design the PCB pattern to minimize wiring length between opto-coupler and IPM's input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler.
- Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
- Fast switching opto-couplers: t_{PLH}, t_{PHL} ≤ 0.8µs, Use High CMR type.
- Slow switching opto-coupler: CTR > 100% (*can be applied to Brake part input signal, in this case, resistor should be selected properly).
- Use 4 isolated control power supplies (V_D). Also, care should be taken to minimize the instantaneous voltage charge of the power supply.
- Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal.

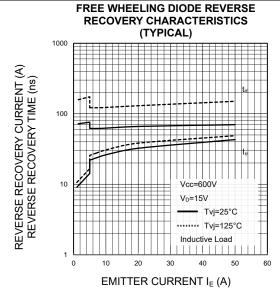
PERFORMANCE CURVES Inverter part



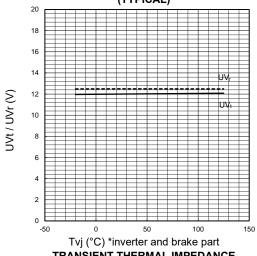

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)


SWITCHING TIME (t_{on}, t_{off}) CHARACTERISTICS (TYPICAL)

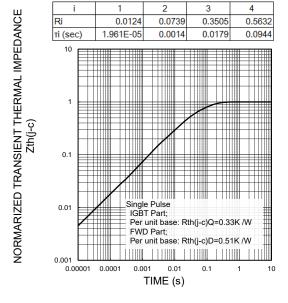

SWITCHING TIME (t_{c(on)}, t_{c(off)}) CHARACTERISTICS

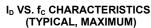


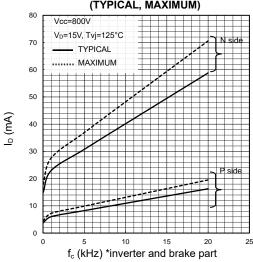
SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

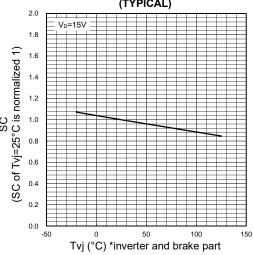


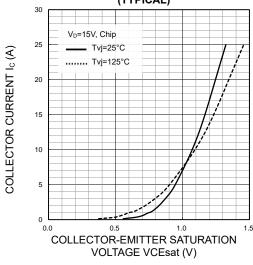
FREE WHEELING DIODE REVERSE RECOVERY ENERGY CHARACTERISTICS (TYPICAL)

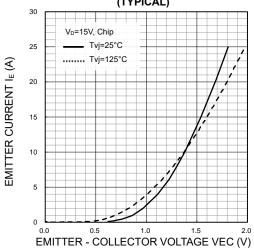







TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL)


SC TRIP LEVEL VS. TVJ CHARACTERISTICS (TYPICAL)


INSULATED TYPE

PERFORMANCE CURVES Brake part

COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL)

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL)

111	i	1	2	3	4
ᅙ	Ri	0.0124	0.0739	0.3505	0.5632
₹	ті (sec)	1.961E-05	0.0014	0.0179	0.0944
NORMARIZED TRANSIENT THERMAL IMPEDANCE Zth(j-c)	10 1 0.1 0.1	1.961E-05	0.0014	0.0179	0.0944
NORMARIZED TRA	0.001	IGB Per FW Per 0.0001 0.0	le Pulse IT Part; unit base: R D Part; unit base: R 01 0.01 TIME (s)		
			٠,		

Note:

Publication date: December, 2020

The characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

Publication date: December, 2020

PM50RG1B120

HIGH POWER SWITCHING USE INSULATED TYPE

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
- Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).
- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.

© Mitsubishi Electric Corporation